文档库 最新最全的文档下载
当前位置:文档库 › 黑盒测试用例设计练习题

黑盒测试用例设计练习题

黑盒测试用例设计练习题
黑盒测试用例设计练习题

“软件测试实训”报告

题目黑盒测试用例设计练习题

学院电子信息工程学院

专业计算机科学与技术

班级 1201 班

学号 121040220109 学生姓名孟晓博

指导教师张惠娥王振铎

西安思源学院教务处制

二〇一五年

一. 题目 (3)

二.要求 (3)

三.源代码 (3)

四.测试 (5)

1.测试范围 (5)

2.等价值划分法 (5)

3.边界值分析法 (6)

序号1测试截图:序号2测试截图: (7)

序号3测试截图:序号4测试截图: (7)

序号5测试截图:序号6测试截图: (7)

序号7测试截图: (7)

一. 题目

黑盒测试用例设计练习题

二.要求

给出某一天(年,月,日),计算出它的下一天,取值范围为:

年:1000<= year <=3000 月:1<=month <=12 日:1<= day <=31

如1999年3月4日的下一天是:1999年3月5日

要求:

输入:三个参数(年,月,日)

输出:如能正确计算,计算出它的下一天,

否则,输出相应的错误信息。

1)使用C语言编写程序实现

2)请结合等价类划分法和边界值分析法设计出相应的测试用例,并依照测试用例对所编写的程序进行测试。

三.源代码

#include

void main()

{

int year;

int month,maxmonth=12;

int day,maxday;

printf("请输入年份:(1000~3000)");

scanf("%d",&year);

if(year<1000 || year>3000)

{

printf("输入错误!请从新输入!\n");

printf("请输入年份:(1000~3000)");

scanf("%d",&year);

}

printf("请输入月份:(1~12)");

scanf("%d",&month);

if(month<1 || month>12)

{

printf("输入错误!请从新输入!\n");

printf("请输入月份:(1~12)");

scanf("%d",&month);

}

if(month==4||month==6||month==9||month==11)

maxday=30;

else if(month==2)

{

if(year%400==0 || year%4==0)

maxday=28;

else

maxday=29;

}

else

maxday=31;

printf("请输入日份:(1~31)");

scanf("%d",&day);

if(day<1 || day>maxday)

{

printf("输入错误!请从新输入!\n");

printf("请输入日份:(1~31)");

scanf("%d",&day);

}

if(month==maxmonth && day==maxday)

{

year=year+1;

month=1;

day=1;

}

else if(day==maxday)

{

month=month+1;

day=1;

}

else

day=day+1;

printf("下一天是%d年%d月%d日",year,month,day); }

Shell终端代码截图

四.测试

1.测试范围

输入条件有效等价类编号无效等价类编号

年1000<=year<=300

0 (1)<1000 (4)

>3000 (5)

月1<=month<=12 (2)<1 (6)

>12 (7)日1<=day<=31 (3)<1 (8)

>31 (9)2.等价值划分法

序号输入参数覆盖等价类输出结果

1 20020105 (1)(2)(3)2002年1月6日

2 9910502 (4)输入错误!请从新输入!

3 30120515 (5)输入错误!请从新输入!

4 2012001

5 (1)(6)输入错误!请从新输入!

5 20141325 (1)(7)输入错误!请从新输入!

6 20070400 (1)(2)(8)输入错误!请从新输入!

7 20010632 (1)(2)(9)输入错误!请从新输入!

序号1测试截图:序号2测试截图:

序号3测试截图:序号4测试截图:

序号5测试截图:序号6测试截图:

序号7测试截图:

3.边界值分析法

序号输入参数输出结果

1 20000228 2000年3月1日

2 9990105 输入错误!请从新输入!

3 30010312 输入错误!请从新输入!

4 20120012 输入错误!请从新输入!

5 20111323 输入错误!请从新输入!

6 20180300 输入错误!请从新输入!

7 20560432 输入错误!请从新输入!

序号1测试截图:序号2测试截图:

序号3测试截图:序号4测试截图:

序号5测试截图:序号6测试截图:

序号7测试截图:

常用的四种黑盒测试用例设计方法

常用的四种黑盒测试用例设计方法 1.等价划分。所谓等价类划分是指一套被选择的值,这些值分别代表了许多众多 的可能输入值,程序对其处理的方式都是一样的。等价类划分的方法作为继边界值分析方法之后补充的测试用例设计试用的一种方法。划分等价类、确定测试用例。 等价类划分是一种典型的黑盒测试方法,使用这一方法时,完全不考虑程序的内部结构,只依据程序的规格说明来设计测试用例。等价类划分方法把所有可能的输入数据,即程序的输入域划分成若干部分,然后从每一部分中选取少数有代表性的数据做为测试用例。 等价类的划分有两种不同的情况:有效等价类:是指对于程序的规格说明来说,是合理的,有意义的输入数据构成的集合。无效等价类:是指对于程序的规格说明来说,是不合理的,无意义的输入数据构成的集合。在设计测试用例时,要同时考虑有效等价类和无效等价类的设计。 2.边界值分析。在设计测试用例确定输入和输出参数时,大多数情况下都是用边 界值分析方法,采用边界值分析设计的测试用例发现程序错误能力最强。边界值分析也是一种黑盒测试方法,是对等价类划分方法的补充。人们从长期的测试工作经验得知,大量的错误是发生在输入或输出范围的边界上,而不是在输入范围的内部。因此针对各种边界情况设计测试用例,可以查出更多的错误。

3.错误推测法。人们也可以靠经验和直觉推测程序中可能存在的各种错误,从而 有针对性地编写检查这些错误的例子。这就是错误推测法。错误推测法的基本想法是:列举出程序中所有可能有的错误和容易发生错误的特殊情况,根据它们选择测试用例。 4.因果图。如果程序的功能说明中含有输入条件的组合情况,则一开始就可以选 用因果图法。如果在测试时必须考虑输入条件的各种组合,可使用一种适合于描述对于多种条件的组合,相应产生多个动作的形式来设计测试用例,这就需要利用因果图。因果图方法最终生成的就是判定表。它适合于检查程序输入条件的各种组合情况。

黑盒测试用例设计案例

黑盒测试用例设计案例 【例1】假设现有以下的三角形分类程序。该程序的功能是,读入代表三角形边长的3个整数,判定它们能否组成三角形。如果能够,则输出三角形是等边、等腰或任意三角形的分类信息。图9.11显示了该程序的流程图和程序图。为以上的三角形分类程序设计一组测试用例。 【解】 第一步:确定测试策略。在本例中,对被测程序的功能有明确的要求,即:

(1)判断能否组成三角形; (2)识别等边三角形; (3)识别等腰三角形; (4)识别任意三角形。因此可首先用黑盒法设计测试用例,然后用白盒法验证其完整性,必要时再进行补充。 第二步:根据本例的实际情况,在黑盒法中首先可用等价分类法划分输入的等价类,然后用边界值分析法和猜错法作补充。 等价分类法: 有效等价类 输入3个正整数: (1)3数相等 (2)3数中有2个数相等,比如AB相等 (3)3数中有2个数相等,比如BC相等 (4)3数中有2个数相等,比如AC相等 (5)3数均不相等 (6)2数之和不大于第3数,比如最大数是A

(7)2数之和不大于第3数,比如最大数是B (8)2数之和不大于第3数,比如最大数是C 无效等价类: (9)含有零数据 (10)含有负整数 (11)少于3个整数 (12)含有非整数 (13)含有非数字符 边界值法: (14)2数之和等于第3数 猜错法: (15)输入3个零 (16)输入3个负数 第三步:提出一组初步的测试用例,如下表所示:

第四步:用白盒法验证第三步产生的测试用例的充分性。结果表明,上表中的前8个测试用例,已能满足对被测程序图的完全覆盖,不需要再补充其他的测试用例。

软件测试-白盒测试用例练习题,DOC

白盒测试用例练习 一、为以下所示的程序段设计一组测试用例,要求分别满足语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合覆盖和路径覆盖,并画出相应的程序流程图。 voidDoWork(intx,inty,intz) { intk=0,j=0; if((x>3)&&(z<10)) {k=x*y-1; j=sqrt(k);//语句块1 } if((x==4)||(y>5)) { j=x*y+10; }//语句块2 j=j%3;//语句块3 } a Y c N b e Y N d 由这个流程图可以看出,该程序模块有4条不同的路径: P1:(a-c-e)P2:(a-c-d) P3:(a-b-e)P4:(a-b-d) 将里面的判定条件和过程记录如下: 判定条件M ={x>3andz<10} 判定条件N={x=4ory>5} 1、 语句覆盖 测试用例输入 输出 判定M 的取值 判定N 的取值 覆盖路径 x=4,z=5,y=8 k=31,j=0 T T P1(a-c-e) 2、判定覆盖 x>3 and z<10 x=4 or y>5 j=j%3 j=x*y+10 k=x*y-1 j=sqrt(k ) k=0 j=0

p1和p4可以作为测试用例,其中p1作为取真的路径,p4作为取反的路径。 测试用例输入输出判定M的取 值 判定N的取值覆盖路径 x=4,z=5,y=8 k=31,j=0 T T P1(a-c-e) x=2,z=11,y= 5 k=0,j=0 F F P4(a-b-d) 也可以让测试用例测试路径P2和P3。相应的两组输入数据如下: 测试用例输入输出判定M的取 值 判定N的取 值 覆盖路径 x=5,z=5,y=4 k=19,j=sqrt(1 9)%3 T F P2(a-c-d) x=4,z=11,y= 6 k=0,j=1 F T P3(a-b-e) 3、条件覆盖 对于M:x>3取真时T1,取假时F1; z<10取真时T2,取假时F2; 对于N:x=4取真时T3,取假时F3; y>5取真时T4,取假时F4。 条件:x>3,z<10,x=4,y>5 条件:x<=3,z>=10,x!=4,y<=5 根据条件覆盖的基本思路,和这8个条件取值,组合测试用例如表所示: 测试用例输 入 输出取值条件具体取值条件覆盖路径 x=4,z=5,y=8 k=31,j= 0 T1,T2,T3, T4 x>3,z<10,x=4,y>5 P1(a-c-e) x=3,z=11,y= 5 k=0,j=0 F1,F2,F3, F4 x<=3,z>=10,x!=4, y<=5 P4(a-b-d) 4、判定/条件覆盖 测试用例输 入 输出取值条件具体取值条件覆盖路径 x=4,z=5,y=8 k=31,j= 0 T1,T2,T3, T4 x>3,z<10,x=4,y>5 P1(a-c-e) x=3,z=11,y= 5 k=0,j=0 F1,F2,F3, F4 x<=3,z>=10,x!=4, y<=5 P4(a-b-d) 5、组合覆盖 条件组合 1)x>3,z<102)x>3,z>=10 3)x<=3,z<104)x<=3,z>=10 5)x=4,y>56)x=4,y<=5 7)x!=4,y>58)x!=4,y<=5 测试用例输入输出覆盖条件取值覆盖条件组覆盖路径

白盒测试用例设计方法

1白盒测试用例设计方法 1.1白盒测试简介 白盒测试又称结构测试、逻辑驱动测试或基于程序的测试,一般多发生在单元测试阶段。白盒测试方法主要包括逻辑覆盖法,基本路径法,程序插装等。 这里重点介绍一下常用的基本路径法,对于逻辑覆盖简单介绍一下覆盖准则。 1.2基本路径法 在程序控制流图的基础上,通过分析控制构造的环路复杂性,导出独立路径集合,从而设计测试用例,设计出的测试用例要保证在测试中程序的每一个可执行语句至少执行一次。 在介绍基本路径测试方法(又称独立路径测试)之前,先介绍流图符号: 图1 如图1所示,每一个圆,称为流图的节点,代表一个或多个语句,流程图中的处理方框序列和菱形决策框可映射为一个节点,流图中的箭头,称为边或连接,代表控制流,类似于流程图中的箭头。一条边必须终止于一个节点,即使该节点并不代表任何语句,例如,图2中两个处理方框交汇处是一个节点,边和节点限定的范围称为区域。 图2

任何过程设计表示法都可被翻译成流图,下面显示了一段流程图以及相应的流图。 注意,程序设计中遇到复合条件时(逻辑or, and, nor 等),生成的流图变得更为复杂,如(c)流图所示。此时必须为语句IF a OR b 中的每一个a 和b 创建一个独立的节点。

(c)流图 独立路径是指程序中至少引进一个新的处理语句集合,采用流图的术语,即独立路径必须至少包含一条在定义路径之前不曾用到的边。例如图(b)中所示流图的一个独立路径集合为: 路径1:1-11 路径2:1-2-3-4-5-10-1-11 路径3:1-2-3-6-8-9-10-1-11 路径4:1-2-3-6-7-9-10-1-11 上面定义的路径1,2,3 和4 包含了(b)流图的一个基本集,如果能将测试设计为强迫运行这些路径,那么程序中的每一条语句将至少被执行一次,每一个条件执行时都将分别取true 和false(分支覆盖)。应该注意到基本集并不唯一,实际上,给定的过程设计可派生出任意数量的不同基本集。如何才能知道需要寻找多少条路径呢?可以通过如下三种方法之一来计算独立路径的上界: 1. V=E-N+2,E 是流图中边的数量,N 是流图节点数量。 2. V=P+1,P 是流图中判定节点的数量 3. V=R,R 是流图中区域的数量 例如,(b)流图可以采用上述任意一种算法来计算独立路径的数量 1. V=11 条边-9 个节点+2=4 2. V=3 个判定节点+1=4 3. 流图有4 个区域,所以V=4 由此为了覆盖所有程序语句,必须设计至少4 个测试用例使程序运行于这4 条路径。 在采用基本路径测试方法中,获取测试用例可参考以下方式:

测试用例撰写练习题汇总

1.计算器测试用例 2.自动取款机取款测试用例 此用例完成用户利用自动取款机取款的全部流程,分为以下流程:插卡,输入密码,选择金额,取款,取卡等操作。 事件流: 该用例在用户插卡之后启动 1. 系统提示用户插卡; 2. 提示客户输入密码信息; 3. 密码输入完毕后,客户选择“确认”,向系统提交信息; 4. 系统验证客户输入的密码信息,确认正确后,进入选择系统主界面; 5. 用户选择取款选项; 6. 系统进入取款金额界面并提示用户输入金额; 7. 系统验证可以取款并输出钱款; 8. 系统提示用户取卡,操作完成。 基本流: 用户取款。 备选流: 1.用户密码错误 2.取款金额不符合要求。 前置条件: 用户必须插入正确的银行卡才能开始执行用例。 后置条件: 如果系统确认用户信息正确,成功登陆,则系统启动主界面,等待用户发送消息,进行查询和取款等操作。 事件流系统用户 1 系统提示用户插卡插入银行卡 2 提示客户输入密码信息输入密码 3 如果密码错误,提示密码不正确,并返回到2 4 如果密码正确,转入主界面 5 提示用户选择选项选择取款选项 6 系统进入取款金额界面并提示用户输入金额输入取款金额 7 如果金额符合则输入钱款 8 如果金额小于余额则提示取款失败并返回7 9 如果金额不是整百则提示不符合规范,取款失败并返回7。 10 提示用户取款取出钱款 11 提示用户取卡取出银行卡 测试用例: 事件用户操作覆盖等价类系统反应 1 插入正确银行卡功能测试提示输入密码 2 密码正确功能测试进入主界面,提示用户选择 3 密码不正确功能测试提示密码错误重新输入 4 输入金额<余额功能检查提示用户金额不足,重新输入或取卡 5 输入金额为150 功能检查提示用户取款金额不符和规范,重新输入或退出

实验1 黑盒测试用例设计

实验1 黑盒测试用例设计 1、实验目的 1、掌握黑盒测试用例的设计方法。 2、综合运用所学的黑盒测试方法设计测试用例。 2、实验准备 1、黑盒测试用例的设计方法。 2、测试用例模板。 3、实验内容 3.1基本训练 实验一:假设现有以下的三角形分类程序。该程序的功能是,读入代表三角形边长的3个整数,判定它们能否组成三角形。如果能够,则输出三角形是等边、等腰或任意三角形的分类信息。图1显示了该程序的流程图和程序图。为以上的三角形分类程序设计一组测试用例。 图1 实验二:为自动售货机设计黑盒测试用例 有一个处理单价为5角钱的饮料的自动售货机软件测试用例的设计。其规格说明如下:若投入5角钱或1元钱的硬币,押下〖橙汁〗或〖啤酒〗的按钮,则相应的饮料就送出来。若售货机没有零钱找,则一个显示〖零钱找完〗的红灯亮,这时在投入1元硬币并押下按钮后,饮料不送出来而且1元硬币也退出来;若有零钱找,则显示〖零钱找完〗的红灯灭,在

送出饮料的同时退还5角硬币。 3.2扩展训练 题目1:利用因果图法编写测试用例。 某奖金计算软件实现功能如下: 1该软件可以计算某公司的年终奖,该公司员工分为普通员工和管理人员。 2员工表现分为普通、优秀和特殊贡献(普通和优秀员工都可以有特殊贡献,普通员工表现普通和管理人员表现普通拿的工资是不同的)。 3 根据员工的分类和表现,将奖金分为1类奖金,2类奖金——。 具体分析: 输入条件:员工类别:普通员工A1、管理人员A2 员工表现:普通B1、优秀B2、特殊贡献B3 输出条件:奖金类别:1类奖金C1、2类奖金C2—— 其中:A1和A2是互斥的,B1和B2是互斥的,B1和B3,B2和B3可以同时满足。 普通员工:A1+B1—>C1 A1+B2 —〉C2 A1+B1+B3—〉C3 A1+B2+B3—〉C4 管理人员:A2+B1—〉C5 A2+B2—〉C6 A2+B1+B3—〉C7 A2+B2+B3—〉C8 4、实验步骤 4.1基本训练 实验一步骤: 第一步:确定测试策略。在本例中,对被测程序的功能有明确的要求,即:(1)判断能否组成三角形; (2)识别等边三角形; (3)识别等腰三角形; (4)识别任意三角形。因此可首先用黑盒法设计测试用例,然后用白盒法验证其完整性,必要时再进行补充。 第二步:根据本例的实际情况,在黑盒法中首先可用等价分类法划分输入的等价类,然后用边界值分析法和猜错法作补充。 等价分类法:

软件测试-白盒测试用例练习题

软件测试-白盒测试用例练 习题 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

白盒测试用例练习 一、为以下所示的程序段设计一组测试用例,要求分别满足语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合覆盖和路径覆盖,并画出相应的程序流程图。 void DoWork (int x,int y,int z) { int k=0,j=0; if ( (x>3)&&(z<10) ) { k=x*y-1; j=sqrt(k); //语句块1 } if ( (x==4)||(y>5) ) { j=x*y+10; } //语句块2 j=j%3; //语句块3 }

由这个流程图可以看出,该程序模块有4条不同的路径: P1:(a-c-e) P2:(a-c-d) P3:(a-b-e) P4:(a-b-d) 将里面的判定条件和过程记录如下: 判定条件M={x>3 and z<10} 判定条件N={x=4 or y>5} 1、语句覆盖 2、判定覆盖 p1和p4可以作为测试用例,其中p1作为取真的路径,p4作为取反的路径。 也可以让测试用例测试路径P2和P3。相应的两组输入数据如下: 3、条件覆盖 对于M:x>3取真时T1,取假时F1; z<10取真时T2,取假时F2; 对于N:x=4取真时T3,取假时F3; y>5取真时T4,取假时F4。

条件:x>3,z<10,x=4,y>5 条件:x<=3,z>=10,x!=4,y<=5 根据条件覆盖的基本思路,和这8个条件取值,组合测试用例如表所示: 4、判定/条件覆盖 5、组合覆盖 条件组合 1)x>3,z<10 2)x>3,z>=10 3) x<=3,z<10 4)x<=3,z>=10 5)x=4,y>5 6)x=4,y<=5 7)x!=4,y>5 8)x!=4,y<=5

白盒测试方法

一、白盒测试概念 1、定义 白盒测试又称结构测试、透明盒测试、逻辑驱动测试、基于代码的测试。盒子指被测试的软件,白盒指盒子是可视的。白盒测试是一种测试用例设计方法,测试人员依据程序内部逻辑结构相关信息,设计或选择测试用例。白盒测试主要针对被测程序的源代码,主要用于软件验证,不考虑软件的功能实现,只验证内部动作是否按照设计说明书的规定进行。 2、目的 我们一方面注重软件功能需求的实现,另一方面还要注重程序逻辑细节,主要是因为软件自身的缺陷,具体如下: 1)逻辑错误和不正确假设与一条程序路径被运行的可能性成反比。日常处理往往被很好地了解,而“特殊情况”的处理则难于发现。 2)我们经常相信某逻辑路径不可能被执行,而事实上,它可能在正常的基础上被执行。程序的逻辑流有时是违反直觉的,只有路径测试才能发现这些错误。 3)代码中的笔误是随机且无法杜绝的。笔误出现在主流上和不明显的逻辑路径上的机率是一样的。很多被语法检查机制发现,但是其他的会在测试开始时才会被发现。 4)功能测试本身的局限性。如果程序实现了没有被描述的行为,功能测试是无法发现的,例如病毒,而白盒测试很容易发现它。 3、目标 采用白盒测试必须遵循以下几条原则,才能达到测试的目标: 1)保证一个模块中的所有独立路径至少被测试一次。 2)所有逻辑值均需测试真(true) 和假(false)两种情况。 3)检查程序的内部数据结构,保证其结构的有效性。 4)在上下边界及可操作范围内运行所有循环。 4、黑白灰区别 黑盒测试技术:也称功能测试或数据驱动测试,只关注规格说明中的功能,测试者在程序接口对软件界面和软件功能进行测试,它只检查实现了的功能是否按照“用户需求说明书”的规定正常使用,程序是否能适当地接收输入数据而产生正确的输出信息,并且保持外部信息(如数据库或文件)的完整性。主要用于软件确认测试,结合兼容、性能测试等方面,但黑盒测试不能保证已经实现的各个部分都被测试到。黑盒测试适用于各阶段测试。 白盒测试技术:只关注软件产品的测试,深入到代码一级的测试,它是知道产品内部结构,通过测试来检测产品内部动作是否按照“设计规格说明书”的规定正常进行,按照程

黑盒测试方法课程练习题及答案

黑盒测试方法课程练习题 练习1 某城市的电话号码由三部分组成。第一部分为地区码:空白或三位数字;第二部分为前缀:非0或1开头的三位数;第三部分为主要电话号码:八位数字。 请用等价分类法来设计测试用例。 划分等价类: 输入等价类有效等价类无效等价类 地区码空白(1) 三位数字(2)不是空白(3) 有非数字字符(4)少于三位数字(5)多于三位数字(6) 前缀不是0开头(7) 不是1开头(8) 三位数字(9)0开头(10) 1开头(11) 有非数字字符(12)少于三位数字(13)多于三位数字(14) 电话号码八位数字(15)有非数字字符(16) 少于三位数字(17) 多于三位数字(18)设计测试用例: 选取数据覆盖等价类编号 234-12345678 (1)(7)(8)(9)(15) 123-234-12345678 (2)(7)(8)(9)(15) 123-234-12345678 (3) 1we-234-12345678 (4) 12-234-12345678 (5) 1234-234-12345678 (6) 123-012-12345678 (10) 123-123-12345678 (11) 123-a12-12345678 (12) 123-23-12345678 (13) 123-2345-12345678 (14) 123-234-1234567a (16) 123-234-12334 (17) 123-234-123456789 (18)

练习2 某城市的电话号码由三部分组成。第一部分为地区码:空白或三位数字;第二部分为前缀:非0或1开头的三位数;第三部分为主要电话号码:八位数字。 等价类结合边界值法: 选取数据覆盖等价类编号 234-12345678 (1)(7)(8)(9)(15) 123-234-12345678 (2)(7)(8)(9)(15) 123-234-12345678 (3) 1we-234-12345678 (4) 12-234-12345678 (5) 1-234-12345678 (5) 1234-234-12345678 (6) 12345-234-12345678 (6) 123-012-12345678 (10) 123-123-12345678 (11) 123-a12-12345678 (12) 123-23-12345678 (13) 123-2-12345678 (13) 123-2345-12345678 (14) 123-23456-12345678 (14) 123-234-12334 (17) 123-234-123 (17) 123-234-123456789 (18) 123-234-12345678912 (18) 练习3 有一个处理单价为1元5角钱的盒装饮料的自动售货机软件。若投入1元5角硬币,按下“可乐”、“雪碧”、或“红茶”按钮,相应的饮料就送出来。若投入的是2元硬币,在送出饮料的同时退还5角硬币。 请用因果图分析法来设计测试用例。 原因结果 (1)投入1元5角硬币(9)送出“可乐”按钮 (2)投入的是2元硬币(10)送出“雪碧”按钮 (3)按下“可乐”按钮(11)送出“红茶”按钮 (4)按下“雪碧”按钮(12)退还5角硬币 (5)按下“红茶”按钮 中间按钮: (6)按下“可乐”、“雪碧”、或“红茶”按钮 (7)退还5角硬币 (8)钱已付清

黑盒测试及测试用例设计方法

黑盒测试及测试用例设计方法 黑盒测试定义 什么是黑盒测试? 黑盒测试就是测试人员把软件产品(可阶段性产品)看做是一个黑盒。在测试过程中测试人员只需关心对这个软件黑盒操作会得到什么样的结果,而不必深入地去了解它的内部实现机制所进行的测试活动。 例如:在Windows的命令行中输入字符串dir就可以得到当前目录下的子目录及文件的列表。而输入tasklist后就得到一张正在系统中运行的任务的列表。在以上操作中不必去考虑命令行解析器会如何解析输入的字符串,也不必考虑系统如何获取我们想要的信息并如何把他显示在屏幕上,这就是黑盒处理机制。我们只关心输入(input)的和想要得到的输出(output)。如果在初始条件确定的情况下的一组确定的输入经过软件产品这个黑盒进行处理后并没有得到期望的结果(expected result)时,则说明此时就发现了一个软件的缺陷(defect)。 为什么要做黑盒测试? 验证(verity):软件产品是否符合需求文档的设计(IEEE 1983 of IEEE Standard 729)证实(validate):软件产品符合最终用户的需求(IEEE 1983 of IEEE Standard 729) 把dir输入到其它软件(如计算器)可能毫无意义,但在Windows命令行中被解析为获取当前目录下的子目录及文件的列表,并且在初始条件确定的情况下将得到可预测的输出。这样的输出在软件测试阶段通常被定义下来以保证开发人员编写的程序有章可循。这下是软件测试的目的之一:验证(verity)软件产品是否符合需求文档的设计。 黑盒测试中,测试人员只按业务逻辑测试而不需要考虑内部实现。这就很好地模拟了终端用户的行为。然而终端用户的行为并不会都在软件需求文档中定义(例如黑客攻击)。我们可以尽量模拟终端用户对产品网站进行攻击。这样的测试既可以是预先定义好的,也可以是随机的(adhoc test)。像这样的模拟终端用户操作对产品进行的测试活动就是在履行软件测试的另一个目的:证实(validate)软件产品符合最终用户的需求。 软件生命周期中的哪些测试阶段用到过黑盒测试? 软件生命周期包括: 单元测试(unit test)。 组件测试(component test)。 集成测试(integration test)。

白盒测试用例练习题(1)

白盒测试用例练习 1.为以下所示的程序段设计一组测试用例,要求分别满足语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合覆盖和路径覆盖,并画出相应的程序流程图。 void DoWork (int x,int y,int z) { int k=0,j=0; if ( (x>3)&&(z<10) ) { k=x*y-1; j=sqrt(k); //语句块1 } if ( (x==4)||(y>5) ) { j=x*y+10; } //语句块2 j=j%3; //语句块3 } a Y c N b e Y N d x>3 and z<10 x=4 or y>5 j=j%3 j=x*y+10 k=x*y-1 j=sqrt(k) k=0 j=0

由这个流程图可以看出,该程序模块有4条不同的路径: P1:(a-c-e) P2:(a-c-d) P3:(a-b-e) P4:(a-b-d) 将里面的判定条件和过程记录如下: 判定条件M={x>3 and z<10} 判定条件N={x=4 or y>5} 1、语句覆盖 测试用例输入输出判定M的取值判定N的取值覆盖路径x=4,z=5,y=8 k=31,j=0 T T P1(a-c-e) 2、判定覆盖 p1和p4可以作为测试用例,其中p1作为取真的路径,p4作为取反的路径。 测试用例输入输出判定M的取值判定N的取值覆盖路径x=4,z=5,y=8 k=31,j=0 T T P1(a-c-e) x=2,z=11,y=5 k=0,j=0 F F P4(a-b-d) 也可以让测试用例测试路径P2和P3。相应的两组输入数据如下: 测试用例输入输出判定M的取值判定N的取值覆盖路径x=5,z=5,y=4 k=19,j=sqrt(19)%3 T F P2(a-c-d) x=4,z=11,y=6 k=0,j=1 F T P3(a-b-e) 3、条件覆盖 对于M:x>3取真时T1,取假时F1; z<10取真时T2,取假时F2; 对于N:x=4取真时T3,取假时F3; y>5取真时T4,取假时F4。 条件:x>3,z<10,x=4,y>5 条件:x<=3,z>=10,x!=4,y<=5 根据条件覆盖的基本思路,和这8个条件取值,组合测试用例如表所示: 测试用例输入输出取值条件具体取值条件覆盖路径x=4,z=5,y=8 k=31, j=0 T1,T2,T3,T4 x>3,z<10,x=4,y>5 P1(a-c-e) x=3,z=11,y=5 k=0, j=0 F1,F2,F3,F4 x<=3,z>=10,x!=4,y<=5 P4(a-b-d) 4、判定/条件覆盖 测试用例输入输出取值条件具体取值条件覆盖路径x=4,z=5,y=8 k=31, j=0 T1,T2,T3,T4 x>3,z<10,x=4,y>5 P1(a-c-e) x=3,z=11,y=5 k=0, j=0 F1,F2,F3,F4 x<=3,z>=10,x!=4,y<=5 P4(a-b-d)

测试用例实例—常见功能测试点

测试用例实例--常见功能测试点 笔者在网上看到了一篇文章,个人认为此文对于“软件常用功能测试点”总结的很好,特此摘录下来和大家一起分享。 1. 登陆、添加、删除、查询模块是我们经常遇到的,这些模块的测试点该如何考虑 1)登陆 ①用户名和密码都符合要求(格式上的要求) ②用户名和密码都不符合要求(格式上的要求) ③用户名符合要求,密码不符合要求(格式上的要求) ④密码符合要求,用户名不符合要求(格式上的要求) ⑤用户名或密码为空 ⑥数据库中不存在的用户名,不存在的密码 ⑦数据库中存在的用户名,错误的密码 ⑧数据库中不存在的用户名,存在的密码 ⑨输入的数据前存在空格 ⑩输入正确的用户名密码以后按[enter]是否能登陆 ------------------------------------------------------------------------------------------------------ 2) 添加 ①要添加的数据项均合理,检查数据库中是否添加了相应的数据 ②留出一个必填数据为空

③按照边界值等价类设计测试用例的原则设计其他输入项的测试用例 ④不符合要求的地方要有错误提示 ⑤是否支持table键 ⑥按enter是否能保存 ⑦若提示不能保存,也要察看数据库里是否多了一条数据 ------------------------------------------------------------------------------------------------------ 3) 删除 ①删除一个数据库中存在的数据,然后查看数据库中是否删除 ②删除一个数据库中并不存在的数据,看是否有错误提示,并且数据库中没有数据被删除 ③输入一个格式错误的数据,看是否有错误提示,并且数据库中没有数据被删除。 ④输入的正确数据前加空格,看是否能正确删除数据 ⑤什么也不输入 ⑥是否支持table键 ⑦是否支持enter键 ------------------------------------------------------------------------------------------------------ 4)查询 精确查询:

软件测试练习2

一、判断题(每题2分,正确的“√”,错误的“╳”) 1.软件测试的目的是尽可能多的找出软件的缺陷。(√) 2.Beta 测试是验收测试的一种。(√) 3.验收测试是由最终用户来实施的。(╳) 4.项目立项前测试人员不需要提交任何工件。(√) 5.单元测试能发现约80%的软件缺陷。(√) 6.代码评审是检查源代码是否达到模块设计的要求。(╳) 7.自底向上集成需要测试员编写驱动程序。(√) 8.负载测试是验证要检验的系统的能力最高能达到什么程度。(╳) 9.测试人员要坚持原则,缺陷未修复完坚决不予通过。(╳) 10.代码评审员一般由测试员担任。(╳) 11.我们可以人为的使得软件不存在配置问题。(╳) 12.集成测试计划在需求分析阶段末提交。(╳) 13 、好的测试员不懈追求完美。(√) 14、测试程序仅仅按预期方式运行就行了。(╳) 15、不存在质量很高但可靠性很差的产品。(╳) 16、软件测试员可以对产品说明书进行白盒测试。(╳) 17、静态白盒测试可以找出遗漏之处和问题。(√) 18、总是首先设计白盒测试用例。(╳) 19、可以发布具有配置缺陷的软件产品。(√) 20、所有软件必须进行某种程度的兼容性测试。(√) 21、所有软件都有一个用户界面,因此必须测试易用性。(╳) 22、测试组负责软件质量。(╳) 二、简答题 1、什么是软件测试? 答:软件测试是为了发现错误而执行程序的过程。或者说,软件测试是根据软件开发各阶段的规格说明和程序的内部结构而精心设计一批测试用例(即输入数据及其预期的输出结果),并利用这些测试用例去运行程序,以发现程序错误的过程。 2、软件测试的目的? 答:测试的目的是想以最少的人力、物力和时间找出软件中潜在的各种错误和缺陷,通过修正种错误和缺陷提高软件质量,回避软件发布后由于潜在的软件缺陷和错误造成的隐患带来的商业风险。 3、白盒测试有哪几种方法? 答:白盒测试也称结构测试或逻辑驱动测试,它是知道产品内部工作过程,可通过测试来检测产品内部动作是否按照规格说明书的规定正常进行,按照程序内部的结构测试程序,检验程序中的每条通路是否都有能按预定要求正确工作,而不顾它的功能,白盒测试的主要方法有逻辑驱动、基路测试等,主要用于软件验证。“白盒”法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。“白盒”法是穷举路径测试。

讲课黑盒测试练习题答案

等价类划分方法: 1.设有一个档案管理系统,要求用户输入以年月表示的日期。假设日期限定在1990年1月~2049年12月,并规定日期由6位数字字符组成,前4位表示年,后2位表示月。现用等价类划分法设计测试用例,来测试程序的"日期检查功能"。 ①、⑤、⑧,设计的测试用例如下: 测试数据期望结果覆盖的有效等价类 200211 输入有效①、⑤、⑧ 3)为每一个无效等价类设计一个测试用例,设计结果如下: 测试数据期望结果覆盖的无效等价类 95June 无效输入② 20036 无效输入③ 2001006 无效输入④ 198912 无效输入⑥ 200401 无效输入⑦ 200100 无效输入⑨ 200113 无效输入⑩ 2.输入:用户密码 要求: 1)用户密码为6到8位。 2)必须含有字母和数的组合。 输出:如正确,输出正确的信息。否则,输出相应的错误信息。 请结合等价类划分法设计出相应的测试用例。

4 abcdedf (1)(5)输入错误 5 (1)(6)输入错误 边界值分析方法: 1.NextDate函数的边界值分析测试用例 在NextDate函数中,隐含规定了变量mouth和变量day的取值范围为1≤mouth≤12和1≤day≤31,并设定变量year的取值范围为1912≤year≤2050 。(6n+1) 因果图方法 1.有一个处理单价为5角钱的饮料的自动售货机软件测试用例的设计。其规格说明如下:若投入 5角钱或1元钱的硬币,押下〖橙汁〗或〖啤酒〗的按钮,则相应的饮料就送出来。若售货机没有零钱找,则一个显示〖零钱找完〗的红灯亮,这时在投入1元硬币并押下按钮后,饮料不送出来而且1元硬币也退出来;若有零钱找,则显示〖零钱找完〗的红灯灭,在送出饮料的同时退还5角硬币。 1) 分析这一段说明,列出原因和结果 原因: 1.售货机有零钱找 2.投入1元硬币 3.投入5角硬币 4.押下橙汁按钮 5.押下啤酒按钮 结果: 21.售货机〖零钱找完〗灯亮

白盒与黑盒测试的测试用例设计

第5章白盒与黑盒测试的测试用例设计 5.1 覆盖率的概念 ●覆盖率是用来度量测试完整性的一个手段 ●逻辑覆盖和功能覆盖 ●覆盖率=(至少被执行一次的item数)/item总数 5.2 白盒测试的测试用例设计 5.2.1逻辑覆盖 逻辑覆盖是以程序内部的逻辑结构为基础的测试用例设计技术,属白盒测试。为了衡量测试的覆盖程度,需要建立一些作为测试彻底度的定量衡量标准。目前常用的覆盖标准是:语句覆盖;判定覆盖;条件覆盖;判定/条件覆盖;条件组合覆盖;路径覆盖 一、语句覆盖 语句覆盖就是设计若干个测试用例,运行所测的程序,使得每一可执行语句至少执行一次。 二、判定覆盖 判定覆盖就是设计若干个测试用例,使程序中的每个判断至少出现一次“真值”和一次“假值”,即程序中的每个分支都至少执行一次。 三、条件覆盖 条件覆盖是指利用若干个测试用例,使被测试的程序中,对应每个判断中每个条件的所有可能情况均至少执行一次。 四、判定/条件覆盖 判定/条件覆盖就是设计足够多的测试用例,使得程序中每个判断条件的所有可能的结果至少取到一次,又使每次判断的每个分支至少通过一次。 五、条件组合覆盖 解决上述问题的新标准是条件组合覆盖。条件组合覆盖就是设计足够多的测试用例,使得每个判断的所有可能的条件取值组合至少执行一次。 六、逻辑覆盖举例 [例1]试用逻辑覆盖测试法为采用冒泡排序(bubble sorting)法进行数据排序的C程序设计测试用例。 本例是一个对k个整数进行升序排序的C程序,采用的算法是冒泡排序。基本步骤是:(1)从数组中取出第2个元素; (2)如果新取出的元素大于等于其前邻元素,则转向第(4)步; (3)如果新取出的元素小于其前邻元素,则与其前邻元素交换位置; (4)将新元素与新的前邻元素比较,若仍小于新的前邻元素,则重复第(3)步; (5)取下一个元素。如果数组中元素已取完则结束排序,否则转向第(2)步。 下面将给出本例的C程序。图2则是排序部分的流程图。 main() { int a[11],i,j,k,temp; scanf(“%d”,k); printf(“input numbers:\n”); for(i=1;i<=k;i++) scanf(“%d”,&a[i]); printf(“\n”); for(i=2;i<=k;i++) { if(a[i]>=a[i-1]) continue; for(j=i;j<=2;j--)

软件测试练习题及答案

一、判断 (01)测试是为了验证软件已正确地实现了用户的要求。错 (02)白盒测试仅与程序的内部结构有关,完全可以不考虑程序的功能要求。对 (03)白盒测试不仅与程序的内部结构有关,还要考虑程序的功能要求。错 (04)程序员兼任测试员可以提高工作效率。错 (05)黑盒测试的测试用例是根据应用程序的功能需求设计的。对 (06)当软件代码开发结束时,软件测试过程才开始。错 (07)据有关数据统计,代码中60%以上的缺陷可以通过代码审查发现出来。对(08)无效等价类是无效的输入数据构成的集合,因此无需考虑无效的等价类划分。错(09)软件本地化就是将一个软件产品按特定国家或语言市场的需要翻译过来。错(10)在压力测试中通常采用的是黑盒测试方法。对 (11)软件测试员无法对产品说明书进行白盒测试。对 (12)功能测试工具主要适合于回归测试。对 (13)测试人员说:“没有可运行的程序,我无法进行测试工作”。错 (14)自底向上集成需要测试员编写驱动程序。对 (15)测试是可以穷尽的。错 (16)自动化测试相比手工测试而言,能发现更多的错误。错 (17)软件测试自动化可以提高测试效率,可以代替手工测试。错 (18)语句覆盖法的基本思想是设计若干测试用例,运行被测程序,使程序中的每个可执行语句至少被执行一次。对 (19)Beta测试是验收测试的一种。对 (20)软件开发全过程的测试工作都可以实现自动化。错 (21)软件只要经过严格严谨的内部测试之后,可以做到没有缺陷。错 (22)结构性测试是根据软件的规格说明来设计测试用例。错 (23)软件测试工具可以代替软件测试员。错 (24)通过软件测试,可以证明程序的正确性。错 (25)在单元测试中,驱动程序模拟被测模块工作过程中所调用的下层模块。错(26)软件缺陷可能会被修复,可能会被保留或者标识出来。对 (27)测试用例是由测试输入数据和对应的实际输出结果这两部分组成。错(28)单元测试通常由开发人员进行。对 (29)现在人们普遍认为软件测试不应该贯穿整个软件生命周期,而应在编程完毕之后再进行,这样可以降低成本。错 (30)文档的错误不是软件缺陷。错 (31)Junit只是单元测试工具,并不能进行现回归测试。错 (32)判定表法是一种白盒测试方法。错 (33)白盒测试不考虑程序内部结构。错 (34)在单元测试中,桩程序模拟被测模块工作过程中所调用的下层模块。对(35)在测试中发现缺陷多的地方,还有更多的缺陷将会被发现。对

实验1 利用黑盒测试技术设计测试用例

14级本科《软件测试技术》实验指导书 实验1 利用黑盒测试技术设计测试用例 【实验目的】 1、熟悉并掌握黑盒测试的方法:等价类划分法、边界值分析法、错误推测法、场景法。 2、了解待测的功能,灵活应用黑盒测试方法中的等价类划分法、边界值分析法、错误推测法以及场景法,设计测试用例,掌握正面测试和负面测试。 【实验内容】 【1】应用等价类划分法进行测试。 用户注册功能,要求用户密码必须满足两个条件: ?长度为6到8位。 ?必须是字母和数字的组合。 (1)请分析等价类,填写表1-1。 表1-1 等价类表 (2)根据表1-1的等价类设计测试数据,填写表1-2。 表1-2 根据等价类划分法设计的测试数据 【2】应用等价类划分法和边界值分析法进行测试。 在教务系统中进行课程成绩录入,要求0≤成绩≤100,且成绩为整数。 (1)请分析等价类,填写表1-3。 表1-3 等价类表

(2)根据表1-3的等价类设计测试数据,填写表1-4。 表1-4 根据等价类划分法设计的测试数据 (3)根据边界值分析法设计测试数据,填写表1-5。 表1-5 根据边界值分析法设计的测试数据 阅读附录A.9的功能描述,了解借书功能。设计借书功能的测试用例。(1)首先按照场景法来分析借书功能的基本流和备选流,见表2-12。 表2-12 借书功能的基本流和备选流 (2)设计借书功能的场景,见表2-13。 表2-13 借书功能的场景设计

I(Invalid,无效的)表示无效数据,“n/a”表示这个条件不适用于测试用例。 表2-14 测试用例表 【4】设计修改产品功能的测试用例。 阅读附录A.3、A.4的功能描述,了解添加产品、修改产品功能,分析添加产品功能的测试用例的设计思路,如表2-4所示,参考添加产品功能的测试用例(如表2-5所示),设计修改产品功能的测试用例,填写表2-6。 表2-4 添加产品功能的测试用例的设计思路

软件测试白盒测试用例练习题

白盒测试用例练习 一、为以下所示的程序段设计一组测试用例,要求分别满足语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合覆盖和路径覆盖,并画出相应的程序流程图。 void DoWork (int x,int y,int z) { int k=0,j=0; if ( (x>3)&&(z<10) ) { k=x*y-1; j=sqrt(k); //语句块1 } if ( (x==4)||(y>5) ) { j=x*y+10; } //语句块2 j=j%3; //语句块3 }

由这个流程图可以看出,该程序模块有4条不同的路径: P1:(a-c-e) P2:(a-c-d) P3:(a-b-e) P4:(a-b-d) 将里面的判定条件和过程记录如下: 判定条件M={x>3 and z<10} 判定条件N={x=4 or y>5} 1、语句覆盖 2、判定覆盖 p1和p4可以作为测试用例,其中p1作为取真的路径,p4作为取反的路径。 也可以让测试用例测试路径P2和P3。相应的两组输入数据如下:

3、条件覆盖 对于M:x>3取真时T1,取假时F1; z<10取真时T2,取假时F2; 对于N:x=4取真时T3,取假时F3; y>5取真时T4,取假时F4。 条件:x>3,z<10,x=4,y>5 条件:x<=3,z>=10,x!=4,y<=5 根据条件覆盖的基本思路,和这8个条件取值,组合测试用例如表所示: 4、判定/条件覆盖

5、组合覆盖 条件组合 1)x>3,z<10 2)x>3,z>=10 3) x<=3,z<10 4)x<=3,z>=10 5)x=4,y>5 6)x=4,y<=5 7)x!=4,y>5 8)x!=4,y<=5 6、路径覆盖

测试用例八大设计方法和实例

测试用例设计方法 1等价类划分 1.1 理论知识 等价类划分是一种典型的黑盒测试方法。这一方法完全不考虑程序的内部结构,只依据程序的规格说明来设计测试用例。 等价类是指某个输入域的子集合。在该子集合中,各个输入数据对于揭示程序中的错误都是等效的。 等价类合理地假设:某个等价类的代表值,与该等价类的其他值,对于测试来说是等价的。 因此,可以把全部的输入数据划分成若干的等价类,在每一个等价类中取一个数据来进行测试。这样就能以较少的具有代表性的数据进行测试,而取得较好的测试效果。 等价类划分是把所有可能的输入数据,即程序的输入域划分成若干部分(子集),然后从每一个子集中选取少数具有代表性的数据作为测试用例.该方法是一种重要的,常用的黑盒测试用例设计方法. 1) 分类: 划分等价类: 等价类是指某个输入域的子集合.在该子集合中,各个输入数据对于揭露程序中的错误都是等效的.并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试.因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件,就可以用少量代表性的测试数据.取得较好的测试结果.等价类划分可有两种不同的情况:有效等价类和无效等价类. 有效等价类:是指对于程序的规格说明来说是合理的,有意义的输入数据构成的集合.利用有效等价类可检验程序是否实现了规格说明中所规定的功能和性能. 无效等价类:与有效等价类的定义恰巧相反. 设计测试用例时,要同时考虑这两种等价类.因为,软件不仅要能接收合理的数据,也要能经受意外的考验.这样的测试才能确保软件具有更高的可靠性. 2)划分等价类的方法: 下面给出六条确定等价类的原则: ①在输入条件规定了取值范围或值的个数的情况下,则可以确立一个有效等价类和两个无效等价类. ②在输入条件规定了输入值的集合或者规定了“必须如何”的条件的情况下,可确立一个有效

相关文档
相关文档 最新文档