文档库 最新最全的文档下载
当前位置:文档库 › 蚁群算法中参数设置的研究

蚁群算法中参数设置的研究

蚁群算法中参数设置的研究
蚁群算法中参数设置的研究

蚁群算法简述及实现

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

粒子群算法和蚁群算法的结合及其在组合优化中的应用

2007年第2期空间电子技术收稿日期:2006-04-03;收修改稿日期:2006-04-30 粒子群算法和蚁群算法的结合及其在 组合优化中的应用 张长春苏昕易克初 (西安电子科技大学综合业务网国家重点实验室,西安710071) 摘要文章首次提出了一种用于求解组合优化问题的PAAA算法。该算法有效地 结合了粒子群算法和蚁群算法的优点,先利用粒子群算法的随机性、快速性、全局性得到初始信息素分布(即粗搜索),再利用蚁群算法的并行性、正反馈性、求解精度高等优点求精确解(即细搜索)。将文中提出的算法用于经典TSP问题的求解,仿真结果表明PAAA算法兼有两种算法的优点,同时抛弃了各自的缺点。该算法在时间效率上优于蚁群算法,在求精效率上优于粒子群算法,是综合了两种算法长处的一种新的启发式算法,达到时间性能和优化性能上的双赢,获得了非常好的效果。 主题词蚁群算法粒子群算法旅行商问题PAAA 0引言 近年来对生物启发式计算(Bio-inspiredComputing)的研究,越来越引起众多学者的关注和兴 趣,产生了神经网络、 遗传算法、模拟退火、粒子群算法、蚁群算法等许多用于解决复杂优化问题的新方法。然而,面对各种问题的特殊性和复杂性,每种算法都表现出了自身的优势和缺陷,都存在时间性能和优化性能不能兼得的矛盾。粒子群优化(ParticleSwarmOptimization,PSO)算法[1,2]是由Eberhart和Kennedy于1995年提出的一种全局优化算法,该算法源于对鸟群觅食行为的模拟。它的优势在于:(1)算法简洁,可调参数少,易于实现;(2)随机初始化种群,具有较强的全局搜索能力,类似于遗传算法;(3)利用评价函数衡量个体的优劣程度,搜索速度快;(4)具有较强的可扩展性。其缺点是:不能充分利用系统中的反馈信息,求解组合优化问题的能力不强。 蚁群算法[3,4](AntColonyOptimization,ACO)是由意大利学者M.Dorigo,V.Maniezzo和A.Colorni 于20世纪90年代初提出的一种新型的智能优化算法,已经被应用到TSP问题[5,6]、二次分配问题、工件调度问题、图着色问题等许多经典组合优化问题中,取得了很好的效果。它的优点是:(1)采用一种正反馈机制,通过信息素的不断更新,达到最终收敛于最优路径上的目的;(2)是一种分布式的优化方法,易于并行实现;(3)是一种全局优化的方法,不仅可用于求解单目标优化问题,而且可用于求解多目标优化问题;(4)适合于求解离散优化问题;(5)鲁棒性强。但由于在算法的初始阶段信息素匮乏,所以求解速度较慢。 文章将粒子群算法和蚁群算法有机地结合,提出了PAAA算法。它利用粒子群算法的较强的全局搜索能力生成信息素分布,再利用蚁群算法的正反馈机制求问题的精确解,汲取各自的优势,以达空间电子技术SPACEELECTRONICTECHNOLOGY76

蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用 摘要 蚁群算法(Ant Colony Optimization, ACO)是意大利学者M.Dorigo等人通过模拟蚁群觅食行为提出的一种基于种群的模拟进化算法。通过介绍蚁群觅食过程中基于信息素(pheromone)的最短路径的搜索策略,给出了基于MATLAB的蚁群算法在车辆路径问题(Vehicle Routing Problem, VRP)中的应用。蚁群算法采用分布式并行计算机制,易于其他方法结合,而且具有较强的鲁棒性,但搜索时间长,容易陷入局部最优解。针对蚁群算法存在的过早收敛问题,加入2—opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。 关键词:蚁群算法、组合优化、车辆路径问题、2-opt方法 1.车辆路径问题 车辆路径问题(VRP)来源于交通运输,1959年由Dantzig提出,它是组合优化问题中一个典型的NP-hard问题。最初用于研究亚特兰大炼油厂向各个加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点。 车路优化问题如下: 已知有一批客户,各客户点的位置坐标和货物需求已知,

供应商具有若干可供派送的车辆,运载能力给定,每辆车都是从起点出发,完成若干客户点的运送任务后再回到起点。 现要求以最少的车辆数和最少的车辆总行程来完成货物的派送任务。 2、蚁群系统基本原理 在蚂蚁群找到食物时,它们总能找到一条从食物到蚁穴之间的最短路径。因为蚂蚁在寻找食物时会在路途上释放一种特殊的信息素。当它们碰到一个还没有走过的路口时,会随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后面的蚂蚁再次碰到这个路口时,会选择激素浓度较高的路径走。这样形成了一个正反馈,最优路径上的激素浓度越来越高,而其他的路径上激素浓度却会随时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻找过程中,整个蚁群通过相互留下的信息素作用交换着路径信息,最终找到最优路径。 3、基本蚁群算法求解车辆路径问题 求解VRP问题的蚂蚁算法中,每只蚂蚁是一个独立的用 于构造路线的过程,若干蚂蚁过程之间通过信息素值来交换信息,合作求解,并不断优化。这里的信息素值分布式存储在图中,与各弧相关联。蚂蚁算法求解VRP问题的过程如下:

蚁群算法综述

智能控制之蚁群算法 1引言 进入21世纪以来,随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 蚁群算法是近些年来迅速发展起来的,并得到广泛应用的一种新型模拟进化优化算法。研究表明该算法具有并行性,鲁棒性等优良性质。它广泛应用于求解组合优化问题,所以本文着重介绍了这种智能计算方法,即蚁群算法,阐述了其工作原理和特点,同时对蚁群算法的前景进行了展望。 2 蚁群算法概述 1、起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 Deneubourg及其同事(Deneubourg et al.,1990; Goss et al.,1989)在可监控实验条件下研究了蚂蚁的觅食行为,实验结果显示这些蚂蚁可以通过使用一种称为信息素的化学物质来标记走过的路径,从而找出从蚁穴到食物源之间的最短路径。 在蚂蚁寻找食物的实验中发现,信息素的蒸发速度相对于蚁群收敛到最短路径所需的时间来说过于缓慢,因此在模型构建时,可以忽略信息素的蒸发。然而当考虑的对象是人工蚂蚁时,情况就不同了。实验结果显示,对于双桥模型和扩展双桥模型这些简单的连接图来说,同样不需要考虑信息素的蒸发。相反,在更复杂的连接图上,对于最小成本路径问题来说,信息素的蒸发可以提高算法找到好解的性能。 2、基于蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的环境作出反应,也只对其周围的局部环境产生影响。 (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的自适应表现,即蚂蚁是反应型适应性主体。 (3)在个体水平上,每只蚂蚁仅根据环境作出独立选择;在群体水平上,单

蚁群算法研究意义

1.3.1 蚁群算法的研究背景 在当今社会中,随着人工智能(Artificial Intelligence,AI)和网络技术的飞速发展,科学技术与其他的多种学科相互交叉,相互渗透和融合,不仅给人们的生活、学习和工作等方面带了便利,而且也从根本上改变了人类的生活和生产。与此同时,随着人类生活空间的不断扩大和对世界认识水平的不断提高,人们又对科学技术的发展提出了更高、更多的要求,期待着更多的研究学者对它进行不断的研究和提高,其中高效的优化技术和智能计算的要求也进一步的迫切需求。为了提高优化技术水平和智能计算的发展,近些年来有很多的研究学者,特别是在生物方面的研究专家和学者,通过对大自然中很多生物的生活现象和规律进行了大量的研究和探讨,提出了很多的群体智能算法。它们是一种基于生物信息系统的智能仿生算法,学者们是对社会性昆虫相互合作进行工作的研究,从生物进化和仿生学角度受到启发而提出的。众所周知,社会性昆虫如蜜蜂,蚂蚁等,虽然其单个个体的力量很小,行为方式很简单、随机,但是它们却可以凭借集体的力量进行一些复杂的社会性活动,来更好的完成单个个体很难甚至不能完成的行为或活动,如它们可以通过社会分工等方式来更快的找到食物,共同的建造巢穴和防止外敌入侵等等。这种群体所表现出来的“智能”,就可以称之为群体智能(Swarm Intelligence,SI)。群体智能中的群体(Swarm)是指“一组相互之间可以进行间接通信的主体,这组主体能够合作进行分布式问题求解”。而所谓群体智能是指“无智能的主体通过合作表现出智能行为的特性”。群体智能在没有集中控制并且不提供全局模型的前提下,为寻找复杂的分布式问题的解决方案提供了基础。在很多专家和研究学者的共同努力下,有很多的群体智能算法得以提出并有了很好的发展和应用。虽然有些智能算法有了成熟的理论基础,但是把它们能够很好的应用到现实生活中还有一定的差距,需要我们共同的参与,进行不断的探索、尝试和研究。 蚁群算法正是群体智能算法中的一个重要分支。在对一些生物昆虫,如蜜蜂、蚂蚁等进行大量的观察和研究后,生物学家发现了像蚂蚁这样弱小的昆虫,在觅食的时候,通过群体的力量,经过多次的探索和寻找,最终能够找得到一条从巢穴到食物源的最短路径。为了进一步的研究,生物学家就在蚂蚁寻找食物的路径上,设置一些障碍物来影响蚂蚁寻找路径,经过一段时间的搜寻,最终蚂蚁还是找到了从巢穴到食物源的最短路径。经过各种实验,生物学家进一步的研究表明,蚂蚁在寻找食物的探索过程中,会在所经过的路径上释放一种挥发的化学物质,这种特殊的物质被称之为信息素(Pheromone)。信息素可以沉积在路径上,并随着时间逐步的挥发。当蚂蚁选择路径的时候,它们倾向于沿着信息素气味较浓的

启发式优化算法综述

启发式优化算法综述 一、启发式算法简介 1、定义 由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。 为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。因此,采用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。启发式算法是一种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不一定能保证所得的可行解和最优解,甚至在多数情况下,无法阐述所得解同最优解的近似程度。 启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题

时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。 2、发展历史 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史: 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。 70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。 Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。 80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。

蚁群算法研究综述

蚁群算法综述 控制理论与控制工程09104046 吕坤一、蚁群算法的研究背景 蚂蚁是一种最古老的社会性昆虫,数以百万亿计的蚂蚁几乎占据了地球上每一片适于居住的土地,它们的个体结构和行为虽然很简单,但由这些个体所构成的蚁群却表现出高度结构化的社会组织,作为这种组织的结果表现出它们所构成的群体能完成远远超越其单只蚂蚁能力的复杂任务。就是他们这看似简单,其实有着高度协调、分工、合作的行为,打开了仿生优化领域的新局面。 从蚁群群体寻找最短路径觅食行为受到启发,根据模拟蚂蚁的觅食、任务分配和构造墓地等群体智能行为,意大利学者M.Dorigo等人1991年提出了一种模拟自然界蚁群行为的模拟进化算法——人工蚁群算法,简称蚁群算法(Ant Colony Algorithm,ACA)。 二、蚁群算法的研究发展现状 国内对蚁群算法的研究直到上世纪末才拉开序幕,目前国内学者对蚁群算法的研究主要是集中在算法的改进和应用上。吴庆洪和张纪会等通过向基本蚁群算法中引入变异机制,充分利用2-交换法简洁高效的特点,提出了具有变异特征的蚊群算法。吴斌和史忠植首先在蚊群算法的基础上提出了相遇算法,提高了蚂蚁一次周游的质量,然后将相遇算法与采用并行策略的分段算法相结合。提出一种基于蚁群算法的TSP问题分段求解算法。王颖和谢剑英通过自适应的改变算法的挥发度等系数,提出一种自适应的蚁群算法以克服陷于局部最小的缺点。覃刚力和杨家本根据人工蚂蚁所获得的解的情况,动态地调整路径上的信息素,提出了自适应调整信息素的蚁群算法。熊伟清和余舜杰等从改进蚂蚁路径的选择策略以及全局修正蚁群信息量入手,引入变异保持种群多样性,引入蚁群分工的思想,构成一种具有分工的自适应蚁群算法。张徐亮、张晋斌和庄昌文等将协同机制引入基本蚁群算法中,分别构成了一种基于协同学习机制的蚁群算法和一种基于协同学习机制的增强蚊群算法。 随着人们对蚁群算法研究的不断深入,近年来M.Dorigo等人提出了蚁群优化元启发式(Ant-Colony optimization Meta Heuristic,简称ACO-MA)这一求解复杂问题的通用框架。ACO-MH为蚁群算法的理论研究和算法设计提供了技术上的保障。在蚁群优化的收敛性方面,W.J.Gutjahr做了开创性的工作,提出了基于图的蚂蚁系统元启发式(Graph-Based Ant System Metaheuristic)这一通用的蚁群优化 的模型,该模型在一定的条件下能以任意接近l的概率收敛到最优解。T.StBtzle 和M.Dorigo对一类ACO算法的收敛性进行了证明,其结论可以直接用到两类实验上,证明是最成功的蚁群算法——MMAs和ACS。N.Meuleau和M.Dorigo研究了

蚁群算法研究应用现状与展望

第31卷 第1期  吉首大学学报(自然科学版)Vol.31 No.1 2010年1月J ournal of J is ho u Uni ver s i t y (Nat ural Sci ence Editio n )J an.2010 文章编号:1007-2985(2010)01-0035-05 蚁群算法研究应用现状与展望 3 叶志伟,周 欣,夏 彬 (湖北工业大学计算机学院,湖北武汉 430068) 摘 要:蚁群算法是工程优化领域中新出现的一种仿生进化算法.首先介绍基本蚁群算法的原理和模型,然后评述近年来对蚁群算法的若干改进以及在许多新领域中的发展应用,最后对蚁群算法未来的发展和研究方向进行展望. 关键词:蚁群算法;优化;最优决策 中图分类号:TN911.73 文献标识码:A 实际工程问题常具有复杂性、非线性等特点,而它的解决通常也是一种寻求最优决策的过程,因此寻求一种适合大规模并行、具有智能特征的优化算法已经成为引人注目的研究方向.目前,除了业已得到公认的遗传算法、模拟退火算法、禁忌搜索算法等热门进化算法,蚁群优化算法[1-3](Ant Colony Optimization Algo rithm ,ACO ,也称蚂蚁系统)正在开始崭露头角,为复杂的系统优化问题提供了新的具有竞争力的求解算法.ACO 是由意大利学者M.D o rigo 等人于1991年首先提出来一种新兴模拟生物智能的算法,在短期内得到了迅速的发展,除了用于大批经典优化问题的求解,如二次分配问题(Qua d 2ra tic Assignme nt Problem ,QAP )、有序排列问题(Sequential Orde ring Problem ,SOP )[2-16]等,在实际工程领域也得到广泛的应用. 1 基本ACO 原理 为了说明ACO 模型,这里引入旅行商问题(TSP ),它是一类经典的组合优化问题,即在给定城市个数和各城市之间距离的条件下,要找到1条遍历所有城市当且仅当1次最短的线路. 为模拟真实蚂蚁的行为,首先引入如下标记:m 是蚁群的规模;b i (t )是t 时刻位于城市i 的蚂蚁数量,m = ∑n i =1 b i (t );d i j 是两城市i 和j 之间的距离;ηi j 是由城市i 转移到城市j 的可见度,反映城市i 转移到城市j 的启发信息,这个量在ACO 的 运行中保持不变;τi j 是边(i ,j )上的信息素轨迹强度;Δτi j 是蚂蚁k 在边(i ,j )上留下的信息素轨迹量;p k i j 是蚂蚁k 的转移概 率,j 是没有访问过的城市. 每只蚂蚁都是具有如下行为的个体:①由城市i 转移到城市j 的过程中或是在完成1次循环以后,蚂蚁在边(i ,j)上释放信息素;②蚂蚁随机的选择下一个将要访问的城市;③在完成一次循环以前,不允许选择已经访问过的城市. 基本ACO 在TSP 问题中实现的具体过程如下:假设将m 只蚂蚁放入到n 个随机选择的城市中;每只蚂蚁每步根据一定的概率,选择下一个它还没有访问过的城市,将所有城市遍历完以后回到出发的城市.蚂蚁选择目标城市的概率公式为 p k ij (t)= (τi j (t ))α(ηij )β/∑j ∈allowed (τi j (t ))α(ηi j )β j ∈allowed ,0 othe rwise.(1) 在得到每个候选城市的选择概率以后,蚂蚁运用随机选择的方式决定下一步要去的城市.(1)式中各参数意义如下:α表示信息素信息相对重要程度;β表示可见度信息相对重要程度.为了避免对同一个城市的重复访问,每只蚂蚁都保存一个列表tabu (k ),用于记录到目前为止蚂蚁已经访问过的城市集合.为了避免残留信息素过多引起残留信息淹没启发信息的现象发生,在每一只蚂蚁走完1步或者完成对所有n 个城市的访问后,对残留信息素进行更新处理.这样得到(t +n)时刻在(i , 3收稿日期:2009-04-10 基金项目:湖北省自然科学基金资助项目(2008CDZ003;2008CDB342);湖北省教育厅优秀中青年项目(Q20081409;Q20081402) 作者简介叶志伟(),男,湖北浠水人,湖北工业大学计算机学院副教授,博士,主要从图像处理领域和智能计算研究:1978-.

(完整版)蚁群算法matlab程序实例整理

function [y,val]=QACS tic load att48 att48; MAXIT=300; % 最大循环次数 NC=48; % 城市个数 tao=ones(48,48);% 初始时刻各边上的信息最为1 rho=0.2; % 挥发系数 alpha=1; beta=2; Q=100; mant=20; % 蚂蚁数量 iter=0; % 记录迭代次数 for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2); end end bestroute=zeros(1,48); % 用来记录最优路径 routelength=inf; % 用来记录当前找到的最优路径长度 % for i=1:mant % 确定各蚂蚁初始的位置 % end for ite=1:MAXIT for ka=1:mant %考查第K只蚂蚁 deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零 [routek,lengthk]=travel(distance,tao,alpha,beta); if lengthk

蚁群算法中参数_设置的研究_以TSP问题为例

第29卷第7期2004年7月武汉大学学报#信息科学版 Geoma tic s a nd Informa tion Scie nce of Wu han Unive rsity V ol.29No.7July 2004收稿日期:2004203226。 项目来源:国家自然科学基金资助项目(40271094)。 文章编号:167128860(2004)0720597205 文献标识码:A 蚁群算法中参数A 、B 、Q 设置的研究 )))以TSP 问题为例 叶志伟1 郑肇葆1 (1 武汉大学遥感信息工程学院,武汉市珞喻路129号,430079) 摘 要:以TSP 问题为例,对蚁群算法中参数A 、B 、Q 的作用作了理论上的研究,同时对最优的参数配置问题作了分析。在保证获得解的前提下,为了提高计算速度,对基本蚁群算法中的选择路线策略进行了调整。通过实例计算表明,这种调整是切实可行的,有较好的实用价值。关键词:蚁群算法;旅行商问题;参数配置中图法分类号:TP751;P 231.5 自1991年Dorigo 、Maniezzo 和Colorni 等首先提出蚁群算法以来,很多研究人员对该算法进行了研究,并成功地解决了许多组合优化问题,如T SP(traveling salesman problem)、QAP(quadratic assignment problem )、JSP (job 2shop scheduling problem)等。 T SP 问题是一类经典的组合优化问题,即在给定城市个数和各城市之间距离的条件下,找到一条遍历所有城市且每个城市只能访问一次的总路程最短的路线。蚁群算法在TSP 问题应用中取得了良好的效果,但也存在一些不足:1如果参数A 、B 、Q 设置不当,导致求解速度很慢且所得解的质量特别差;o基本蚁群算法计算量大,求解所需的时间较长;?基本蚁群算法中理论上要求所有的蚂蚁选择同一路线,该线路即为所求的最优线路;但在实际计算中,在给定一定循环次数的条件下很难实现这种情况。另一方面,在其他的实际应用中,如图像处理中寻求最优模板问题,并不要求所有的蚂蚁都能找到最优模板,而只需要一只找到即可。如果要求所有的蚂蚁都找到最优模板,反而影响了计算效率。 1 蚁群算法 1.1 蚁群行为仿真的基本思想 蚁群算法是一种受自然界生物的行为启发而 产生的/自然0算法,它是从真实蚁群觅食行为的 研究中产生的。生物学研究表明,当蚂蚁在食源和巢穴之间往返时,它们会在经过的线路上敷设一种被称为信息素的化学物质。蚂蚁可以嗅到这种信息素并且选择信息素浓度最大的线路。经过一条线路的蚂蚁越多,这条线路上的信息素浓度也越大,更多的蚂蚁就会选择这条线路。蚂蚁的这种/正反馈0行为能帮助它们很快找到最短觅食线路。蚁群算法就是受这种行为启发,以人工蚂蚁模拟真实蚂蚁行为的分布式算法见文献[1]。1.2 蚁群算法的模型及在TSP 问题中的实现 基本蚁群算法在T SP 问题中的实现过程如下。假设将m 只蚂蚁放入到n 个随机选择的城市中,每只蚂蚁根据一定的概率选择下一个它还没有访问过的城市。蚂蚁选择下一个目标城市的主要依据有以下两点:1S ij (t )为t 时刻连接城市i 和j 的路径上的信息的浓度。初始时刻,各条路径上信息量相等,在试验中设S i j (0)=C(C 为常数)。oG ij 为由城市i 转移到城市j 的可见度,亦称启发信息,该启发信息是由所要解决的问题给出的,由一定的算法实现。在T SP 问题中,一般取G i j =1/d ij ,d ij 表示城市i 、j 间的距离。t 时刻位于城市i 的蚂蚁k 选择城市j 为目标城市的概率为:

蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP 中的应用 1 蚁群算法(ACA )原理 1.1 基本蚁群算法的数学模型 以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。对于其他问题,可以对此模型稍作修改便可应用。TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。 设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()n i i m b t ==∑;{(),}ij i i t c c C τΓ=?是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图 (,,)g C L =Γ实现的。 蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着 k tabu 进化过程作动态调整。在搜索过程中,蚂蚁根据各条路径上的信息量及路 径的启发信息来计算状态转移概率。()k ij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移 到元素(城市)j 的状态转移概率。 ()*()()*()()0k ij ij k k ij ij ij s allowed t t j allowed t t p t αβ αβτητη??????????? ∈?????=????? ??? ∑若否则 (1) 式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下: 1 ()ij ij t d η= (2)

蚁群算法综述

《智能计算—蚁群算法基本综述》 班级:研1102班 专业:计算数学 姓名:刘鑫 学号: 1107010036 2012年

蚁群算法基本综述 刘鑫 (西安理工大学理学院,研1102班,西安市,710054) 摘要:蚁群算法( ACA)是一种广泛应用于优化领域的仿生进化算法。ACA发展背景着手,分析比较国内外ACA研究团队与发展情况立足于基本原理,分析其数学模型,介绍了六种经典的改进模型,对其优缺点进行分析,简要总结其应用领域并对其今后的发展、应用做出展望。 关键词:蚁群;算法;优化;改进;应用 0引言 专家发现单个蚂蚁只具有一些简单的行为能力。但整个蚁群却能完成一系列复杂的任务。这种现象是通过高度组织协调完成的1991年。意大利学者M.Dorigo 首次提出一种新型仿生算法ACA。研究了蚂蚁的行为。提出其基本原理及数学模型。并将之应用于寻求旅行商问题(TSP)的解。 通过实验及相关理论证明,ACA有着有着优化的选择机制的本质。而这种适应和协作机制使之具有良好的发现能力及其它算法所没有的优点。如较强的鲁棒性、分布式计算、易与其他方法结合等;但同时也不应忽略其不足。如搜索时间较长,若每步进行信息素更新,计算仿真时所占用CPU时间过长:若当前最优路径不是全局最优路径,但其信息素浓度过高时。靠公式对信息素浓度的调整不能缓解这种现象。会陷人局部收敛无法寻找到全局最优解:转移概率过大时,虽有较快的收敛速度,但会导致早熟收敛。所以正反馈原理所引起的自催化现象意在强化性能好的解,却容易出现停滞现象。笔者综述性地介绍了ACA对一些已有的提出自己的想法,并对其应用及发展前景提出了展望。 1 蚁群算法概述 ACA源自于蚁群的觅食行为。S.Goss的“双桥”实验说明蚂蚁总会选择距食物源较短的分支蚂蚁之间通过信息素进行信息的传递,捷径上的信息素越多,吸引的蚂蚁越多。形成正反馈机制,达到一种协调化的高组织状态该行为称集体自催化目前研究的多为大规模征兵,即仅靠化学追踪的征兵。 1 .1 蚁群算法的基本原理

基于蚁群算法的TSP问题研究

南京航空航天大学金城学院毕业设计(论文)开题报告 题目基于蚁群算法的TSP问题研究 系部XXXX系 专业XXXX 学生姓名XXXX学号XXXX 指导教师XXXX职称讲师 毕设地点XXXX 年月日

填写要求 1.开题报告只需填写“文献综述”、“研究或解决的问题和拟采用的方法”两部分内容,其他信息由系统自动生成,不需要手工填写。 2.为了与网上任务书兼容及最终打印格式一致,开题报告采用固定格式,如有不适请调整内容以适应表格大小并保持整体美观,切勿轻易改变格式。 3.任务书须用A4纸,小4号字,黑色宋体,行距1.5倍。 4.使用此开题报告模板填写完毕,可直接粘接复制相应的内容到毕业设计网络系统。

1.结合毕业设计(论文)课题任务情况,根据所查阅的文献资料,撰写1500~2000字左右的文献综述: 1.1蚁群算法的发展和应用 在计算机自动控制领域中,控制和优化始终是两个重要问题。使用计算机进行控制和优化本质上都表现为对信息的某种处理。随着问题规模的日益庞大,特性上的非线性及不确定性等使得难以建立精确的“数学模型”。人们从生命科学和仿生学中受到启发,提出了许多智能优化方法,为解决复杂优化问题(NP-hard问题)提供了新途径。 蚁群算法(Ant Colony Algorithm,ACA)是Dorigo M等人于1991年提出的。 经观察发现,蚂蚁个体之间是通过一种称之为信息素的物质进行信息传递的。在运动过程中,蚂蚁能够在它所经过的路径上留下该种信息素,而且能够感知信息素的浓度,并以此指导自己的运动方向。蚁群的集体行为表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。蚂蚁个体之间就是通过这种信息的交流达到搜索食物的目的。它充分利用了生物蚁群通过个体间简单的信息传递,搜索从蚁巢至食物间最短路径的集体寻优特征,以及该过程与旅行商问题求解之间的相似性。同时,该算法还被用于求解二次指派问题以及多维背包问题等,显示了其适用于组合优化问题求解的优越特征。 蚁群算法应用于静态组合优化问题,其典型代表有旅行商问题(TSP)、二次分配问题(QAP)、车间调度问题、车辆路径问题等。在动态优化问题中的应用主要集中在通讯网络方面。这主要是由于网络优化问题的特殊性,如分布计算,随机动态性,以及异步的网络状态更新等。例如将蚁群算法应用于QOS组播路由问题上,就得到了优于模拟退火(SA)和遗传算法(GA)的效果。蚁群优化算法最初用于解决TSP 问题,经过多年的发展,已经陆续渗透到其他领域中,如图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。蚁群算法在若干领域获得成功的应用,其中最成功的是在组合优化问题中的应用。 1.2蚁群算法求解TSP问题 (1)TSP问题的描述 TSP问题的简单形象描述是:给定n个城市,有一个旅行商从某一城市出发,访问各城市一次且仅有一次后再回到原出发城市,要求找出一条最短的巡回路径。 (2)TSP问题的理论意义 该问题是作为所有组合优化问题的范例而存在的。它已经成为并将继续成为测

关于蚁群算法的研究

关于蚁群算法的研究 蚂蚁是地球上最常见,数量最多的昆虫种类之一,这些昆虫的群体生物智能特征,引起了一些学者的注意。人们在观察蚂蚁的觅食习性时发现,蚂蚁总能找到巢穴与食物源之间的最短路径。经研究发现,蚂蚁的这种群体协作功能是通过一种遗留在其来往路径上的叫做信息素的挥发性化学物质来进行通信和协调的,形成正反馈,从而使多个路径上的蚂蚁都逐渐聚集到最短的那条路径上。这样,M.Dorigo等人于1991年首先提出了蚁群算法。即通过正反馈分布式协作来寻找最优路径。这是一种基于种群寻优的启发式搜索算法。 它充分利用了生物蚁群能通过个体间简单的信息传递,搜索从蚁巢至食物间最短路径的集体寻优特征,以及该过程与旅行商问题求解之间的相似性。得到了具有NP难度的旅行商问题的最优解答。同时,该算法适用于组合优化类问题求解的优越特征蚁群算法。之所以能引起相关领域研究者的注意,是因为这种求解模式能将问题求解的快速性与全局优化特征以及有限时间内答案的合理性结合起来。其中,寻优的快速性是通过正反馈式的信息传递和积累来保证的。而算法的早熟性收敛又可以通过其分布式计算特征加以避免,同时,具有贪婪启发式搜索特征的蚁群系统又能在搜索过程的早期找到可以接受的问题解答。这种优越的问题分布式求解模式经过相关领域研究者的关注和努力,己经在最初的算法模型基础上得到了很大的改进和拓展。 蚁群算法原理 单个蚂蚁的行为极其简单,但由这样的单个简单的个体所组成的蚂蚁群体却表现出极其复杂的行为,能够完成复杂的任务,不仅如此,蚂蚁还能够适应环境的变化,如:在蚂蚁运动路线上突然出现障碍物时,蚂蚁能够很快地重新找到最优路径。在此过程中,信息素起着重要作用,蚂蚁在运动过程中能够感知这种物质的存在及其强度,并以此指导自己的运动方向,蚂蚁倾向于朝着该物质强度高的方向移动。蚂蚁个体之间就能通过这种信息的交流达到搜索食物的目的。正是利用这一基本性质,蚂蚁才能在遇到障碍物的情况下,重新找到一条新的最短路径。 图1 蚁穴到食物源间的原有路径 如图1,假定从蚁穴到食物源之间原来有一条路径,星星代表蚂蚁。

蚁群算法及其在序列比对中的应用研究综述

蚁群算法及其在序列比对中的应用研究综述摘要:蚁群算法是一种新颖的仿生进化算法。作为一种全局搜索的方法,蚂蚁算法具有正反馈性、并行性、分布性、自组织性等特点,自提出以来,便在求解复杂组合优化问题上显示出了强大的优势。序列比对是生物信息学的基础,通过在比对中获得大量的序列信息,可以推断基因的结构、功能和进化关系。本文首先详细阐述了蚁群算法的基本原理、各种改进技术及收敛性分析,然后对蚁群算法在双序列比对和多序列比对的应用研究进行了综述和评价,最后指出了下一步的研究方向。 关键词:蚁群算法;序列比对;信息素 Abstract: Ant colony algorithm (ACA) is a novel bionic evolutionary algorithm. As a global searching approach,ACA has some characteristic,such as positive feedback, distributing,paralleling, self-organizing, etc,and from it was introduced, it has been used to solve all kinds of complex optimization problem. Sequence alignment is the basement of Bioinformatics. With the wealth of sequence information obtained from sequence alignment, one can infers the structure, function and evolutionary relationship of genes. In this paper, the basic principles of ACA are introduced at length, and various improvements and convergence Analysis of ACA are also presented. Then the current study of double sequence alignment and multiple sequence alignment based on ant colony algorithm are reviewed and evaluated. Finally, some future research directions about ACA are proposed. Key words: Ant Colony Algorithm; Sequence Alignment; Pheromone 1 引言 蚁群算法(Ant Algorithm)是一种源于大自然中生物世界的新的仿生类算法,作为通用型随机优化方法,它吸收了昆虫王国中蚂蚁的行为特性,通过其内在的搜索机制,在一系列困难的组合优化问题求解中取得了成效。由于在模拟仿真中使用的是人工蚂蚁概念,因此有时亦被称为蚂蚁系统(Ant System)。据昆虫学家的观察和研究发现,生物世界中的蚂蚁有能力在没有任何可见提示下找出从其窝巢至食物源的最短路径,并能随环境的变化而变化,适应性地搜索新的路径,产生新的选择。作为昆虫的蚂蚁在寻找食物源时,能在其走过的路径上释放一种蚂蚁特有的分泌物——信息激素(Pheromone),使得一定范围内的其他蚂蚁能够察觉到并由此影响它们以后的行为。当一些路径上通过的蚂蚁越来越多时,其留下的信息激素轨迹(Trail)也越来越多,以致信息素强度增大(随时间的推移会逐渐减弱),后来蚂蚁选择该路径的概率也越高,从而更增加了该路径的信息素强

蚁群算法原理与应用讲解

蚁群算法在物流系统优化中的应用 ——配送中心选址问题 LOGO https://www.wendangku.net/doc/c77348249.html,

框架 蚁群算法概述 蚁群算法模型 物流系统中配送中心选择问题 蚁群算法应用与物流配送中心选址 算法举例

蚁群算法简介 ?蚁群算法(Ant Algorithm简称AA)是近年来刚刚诞生的随机优化方法,它是一种源于大自然的新的仿生类算法。由意大利学者Dorigo最早提出,蚂蚁算法主要是通过蚂蚁群体之间的信息传递而达到寻优的目的,最初又称蚁群优化方法(Ant Colony Optimization简称ACO)。由于模拟仿真中使用了人工蚂蚁的概念,因此亦称蚂蚁系统(Ant System,简称AS)。

蚁群觅食图1 ?How do I incorporate my LOGO and URL to a slide that will apply to all the other slides? –On the [View]menu, point to [Master],and then click [Slide Master]or [Notes Master].Change images to the one you like, then it will apply to all the other slides. [ Image information in product ] ?Image : www.wizdata.co.kr ?Note to customers : This image has been licensed to be used within this PowerPoint template only. You may not extract the image for any other use.

相关文档