文档库 最新最全的文档下载
当前位置:文档库 › 电力系统微机继电保护 复习

电力系统微机继电保护 复习

电力系统微机继电保护  复习
电力系统微机继电保护  复习

1.微机保护装置的几种典型结构

①单CPU微机保护装置的结构②多CPU微机保护装置的结构

③采用DSP的微机保护装置的结构④网络型微机保护装置的结构

2、逐次逼近原理A/D芯片构成的数据采集系统

①电压形成回路②模拟滤波单元③采样保持电路④多路转换开关⑤模数转换器

3、VFC型的A/D变换方式的优点:

①工作稳定,线性好,精度高,而电路十分简单;

②抗干扰能力强。(这对继电保护装置是十分可贵的特点);

③同CPU接口简单,VFC的工作可以不需CPU控制;

④可以很方便地实现多CPU共享一套VFC变换。

4、两种数据采集系统的特点:

①采用逐次逼近A/D芯片构成的数据采集系统经A/D转换的结果可直接用于微机保护中的数字运算;采用VFC芯片构成的数据采集系统必须将相邻几次采样读出的计数值相减后才能用于数字运算。

②逐次逼近A/D式数据采集系统,精度与A/D芯片的位数有关,采用分辨率越高的A/D 芯片,数据采集的精度越高,但硬件一经选定则分辨率便固定;VFC式数据采集系统,数据的计算精度除了与VFC芯片的最高转换频率有关外,还与软件中的计算间隔有关。计算间隔越长,分辨率越高。

③A/D式芯片构成的数据采集系统对瞬时的高频干扰信号敏感,而VFC芯片构成的数据采集系统具有平滑高频干扰的作用。

④在硬件设计上,VFC式数据采集系统便于实现模拟系统与数字系统的间隔,便于实现多个单片机共享同一路转换结果。而A/D式数据采集系统不便于数据共享和光电隔离。

⑤在设计微机保护系统时,采用A/D式数据采集系统时至少应设有两个中断,一个是采样中断,另一个是A/D转换结束中断。VFC式数据采集系统中可只设一个采样中断。1、突变量电流算法

工作原理:

2、选相元件算法(突变量电流选相、对称分量选相)

工作原理:

1、低频减载及低压减载

①作用:保证电力系统稳定运行。

②工作原理:低频减载:当电力系统出现严重的有功功率缺额时,通过切除一定的非重要负载来减轻有功缺额的程度,使系统的频率保持在事故允许限额之内,保证重要负载的可靠供电。低压减载:当系统发生故障时,电压快速下降,滑压du/dt较大,此时闭锁低压减载;当系统无功不足时,电压缓慢下降,du/dt较小,此时开放低压减载。

2、自动重合闸装置的分类:

①按作用于断路器的方式,可分为:三相、单相、综合重合闸;

②按动作次数,可分为:一次式、二次式(多次式);

③按重合闸的使用条件,可分为:单侧电源重合闸、双侧电源重合闸;

双侧电源重合闸可分为:检定无压和检定同期重合闸、快速重合闸、非同期重合闸。

3、一般情况下,双电源线路应采用检查线路无电压(“检无压”)和检查同期(“检同期”)的三相自动重合闸。显然,这种重合闸方式不会产生危及设备安全的冲击电流,也不会引起系统振荡,合闸后能很快拉入同期。

4、重合闸与继电保护的配合

①重合闸前加速保护

优点:能快速切除瞬时性故障缺点:保护首次无选择性,一旦断路器或ARC振动,将是停电范围扩大。

ARC前加速保护方式主要适用于10kV的直配线上,一般用于多级辐射型线路中,以便快速切除故障保证母线电压。

②重合闸后加速保护

优点:保护动作是有选择性地切除故障,不会扩大停电范围;但仍保证了永久性故障在重合闸后能瞬时切除。

后加速配合方式广泛应用于35kV及以上的网络及对重要负载供电的送电线路上。

5、备用电源自投的方式:

低压母线分段断路器自动投入(暗备用)

①备用电源自动投入方式1,自动投入条件是Ⅰ段母线失压、I1无流、Ⅱ段母线有压,QF1确实跳开,QF3合上

②备用电源自动投入方式2,自动投入条件是Ⅱ段母线失压、I2无流、Ⅰ段母线有压,QF2确实跳开,QF3合上

内桥断路器自动投入

方式1:XL1无压、I1无流、XL2有压,跳QF1,合QF3。

方式2:XL2无压、I2无流、XL1有压,跳QF2,合QF3。(暗)

方式3:QF1,合QF3、QF2分。当Ⅰ、Ⅱ母线失压、I1无流、XL2线路有压,QF1确实跳开时合QF2

方式4:QF2,合QF3、QF1分。当Ⅰ、Ⅱ母线失压、I2无流、XL1线路有压,QF2确实跳开时合QF1(明)

进线备用电源自动投入(同上明)

1、阶段式零序电流保护

四段式零序电流保护中,全相时设置4个灵敏段,即Ⅰ段、Ⅱ段、Ⅲ段、Ⅳ段;非全相运行时可设置两个不灵敏段,即瞬时动作的不灵敏Ⅰ段和带延时的不灵敏Ⅱ段。

2、距离保护

①三段式距离保护的工作原理:

A.距离保护Ⅰ段:相当于电流速断保护,它是依靠动作阻抗定值Zset.1取得动作

选择性,动作无时限。为防止区外故障时失去选择性,故Zset.1应被保护线路

全长的80%-85%

B.Ⅱ:相当于延时电流速断保护,它与下段线路瞬时保护配合,如下段线路也采用距离保护,其整定阻抗Zset.2不超过下段线路距离Ⅰ段的保护范围。

C.Ⅲ:相当一电流保护中的过电流保护,它是依靠时限取得动作选择性,其阻抗定值Zset.3按躲过最小负载阻抗整定。距离保护3段的动作时限由阶梯原则全

电网配合决定

3、工作电压和极化电压

工作电压:绝大多数阻抗元件是按照故障点的电压边界条件建立其动作判据的。当在保护区末端故障时,动作判据应处于临界状态。为了反映此状态,在阻抗元件中要形成或计算出保护区末端的电压,一般称为工作电压。

极化电压:作为判断工作电压相位的参考电压

4、电力系统振荡对阻抗元件的影响

电力系统振荡时,阻抗元件是否误动、误动的时间长短与保护安装位置、保护动作范围、动作特性的形状和振荡周期长短有关,安装位置离振荡中心越近、整定值越大、动作特性曲线在与整定阻抗垂直方向的动作区越大时,越容易受振荡的影响,振荡周期越长误动的时间越长。

(距离保护必须有躲振荡的能力。当保护的测量阻抗不会进入保护1段的动作区时,距离保护1段将不受振荡的影响,但由于距离保护3段和距离保护2段的整定阻抗一般较大,振荡时的测量阻抗比较容易进入其动作区,所以距离保护2及3段的测量元件可能会动作。)

5、电力系统振荡与短路时电气量的差异

①振荡时,三相完全对称,没有负序分量和零序分量出现;

短路时,总要长时或瞬时出现负序分量或零序分量。

②振荡时,电气量呈现周期性变化,其变化速度与系统功角的变化速度一致,比较慢,当两侧功角摆开至180°时,相当于在振荡中心发生三相短路;

短路时,从短路前到短路后其值突然变化,速度很快,而短路后短路电流,各点的残余电压和测量阻抗在不计衰减时是不变的。

③振荡时,电气量呈现周期性的变化,若阻抗测量元件误动作,则在一个振荡周期内动作和返回各一次;

短路时,阻抗测量元件可能动作(区内短路),可能不动作(区外短路)。

6、距离保护的振荡闭锁措施

①系统发生全相或非全相振荡时,保护装置不应误动作跳闸;

②系统在全相或非全相振荡过程中,被保护线路发生各种类型的不对称故障,保护装置应有选择性地动作跳闸,纵联保护仍应快速动作。

③系统在全相振荡过程中再发生三相故障时,保护装置应可靠动作跳闸,并允许带短延时。

7、距离保护的振荡闭锁(如何识别)

利用动作的延时实现振荡闭锁

对于按躲过最大负载整定的距离保护Ⅲ段阻抗元件,测量阻抗落入其动作区的时间小于一个振荡周期(1~1.5s),只要距离保护Ⅲ段动作的延时时间大于1~1.5s,系统振荡时保护Ⅲ段就不会误动作。

8、电压互感器二次回路断线(如何判断)

①一相或两相二次电压回路断线失压时,均会出现零序电压,检测有否零序电压可判别是否断线失压,判据为

②三相断线失压,判据为

③当不采用开口三角形绕组电压平衡时,也可采用零序电流进行闭锁

9、工频故障分量的概念

系统故障时,保护安装处测量的全电压Um,全电流im表示为

故障电压和估值电流中包含的电压、电流故障分量中工频稳态成分

10、故障分量的特征

①故障分量可由附加状态网络计算获取,相当于在短路点加上一个与该点非故障状态下大小相等、方向相反的电动势,并令网络内所有电动势为零的条件下得到的。

②非故障状态下不存在故障分量的电压和电流,故障分量只有在故障状态下才会出现,并与负载状态无关。但是,故障分量仍受系统运行方式的影响。

③故障点的电压故障分量最大,系统中性点为零。由故障分量构成的方向元件可以消除电压死区。

④保护安装处的电压故障分量与电流故障分量间的相位关系由保护背后(反方向侧系统)的阻抗所决定,不受系统电动势和短路点电阻的影响,按其原理构成的方向元件方向性明确。

11、工频故障分量距离保护的工作原理(图4-28)

1、220kV及以上电压等级输电线路基本上都配置有双套主保护和后备保护。

2、线路纵联保护

即使是反应电压电流比值的距离保护的第Ⅰ段的保护范围也只有线路全长的85%,因此在220kV及以上电压等级的输电线路上,必须装设全线路故障都能快速动作的保护。

工作原理:

继电保护装置通过电压互感器、电流互感器获取本端电压、电流,根据不同的保护原理,形成或提取两端被比较的电气量特征,一方面通信设备将本端的电气量特征传送到对端,另

一方面通过通信设备接收对端发送过来的电气量特征,并将两端的电气量进行比较,若符合动作条件,则跳开本端断路器并告知对方,否则不动作

3、线路纵联保护的分类

①按照所利用通道的不同类型,可分为:导引线保护;高频保护;微波保护;光纤保护。

②按照保护动作原理,可分为:纵联差动保护;方向纵联保护与距离纵联保护。

③按照保护判别方向所用的方向元件不同,可分为:方向纵联保护;距离纵联保护。

4、方向元件:工频变化量方向元件、能量积分方向元件、阻抗方向元件和零序方向元件。(工作原理)

工频变化量方向元件:比较电压和电流故障分量的相位,用于判断故障的方向

零序方向元件:通过比较3I0和3U0的相位,而判断零序功率的正负,从而判断故障的方向

能量积分方向元件:应用叠加原理,将之分为正常系统和故障系统,通过计算故障分量能量函数来判断故障点的方向。

阻抗方向元件:通常以阻抗区域为基础,负载阻抗落入区域内则动作,否则不动作

5、闭锁式纵联保护(闭锁式方向纵联保护和闭锁式距离纵联保护)

①工作原理:利用闭锁信号来比较线路两侧正方向测量元件的动作情况,以综合判断故障是发生在被保护线路内部还是外部。当装置收到闭锁信号时,就判断为被保护线路外部故障,保护不跳闸;当收不到闭锁信号,且本侧正方向测量元件又动作时,就判断为线路区内故障,允许发出跳闸出口命令。

②定义:闭锁信号由功率方向为负的一侧发出,被两端的收信机接收,闭锁两端的保护,故称为闭锁式方向纵联保护。

6、允许式纵联保护

①工作原理:允许式方向纵联保护利用通道传输允许信号。由线路两侧的方向元件分别对故障的方向作出判断,决定是否发出允许信号。

7、纵联电流差动保护的工作原理

利用通道将本测电流的波形和电流的相位的信号送的对侧。每册保护根据对两侧电流的幅值和相位比较的结果区分是区内还是区外故障

8、电流数据同步处理基本原理

①基于数据通道的同步方法:电流相量修正法、采样时刻调整法

②基于具有统一时钟的同步方法:通过对接收到的信息进行解码、运算和处理,能从中提取并输出两种时间信号:秒脉冲信号1pps、经串行口输出与1pps对应的标准时间代码。

9、综合重合闸的重合闸方式

①综合重合闸方式。单相接地故障时,实现单相重合闸;相间故障时,实现三相重合闸;当重合到永久性故障时,断开三相而不再进行重合闸。

②三相重合闸方式。不论任何故障类型,均实现三相重合闸方式;当重合到永久性故障时,断开三相不再进行重合闸。

③单相重合闸方式。单相接地故障时,实现一次单相重合闸;相间故障时,或单相重合于永久性故障时,断开三相不再进行重合闸。

④停用方式。任何类型的故障,各种保护均出口跳三相而不进行重合闸。

10、自动重合闸启动方式

①位置不对应启动方式②保护启动方式

11、超高压电网的特点及对继电保护的影响

①分布电容大②L/R比值大③正常负载大④串联补偿电容⑤并联电抗器

②⑥线路不换位⑦超高压线路的电流互感器对保护的影响⑧超高压线路的电压互

感器对保护的影响

1、中、低压变电站变压器的保护配置

①主保护配置:差动保护、主体保护

②后备保护配置:变压器大电流接地侧保护、变压器小电流接地侧保护

2、纵差动保护相位的校正

①电流互感器二次接线进行相位校正(外转角)

②用保护内部算法进行相位校正(内转角)

3、比率制动差动元件基本原理(图6-8)

由于正常运行时,差动保护仍然有小量的不平衡电流,所以差动保护的动作电流必须大于这个不平衡电流

4、差动速断保护(在什么情况下使用)

在严重内部短路故障时,短路电流很大的情况下,电流互感器将会严重饱和而使交流暂态传变严重恶化,电流互感器的二次侧在电流互感器严重饱和时基波为零,高次谐波分量增大,比率制动的微机差动保护将无法反映区内短路故障,从而影响了比率制动的微机差动保护正确动作。

5、励磁涌流

①定义:在电压突然增加的特殊情况下,可能产生很大的变压器励磁电流。这种暂态过程中变压器励磁电流通常称为励磁涌流。

②特点:(1)励磁涌流幅值大且衰减,含有非周期分量电流。(2)波形呈间断特性。

③识别方法:(1)二次谐波电流制动(2)偶次谐波电流制动

(3)判别电流间断角识别励磁涌流(判据:

6、变压器零序(接地)保护的配置

①中性点必须经常接地运行变压器的零序保护

②中性点为分级绝缘变压器的零序保护

③全绝缘变压器的零序保护

7、变压器本体保护

变压器本体保护通常称为非电量保护,一般是指本体气体保护、有载调压气体保护和压力释放保护。

8、变压器过励磁保护(五次):以五次谐波作为差动保护过励磁制动时恰当的。

1、母线差动接线方式

①单母线接线

②双母线接线

③母线兼旁路形式的双母线接线

④旁路兼母联形式的双母线接线

2、复式比率差动母线保护的动作判据(图7-4)

①分相复式比率差动判据

②分相突变量复式比率差动判据

3、断路器失灵保护(什么情况下采用)

①线路保护采用近后备方式时,对220~500kV分相操作的断路器,可只考虑断路器单相拒动的情况;

②线路保护采用远后备方式时,由其他线路或变压器的后备保护切除故障将扩大停电范围,并引起严重后果时;

③如断路器与电流互感器之间发生故障,不能由该回路主保护切除,而由其他断路器和变压器后备保护切除,又将扩大停电范围并引起严重后果。

4、断路器失灵保护的基本原理(图7-6)

5、复合序电压元件(图7-9)

6、电容器的保护配置(装设如下保护)

①对电容器组和断路器之间连接线的短路,可装设带有短时限的电流速断和过电流保护,动作于跳闸;

②对电容器内部故障及其引出线短路,宜对每台电容器分别装设专用的熔断器;

③当电容器组中故障电容器切除到一定数量,引起电容器端电压超过110%额定电压,保护应将断路器断开,对不同接线的电容器组,可采用不同的保护方式;

④电容器组的单相接地保护;

⑤对电容器组的过电压应装设过电压保护,带时限动作于信号或跳闸;

⑥对母线失压应装设低电压保护,带时限动作于信号或跳闸;

⑦对于电网中出现的高次谐波有可能导致电容器过负载时,电容器组宜装设过负载保护,带时限动作于信号或跳闸。

7、电容器组内部故障保护

①零序电压保护②电压差动保护③不平衡电流保护④不平衡电压保护

⑤桥差电流保护

微机继电保护复习要点总结(华电)

微机保护复习重点: 1、微机保护的特点:维护调试方便,可靠性高,易于获得附加功能,灵活性高,保护性能得到了很好的改善。 2、采样定理及其要求: 采用低通滤波器,可以消除频率混叠问题,从而降低采样频率;次奥出频率混叠后,采样频率的选择基本取决于保护的原理和算法。f S 》 2 f max 3、 模数转换器逐次逼近法原理: 并行接口的 PB15~PB0用作输出,有微型机通过该口往16为A/D 转换器试探性地送数。每送一次数,微型机通过读取并行 口的PA0(作为输入)的状态(0或1)来观察试送的16位数位相对于模拟输入量是偏大还是偏小。如果偏大,即D/A 转换器的输出Usc 大于待转换的模拟输入电压,则比较器输出0,否则为1.通过软件的方法如此不断地修正送往D/A 转换器的16位二进制数,直到找到最近的二进制数值,这个二进制数就是A/D 转换器的转换结果。 4、 两点乘积算法: 假定原始数据为纯正弦量的理想采样值 ()() I s s nT I nT i 0sin 2αω+= ()2 12π ω=-s s T n T n ()()I I s s I T n I T n i i 10111sin 2sin 2ααω=+==()I I I s s I I T n I T n i i 110122cos 22sin 22sin 2απαπαω=??? ? ?+=??? ??++==222122i i I +=2 1 1i i tg I =α2 1 122212 2u u tg u u U u =+=α22 212221i i u u I U Z ++==???? ??-???? ??=-=--21121111i i tg u u tg I U z ααα并行口PA 0PB 15PB 016位D/A 模拟量输入u sr -+比较器u sc 数字量微型机

输电线路微机继电保护系统设计

- 继电保护课程设计输电线路微机继电保护系统设计 学院:物理与电子电气工程 专业:电气工程及其自动化 : 学号: 摘要

输电线路继电保护是整个电力系统的重要组成部分,它的任务是快速准确地切除线路故障,保证电网安全运行。本文采用微机控制方法,对高压输电线路故障进行诊断和切除,取代传统电磁型继电保护装置。 线路保护装置采用STC12C5A60S2芯片作为控制核心,硬件电路主要包括芯片外围电路,模拟信号处理和采样电路,开关量输入输出电路,电源电路等。本文首先对整个控制系统进行软件仿真,然后再将设计应用到实际当中,阐述三段式电流保护的控制流程和软件实现方法。 关键词单片机;继电保护;整流;电流互感器

目录 1 绪论 (1) 1.1 设计背景 (1) 1.2 微机继电保护的发展趋势及特点 (1) 1.3 本文主要工作 (2) 2 系统硬件设计 (3) 2.1 系统框架 (3) 2.2 系统仿真 (3) 2.2.1 仿真设计 (3) 2.2.2 部分电路分析 (4) 2.2.3 仿真结果 (7) 2.3 系统硬件 (7) 2.3.1 主要芯片和器件的选择 (7) 2.3.2 单片机最小系统设计 (10) 2.4 三段式电流保护理论 (12) 2.4.1 电流速断保护(第I段) (12) 2.4.2 限时电流速断保护(第II段) (12) 2.4.3 定时限过电流保护(第III段) (13) 2.4.4 三段式电流保护小结 (13) 3 系统软件设计 (13) 3.1 系统软件设计方案 (13) 总结 (14) 参考文献 (15)

1 绪论 1.1 设计背景 当今社会,电能已经成为人类最重要的能源之一,它几乎已经渗透到人类一切的活动当中。由于电能的生产是在相对集中的区域完成,所以电能的输送成为电力系统中重要组成部分。随着电网电压等级的不断升高和用电负荷的不断增加,输电安全也逐渐成为重要研究课题。 传统电力系统继电保护经历了机电型、整流型、晶体管型和集成电路型几个阶段。20世纪70年代以后,电力系统继电保护进入微机时代。微机继电保护降低了设备成本,提高了设备可靠性,同时具有控制灵活、准确,性能优良等特点,成为当今主流的继保控制核心。本文采用51单片机为核心,通过低压数字微机信号采集、数据分析、动作输出,实现对高压输电线路的诊断、分析、故障切除,保护电力系统安全运行。 1.2 微机继电保护的发展趋势及特点 继电保护技术发展趋势向计算机化、网络化、智能化、保护、控制、测量和数据通 信一体化发展。随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,出现了一些引人注目的新趋势[1]。 微机继电保护主要有以下特点: 1.改善和提高继电保护的动作特征和性能,动作正确率高。主要表现在能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保护;可引进自动控制、新的数学理论和技术如自适应、状态预测、模糊控制及人工神经网络等,其运行正确率很高也已在运行实践中得到证明。 2.可以方便地扩充其他辅助功能。如故障录波、波形分析等,可以方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。 3.工艺结构条件优越。体现在硬件比较通用,制造容易统一标准;装置体积小,减少了盘位数量;功耗低。 4.可靠性容易提高。体现在数字元件的特性不易受温度变化、电源波动、使用年限的影响,不易受元件更换的影响;且自检和巡检能力强,可用软件方法检测主要元件、部件的工况以及功能软件本身。 5.使用灵活方便,人机界面越来越友好。其维护调试也更方便,从而缩短维修时间;同时依据运行经验,在现场可通过软件方法改变特性、结构。 6.可以进行远方监控。微机保护装置具有串行通信功能,与变电所微机监控系统的通信联络使微机保护具有远方监控特性等等。

微机继电保护实验报告

本科实验报告 课程名称:微机继电保护 实验项目:电力系统继电保护仿真实验 实验地点:电力系统仿真实验室 专业班级:电气1200 学号:0000000000 学生:000000 指导教师:000000 2015年12 月 2 日

微机继电保护指的是以数字式计算机(包括微型机)为基础而构成的继电保护。众所周知,传统的继电器是由硬件实现的,直接将模拟信号引入保护装置,实现幅值、相位、比率的判断,从而实现保护功能。而微机保护则是由硬件和软件共同实现,将模拟信号转换为数字信号,经过某种运算求出电流、电压的幅值、相位、比值等,并与整定值进行比较,以决定是否发出跳闸命令。 继电保护的种类很多,按保护对象分有元件保护、线路保护等;按保护原理分有差动保护、距离保护和电压、电流保护等。然而,不管哪一类保护的算法,其核心问题归根结底不外乎是算出可表征被保护对象运行特点的物理量,如电压、电流等的有效值和相位以及视在阻抗等,或者算出它们的序分量、或基波分量、或某次谐波分量的大小和相位等。有了这些基本电气量的计算值,就可以很容易地构成各种不同原理的保护。基本上可以说,只要找出任何能够区分正常与短路的特征量,微机保护就可以予以实现。 由此,微机保护算法就成为了电力系统微机保护研究的重点,微机保护不同功能的实现,主要依靠其软件算法来完成。微机保护的其中一个基本问题便是寻找适当的算法,对采集的电气量进行运算,得到跳闸信号,实现微机保护的功能。微机保护算法众多,但各种算法间存在着差异,对微机保护算法的综合性能进行分析,确定特定场合下如何合理的进行选择,并在此基础上对其进行补偿与改进,对进一步提高微机保护的选择性、速动性、灵敏性和可靠性,满足电网安全稳定运行的要求具有现实指导意义。 目前已提出的算法有很多种,本次实验将着重讨论基本电气量的算法,主要介绍突变量电流算法、半周期积分算法、傅里叶级数算法。 二、实验目的 1. 了解目前电力系统微机保护的研究现状、发展前景以及一些电力系统微机保护装置。 2. 具体分析几种典型的微机保护算法的基本原理。 3. 针对线路保护的保护原理和保护配置,选择典型的电力系统模型,在MATLAB软件搭建仿真模型,对微机保护算法进行程序编写。 4. 对仿真结果进行总结分析。 三、实验容 1、采用MATLAB软件搭建电力系统仿真模型 2、采用MATLAB软件编写突变量电流算法 3、采用MATLAB软件编写半周积分算法 4、采用MATLAB软件编写傅里叶级数算法算法

电力系统微型计算机继电保护 复习考试题及答案

[1] 如果X(z)=1/(1-a/z) ,则序列x(n)为() A a^n B a^(-n) C e^(an) D e^(-an) 答案: D [2] 当输电线路发生BC两相短路故障时,解微分方程算法中的电流i(t)应选择为 A ibe(t) B iac(t) C iab(t) D ibc(i)+K3i0(i) 答案: A [3] 滤波方程是y(n)=x(n)-0.75X(n-1)+0.125X(n-2)的数字滤波器,当采样周期是0.02 (ms)时,其时间窗是 A 0.01(ms) B 0.02(ms) C 0.03(ms) D 0.04(ms) 答案: D [4] 递归型数字滤波器脉冲传递函数H(z)的极点必须满足 A 幅值小于1 B 幅值等于1 C 幅值大于1 D 在z=-1线左侧 答案: A [5] 系统频率不变时,采样值乘积算法的计算误差为 A 零 B 无穷大 C 2% D 3% 答案: A [6] 下列哪个公式反映Z变换的多步延迟定理 A Z[ax(t)]=aX(z) B Z[x(t+T)]=Z[X(z)-x(0)] C Z[x(t-nT)]=z^(-n)X(z) D Z[x(t+nT)]=z^nX(z) 答案: C [7] 数字滤波器y(n)=x(n)-2x(n-2)+3x(n-3),在采样周期是5/3ms时,时间窗是 A 5/3ms B 10/3ms C 15/3ms D 20/3ms 答案: C [8] 如果f(k)的Z变换为F(z),则f(k+1)的Z变换为 A zF(z) B z[F(z)-f(0)] C z[F(z)+f(0)] D F(z)•f(0) 答案: B [9] 电力系统输电线路最常见的故障是 A 单项故障 B 相间故障 C 相间短路接地 D 三相短路 答案: A [10] 如果离散控制系统脉冲传递函数极点的幅值为|Pi|,则其临界稳定的条件是 A |Pi|<1 B |Pi|=0 C |Pi|=1 D |Pi|>1 答案: C 【题型:填空】【分数:1分】得分:0分 [11] 在电力系统正常运行时,微型机距离保护的软件程序工作在并每隔一个采样周期中断一次,进行数据采集。 答案:自检循环 【题型:填空】【分数:1分】得分: 0分 [12] 微型机继电保护装置中采 用多CPU时,缩短了保护功能程序执 行的时间,提高了保护动作的。 答案:速动性 【题型:填空】【分数:1分】得分: 0分 [13] 微型机发电机纵差保护方 案有:基波比率制动式、基波标积制 动式和。 答案:采样瞬时值 【题型:填空】【分数:1分】得分: 0分 [14] 在电力系统发生故障时,相 电流差突变量起动元件用来起动微型 机距离保护程序中的___。 答案:故障处理程序 【题型:填空】【分数:1分】得分: 0分 [15] 对连续时间信号采样时,要 求采样频率一定要满足。 答案:采样定理 【题型:填空】【分数:1分】得分: 0分 [16] 在微型机继电保护中,实现 对模拟量进行采样并保持采样值在模 数转换期间不变的器件称为 _________。 答案:采样保持器 【题型:填空】【分数:1分】得分: 0分 [17] 逐次比较式模数转换器 (A/D)的转换位数越多,其量化误 差越。 答案:小 【题型:填空】【分数:1分】得分: 0分 [18] 合理配置数字滤波器脉冲 传递函数的极点,能够提取输入信号 中需要的成份信号。 答案:频率 【题型:填空】【分数:1分】得分: 0分 [19] 零点滤波器能够将输入信 号中的某些频率分量信号。 答案:滤除 【题型:填空】【分数:1分】得分: 0分 [20] 采用傅立叶算法时,要求对 信号的采样形式是。 答案:同步采样 【题型:填空】【分数:1分】得分: 0分 [21] 三相电压瞬时采样数据求 和用于检测电压量采样值是否发生 _______。 答案:出现错误 【题型:填空】【分数:1分】得分: 0分 [22] 交流电流交换器输出量的 幅值与输入模拟电流量的幅值 成。 答案:正比 【题型:填空】【分数:1分】得分: 0分 [23] 基波相量法标积制动式发 电机纵差保护的动作条件是。 答案:∣IN-IT∣2>S(INITcosθ) 【题型:填空】【分数:1分】得分: 0分 [24] 采样过程将连续时间信号 转换成。 答案:离散时间信号 【题型:填空】【分数:1分】得分: 0分 [25] 在一个控制系统中,只要有 一处或几处的信号是离散信号时,这 样的控制系统称为控制系统。 答案:离散 【题型:填空】【分数:1分】得分: 0分 [26] 逐次比较式数据采集系统, 将模拟电气量转换成数字量需要一定 的。 答案:转换时间 【题型:填空】【分数:1分】得分: 0分 [27] 在求离散系统的脉冲传递 函数时,要求输入量和输出量的初始 条件都为_________。 答案:零 【题型:填空】【分数:1分】得分: 0分 [28] 变压器差动电流速断保护 的整定值应躲过其可能出现的 _______。 答案:最大励磁涌流 【题型:填空】【分数:1分】得分: 0分 [29] 电流量有效值的计算公式为 2I2= i1^2+i2^2的两点乘积算法,采样 值i1、i2之间采样间隔的电角度是 _____。 答案:900 【题型:填空】【分数:1分】得分: 0分 [30] 与模拟滤波器相比,数字滤 波器工作的可靠性_________。 答案:更高 【题型:简答】【分数:4分】得分: 0分 [31] 说明变压器励磁涌流有何特 点? 答案:包含有很大成分的非周期分 量;包含有大量的高次谐波,而且以 二次谐波为主;波形之间出理间断。 【题型:简答】【分数:4分】得分: 0分 [32] 采用故障分量实现纵差保护 原理有何优点? 答案:采用故障分量实现纵差保护 原理在灵敏度方面优于基波相量纵差 保护原理。在选择性方面,不会降低 保护的选择性。 【题型:简答】【分数:4分】得分: 0分 [33] 使用傅立叶算法时,为什么 不需要对非正弦周期函数电流量的周 期采样数据进行数字滤波? 答案:因为从傅立叶算法的原理 看,算法本身就具有滤波的性能,所 以可以直接使用电流电压的采样数据 来计算所需谐波分量的有效值和相 角。 【题型:简答】【分数:4分】得分: 0分 [34] 什么是故障分量? 答案:故障分量是指从实际短路电 流中减去故障前的负荷电流后,所得 到的故障电流分量。 【题型:简答】【分数:4分】得分: 0分 [35] 与比率制动式相比,纵差保 护采用两段式比率制动特性时,有何 优点? 答案:提高内部故障时动作的灵敏 度。 在不同的运行方式下,采用不同的制 动量,在一定程度上提高了纵差保护 对电气元件内部故障时动作的灵敏 度。 【题型:分析】【分数:6分】得分: 0分 [36] 电力系统发生振荡时,电流 中包含哪些分量? 答案:振荡时三相完全对称,电力 系统中只含有正序分量,不会出现负 序分量和零序分量。 【题型:分析】【分数:6分】得分: 0分 [37] 电力系统发生振荡时,振荡 中心处电压幅值有何特点? 答案:振荡时,各节点电压幅值均 随时间呈周期性变化;变化的速度较 慢。 【题型:应用】【分数:6分】得分: 0分 [38] 电力系统振荡时,远离振荡 中心的微型机距离保护能否误动作? 为什么? 答案:不会误动作。当远离振荡中 心即振荡中心在保护范围以外时,若 系统发生振荡,由于微型机保护装置 的测量阻抗大于距离保护的动作值, 距离保护不会误动作。 【题型:应用】【分数:6分】得分: 0分 [39] 某离散控制系统的差分方程 为y(n+2)+0.6y(n+1)+O.08y(n)=1 其中:y(O)=O,y(1)=1,u(k)=1,(k=0, 1,2,…)。试求y(2),y(3),分析稳 定性。 答案:n=0时 y(2)+0.6y(1)+0.08y(0)=1 y(2)+0.6+0=1 ∴y(2)=4 n=1时y(3)+0.6y(2)+0.08y(1)=1 y(3)+0.6*0.4+0.08=1 ∴y(3)=0.68 对差分方程 y(n+2)+0.6y(n+1)+0.08y(n)=1两边取Z 变换,得 Z2 {Y(z)-[y(0)+y(1)Z-1]}+0.6Z{Y(z)- y(0)}+0.08Y(z)=U(z) Y(z)( Z2+ 0.6Z + 0.08 ) = U(z)+Z U(z)+Z = Z/(Z-1)+Z = (Z/(Z-1))*Z = ZU(z) Y(z)( Z2+ 0.6Z + 0.08 ) = ZU(z) ∴H(z)=Y(z)/U(z) = z/(z^2+0.6z+0.08) 特征方程Z2+0.6Z+0.08=0 Z1 = - 0.4 Z2 = - 0.2 ∣Zi∣<1 所以系统稳定 【题型:计算】【分数:6分】得分: 0分 [40] 某滤波器的冲激响应为: 写出该滤波器的差分方程; 当采样序列x(n)={10,10,10}输入到 该滤波器时,求滤波器的输出。 答案:差分方程为 y(n)=∑h(k)x(n-k) =-0.5x(n-1)-0.866x(n-2)-x(n-3)-0.866x(n -4)-0.5x(n-5) 采样序列x(n)={10,10,10} 数字滤波器完成每一次运算,需要输 入信号采样值的个数为6个。采样序 列x(n)只提供3个采样值,由于无法 提供足够的采样值,滤波器无法完成 一次运算,数字滤波器处于暂态过程 中而没有输出。 【题型:计算】【分数:6分】得分: 0分 [41] 离散系统差分方程为: 6y(n+2)+5y(n+1)+y(n)=u(n) 其中:y(0)=y(1)=0,u(n)=1(n≥0); u(n)=0,(n<0) 试求y(2),y(3),y(4)并分析稳定性。 答案:n=0时,6y(2)+5y(1)+ y(0)=u(0) 6y(2)+ 0 + 0 =1 ∴6y(2) =1/6 , n =1时,6y(3)+5y(2)+ y(1)=u(1), 6y(3)+ 5/6+ 0 = 1 ∴6y(3)= 1/36 N =2时,6y(4)+5y(3)+ y(2)=u(2), 6y(4)+5/36 +1/6 =1 y(4)=25/216 对差分方程两边取Z变换,得 6Z2{Y(Z)-[y(0)+ y(1)Z-1]}+5Z{Y(Z)- y(0)}+Y(z)=U(z) Y(Z)?(6Z2+5Z+1)= U(z) ∴H(Z)=Y(z)/U(z)=1/(6z^2+5z+1) 特性方程6Z2+5Z+1=0 Z1=-1/2 Z2=-1/3 |Zi|<1 系统稳定 【题型:综合】【分数:7分】得分: 0分 [42] 某离散控制系统的差分方程 为y(n+2)+0.6y(n+1)+0.08y(n)=1 其中:y(0)=0,y(1)=1,u(k)=1,(k=0, 1,2,…)。试求:y(2),y(3)。 答案:1|0.68 【题型:综合】【分数:7分】得分: 0分 [43] 分析差分滤波器 y(k)=x(k)+x(k-3)的滤波性能。 答案:4|-2 在未知非周期分量信号的衰 减时间常数对傅立叶算法的计算结果 进行补偿时,必须增加输入信号的采 样数据的个数是 A 两个 B 三个

微机继电保护设计研究

https://www.wendangku.net/doc/cf9128014.html, 微机继电保护设计研究 运行过程中的电力系统,由于雷击、倒塌、内部过压或者错误的运行操作等都会造成故障及危害,一旦发现故障,我们就必须迅速采取并确保系统的可靠运行。当电气设备出现问题时,应根据系统运行的维护要求,确定出相应的保护动作。为了确保电力系统能够安全可靠的运行,继电保护装置就此运应而生。 随着计算机技术和电子技术的发展,使电力系统的继电保护突破了传统的电磁型、晶体管型及集成电路型继电保护形式,出现了微型机、微控制器为核心的继电保护形式,这种保护形势称为电力系统微机继电保护。 微机继电保护的原理和特点 传统的模拟式继电保护是根据电力系统中的模拟量(电压U、电流I)进行工作的,也就是将采集的模拟量与给定的机械量(弹簧力矩)、电气量(门槛电压)进行对比和逻辑运算,做出判断,从而完成相应的保护。 机电保护装置满足的四项基本要求依次是灵敏性、选择性、速动性、可靠性。 继电保护装置工作原理包括以下三部分:1.信号检测部分、2.逻辑判断部分、3.保护动作部分。其具体工作流程如下:信号检测部分从被保护侧采集相应的模拟量和开关量,传送到逻辑判断部分,通过算法进行处理,将所得结果与给定的整定值进行对比,判断系统是否出现故障并发出相应的动作命令,最终再由保护动作部分执行相应的动作。 现代微机保护则是将电力系统的模拟量(电压U、电流I)进行采样和编码之后,转换成数字量,通过微型计算机进行分析、运算和判断,从而实现电力系统的继电保护。 微机继电保护具有的特点:稳定性好、逻辑判断准确、设备维护方便、设备附加值高、适应性强。 微机继电保护的设计 微机继电保护的设计分为硬件设计和软件设计两部分。微机继电保护的硬件设计,从功能上讲,微机保护装置包括五个部分:数据采集单元,数据处理单元(CPU),开关量输入输出回路,人机接口部分和电源回路。 微机继电保护的软件设计中,系统软件是整个保护装置的灵魂,基于各个硬件设备的基础之上实现线路继电保护及监控的各种功能。这里以微机三段式电流保护为例主要介绍微机保护的主程序设计与自检模块。 随着电力自动化技术的日益发展,微机继电保护装置取代传统继电保护装置是个必然的趋势。通过引进微机控制技术,可使电力系统的运行更加安全、可靠、稳定、高效率。总之,随着微电子技术、计算机技术、网络技术和通信技术的发展,微机继电保护和变电站自动化系统在逐渐向智能化与网络化方向发展。

微机继电保护实验报告

. 本科实验报告 课程名称:微机继电保护 实验项目:电力系统继电保护仿真实验 实验地点:电力系统仿真实验室 专业班级:电气1200 学号:0000000000 学生姓名:000000 指导教师:000000 2015年12 月 2 日

微机继电保护指的是以数字式计算机(包括微型机)为基础而构成的继电保护。众所周知,传统的继电器是由硬件实现的,直接将模拟信号引入保护装置,实现幅值、相位、比率的判断,从而实现保护功能。而微机保护则是由硬件和软件共同实现,将模拟信号转换为数字信号,经过某种运算求出电流、电压的幅值、相位、比值等,并与整定值进行比较,以决定是否发出跳闸命令。 继电保护的种类很多,按保护对象分有元件保护、线路保护等;按保护原理分有差动保护、距离保护和电压、电流保护等。然而,不管哪一类保护的算法,其核心问题归根结底不外乎是算出可表征被保护对象运行特点的物理量,如电压、电流等的有效值和相位以及视在阻抗等,或者算出它们的序分量、或基波分量、或某次谐波分量的大小和相位等。有了这些基本电气量的计算值,就可以很容易地构成各种不同原理的保护。基本上可以说,只要找出任何能够区分正常与短路的特征量,微机保护就可以予以实现。 由此,微机保护算法就成为了电力系统微机保护研究的重点,微机保护不同功能的实现,主要依靠其软件算法来完成。微机保护的其中一个基本问题便是寻找适当的算法,对采集的电气量进行运算,得到跳闸信号,实现微机保护的功能。微机保护算法众多,但各种算法间存在着差异,对微机保护算法的综合性能进行分析,确定特定场合下如何合理的进行选择,并在此基础上对其进行补偿与改进,对进一步提高微机保护的选择性、速动性、灵敏性和可靠性,满足电网安全稳定运行的要求具有现实指导意义。 目前已提出的算法有很多种,本次实验将着重讨论基本电气量的算法,主要介绍突变量电流算法、半周期积分算法、傅里叶级数算法。 二、实验目的 1. 了解目前电力系统微机保护的研究现状、发展前景以及一些电力系统微机保护装置。 2. 具体分析几种典型的微机保护算法的基本原理。 3. 针对线路保护的保护原理和保护配置,选择典型的电力系统模型,在MATLAB软件搭建仿真模型,对微机保护算法进行程序编写。 4. 对仿真结果进行总结分析。 三、实验内容 1、采用MATLAB软件搭建电力系统仿真模型 2、采用MATLAB软件编写突变量电流算法 3、采用MATLAB软件编写半周积分算法 4、采用MATLAB软件编写傅里叶级数算法算法

电力系统继电保护随堂练习

电力系统继电保护随堂练习答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D.

答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D.

答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D.

答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D.

答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D.

答题: A. B. C. D. 答题: A. B. C. D. 答题: A. B. C. D. 40. 采用接线方式的功率方向继电器,,( )。 (A) (B) (C) (D) 答题: A. B. C. D. 41. 按900接线的功率方向继电器,若线路短路阻抗角为则线路上发生三相短路时电压超前电流的角度为()。 (A) (B) (C) (D)- 答题: A. B. C. D. 答题:对. 错 答题:对. 错 答题:对. 错 答题:对. 错

电力系统继电保护

一、简答题 1.微机保护中A/D的模拟量输入系统通常由哪几部分组成?各部分的作用是什么? 解答:(一)电压形成回路 微机继电保护要从被保护的电力线路或设备的电流互感器、电压互感器或其他变换器 上获取信息。但这些信息的二次数值、输入范围为典型的微机继电保护电路却不适用, 一般用中间变换器实现。 (二)采样保持电路 采样过程是将模拟信号通过采样保持器每隔T采样一次输入信号的瞬时幅值,并把它 存在保持电路中,共AD转换器使用。 (三)模拟量多路转换器 可以对各个模拟量同时采样 (四)A/D转换器 把采集的电力系统中的模拟量转变成数字量,送给微机计算。 2.微机保护模拟量输入系统为什么要加模拟低通滤波器?其截止频率应该如何选 取? 解答:滤波器是一种能使有用频率信号通过,同时拟制无用频率信号的电路。低通滤波器是只让低于截至频率通过的滤波器。 前置低通滤波器又称为抗混叠滤波器,广泛应用于各种消费、控制电路中的采样 电路前,滤除高于2倍采样频率的信号,因此截至频率被设置为1/2fs 3.简述VFC型模数转换器的基本工作原理。 频率转换(VFC):经电压形成回路后,经过VFC,将模拟电压变换为脉冲信号,由计数器进行计数。这样在采样间隔内的计数值就与采样对象的积分值成比例。实现了模数转换 4.绘出微机保护的开关量输入回路和输出回路的典型电路图,简述电路的工作原理。 解答:开关量输入回路 原理:上第一个图,当开关闭合时输入为低电平0;开关断开时输入为高电平1。

第二个图,利用光电元件,当K2断开时,光电元件截止,输入为高电平1,K2闭合,光电元件导通,输入为低电平0。 开关量输出回路 二、相减(差分)滤波单元的差分方程为: y(n)=x(n)-x(n-k) 画出其频率响应曲线,导出可滤除的谐波次数m与步长K之间的关系。

微机继电保护习题带答案

微机继电保护习题 1.微机保护装置从功能上可分为6个部分:(数据采集系统),数字数字处理系统,(输出通道),(人机接口),(通信系统),电源电路。 2.数据采集系统包括隔离与电压形成(或模拟量输入变换回路)、(低通滤波回路)、采样保持回路、(多路转换器)和模数转换(A/D)回路等部分组成。 3.数据采集系统中的电压形成回路除了完成电量变换作用外,还起着(隔离)和(屏蔽)的作用。 4.采样保持电路的作用是,在一个极短的时间内测量模拟输入量在该时刻的(瞬时值),并在模数转换期间内(保持输出不变)。 5.电压信号经VFC变换后是(数字脉冲波),因此采用光隔电路容易实现数据采集系统与微机系统的(隔离),有利于提高刚干扰能力。 6.在微机保护中广泛使用光隔离器,主要利用了(开关器件)的功能,应用于逻辑电平和(信号)控制,实现两侧信号的传递和(电气的绝缘)。 7.分析和评价各种不同算法优劣的标准是(精度)和(速度)。 8.采用半周期积分算法计算被测电流,如果被测电流是100A时半周期积分结果是2500,现如果半周期积分结果是2000则被测电流是()。 9.半周期积分算法可以抑制(高频)分量。对于50Hz的工频正弦量,数据窗延时为(3/4T)。 10.微机保护中,用离散傅里叶算法可用于求出各次谐波的(幅值)和(相位)。 11.R-L模型算法是以线路的简化模型为基础的,该算法仅能计算(测量阻抗),用于(线路距离)保护。 12.阶段式保护主要解决的问题主要是配合问题,即(保护范围)的配合和(动作时间)的配合。<整定值(边界)的配合> 13.阶段式电流保护的1段保护其保护范围现在在(线路全长)以内,一般要求去1段保护的保护范围应大于线路全长的(85%)。 14.第2段保护必须保护线路(全长并延伸至下一级线路),但不能超过下级线路的(15%)。 15.反时限电流保护的启动电流整定值按(定时限过电流)整定。 16.低频减载装置基本级的作用是根据(系统频率下降程度)依次切除不重要的

四川大学电力系统继电保护模拟试题(一)及答案

模拟试题(一) 一、填空题 1继电保护装置一般由 、 、 三部分组成。 2继电保护的可靠性包括 和 ,是对继电保护性能的最根本要求。 3低电压继电器的启动电压 返回电压,返回系数 1。 4在中性点非直接接地电网中,发生单相接地短路时, 处零序电压最高; 处零序电压为0;零序电流的分布主要取决于 。 5自耦变压器高、中压两侧的零序电流保护应分别接于 上。 6功率方向继电器的内角30α=?,其动作范围 arg J J U I ≤≤ 。 7单侧电源线路上发生短路故障时,过渡电阻的存在使方向阻抗继电器的测量阻抗 ,保护范围 。 8检查平行双回线路有电流的自动重合闸,当另一回线有电流时,表示 ,可以进行重合闸。 9变压器瓦斯保护反应油箱内部所产生的气体或油流而动作,其中 动作于信号, 动作于跳开变压器各电源侧的断路器。 10低电压起动过电流保护和复合电压起动过电流保护中,引入低电压起动和复合电压起动元件是为了提高过电流保护的 ,此时过电流保护的定值不需要考虑 。 11电流比相式母线保护的基本原理是根据母线在内部故障和外部故障时各连接元件 实现的。 12断路器失灵保护属于 后备保护。 13微机保护的硬件一般包括 、 、 三部分。 14微机保护中半周积分算法的依据是 。 15微机保护装置的功能特性主要是由 决定的。 二、简答题 1继电保护的基本任务是什么? 2当纵联差动保护应用于线路、变压器、母线时各有什么特殊问题?这些问题可用什么方法加以解决? 3什么是纵联电流相位保护的闭锁角?那些因素决定闭锁角的大小? 4什么是重合闸后加速保护?主要适用于什么场合? 5变压器纵差动保护中消除励磁涌流影响的措施有哪些?它们分别利用了励磁涌流的那些特点? 6发电机从失磁开始到进入稳态异步运行,一般可分为那三个阶段?各个阶段都有那些特征? 7微机保护中启动元件的作用有哪些? 三、分析计算题 1某方向阻抗继电器8set Z =Ω,80sen ?=?,当继电器的测量阻抗为650∠?Ω时,该继电器是否动作? 2设1200s f Hz =,设计一加法滤波器,要求滤掉1、3、5等奇次谐波,写出其差分方程表达式。 3在图1所示网络中装设了反应相间短路的距离保护。已知:线路的正序阻抗10.45/x km =Ω;系统阻抗:min 20Ms x =Ω,min 10Ns x =Ω,max max 25Ms Ns x x ==Ω;

微机继电保护设计

基于89c51单片机的继电保护装置的硬件设计 张银龙200901100329电气09-3(订单) 1.1继电保护的发展趋势 继电保护技术未来趋势是向计算机化、网络化、智能化,保护、控制、测量和数据通信一体化发展。 1)计算机化 计算机硬件迅猛发展,系统集成度越来越高。单一处理器的处理速度和处理能力不断提高,处理速度的不断提高为单一芯片作为微机继电保护技术奠定了基础。89C51作为32位芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU寄存器、数据总线、地址总线都是32位,具有存储器管理功能和任务转换功能,并将高速缓存和浮点数部件都集成在CPU内。 2)网络化 计算机网络作为信息和数据通信的工具已成为信息时代的技术支柱,使人类生产和社会生活面貌发生了根本变化。它深刻影响着个个工业领域,也为各个领域提供了强有力的通信手段。继电保护作用不只是限于切除故障元件和限制事故影响范围,还要保证全系统与重合闸装置分析这些信息和数据基础上协调动作,保证系统安全稳定运行。显然,实现这种系统保护基本条件是将全系统各主要设备保护装置用计算机网络联系起来,亦即实现微机保护装置网络化。 3)保护、控制、测量、数据通信一体化 实现继电保护计算机化和网络化条件下,保护装置实际上市一台高性能,多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可以将它所获被保护元件任何信息和数据传送给网络控制中心或任一终端。每个微机保护装置可完成继电保护功能,无故障正常运行下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化、 4)智能化 今年来,人工智能技术在电力系统等各个领域都得到了应用,继电保护领域应用研究也已开始。神经网络是一种非线性映射方法,很多难以列出方程或难解的复杂问题,应用神经网络方法则可迎刃而解。 1.2继电保护的基本任务 继电保护的基本任务包括: 1)自动、迅速、有选择的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分恢复正常运行。 2)反应电气元件的不正常运行状态,并根据运行维护条件,而动作于发出信号、减轻负荷或跳闸。 2.1继电保护的基本原理和保护装置的组成 2.1.1继电保护的基本原理 利用正常运行与区内外短路故障电气参数变化的特征构成保护的判据,根据不同的判据就构成不同原理的继电保护。例如: (1)电流增加(过电流保护):故障点与电源直接连接的电气设备的电流会增加电压降低(低电压保护):各变电站母线上的电压将在不同程度上有很大的降低,短路点得电压降到零。 (2)电流与电压的相位角会发生变化(方向保护):正常20°左右,短路时60°~85°

电力系统微机继电保护论文作业

电力系统变压器微机继电保护说明书 林健 (专业:电气工程及其自动化班级:电自104班学号:1008040227) 摘要 :电力变压器是电力系统中相当普遍又及其重要的设备,因此,变压器微机保护自从出现以来,不断经过人们的改进和发展,现以其独特的优势在电力系统中被广泛应用。而当微机保护理论与实际应用相结合时,依然存在着各式各样的问题。本文针对变压器微机保护现存的一些问题,主要对以下几个方面进行了研究分析。首先,在深入了解变压器差动保护原理的基础上,对不平衡电流产生的原因和解决方法,以及电流互感器(CT)饱和对差动保护的影响进行理论和仿真分析,尤其是对剩磁对CT饱和的影响做了进一步的研究,得出剩磁的大小与CT 的饱和时间成反比,而饱和时间的增大对变压器保护是有利的,应采取措施减少剩磁的影响,并进行了仿真验证。其次,综合分析比较了目前励磁涌流与内部故障电流鉴别原理的优点和不足,在参考相关文献的基础上,提出一种新的基于瞬时无功功率理论的励磁涌流鉴别方法,该方法与以往基于仅D0坐标系的瞬时无功功率鉴别方法不同,采用基于dq0坐标系下的广义瞬时无功功率理论来进行判断,更具有实用性。并通过MATLAB建立了仿真系统模型,对变压器发生励磁涌流时与发生内部故障时,以及空投于内部故障时做了大量的仿真分析,仿真结果证明,该方法可有效区分励磁涌流与内部故障,但对轻微匝间短路的区分不是很明显,成为下一步研究的重点。另外,针对目前傅氏改进算法中实虚部混乱问题,在给出了输入信号不同时正确的傅氏表达式的基础上,对几种典型的改进算法进行修正,并通过仿真算例验证对这几种改进算法做综合性能比较,指出了它们的优缺点和使用范围,为在不同场合的应用提供了理论依据。最后,顺应目前微机保护发展对软、硬件系统要求的主流趋势,给出一种基于双DSP结构的微机保护软、硬件系统结构方案,并对其中主要的硬件电路和软件程序流程图进行了设计和详细的分析介绍。 关键词:变压器;微机保护;电流互感器饱和;励磁涌流;傅氏算法 一、引言 电力变压器作为联系不同电压等级网络的设备,是电力系统中极其重要的组成部分,它在电力系统的发电、输电、配电等各个环节中被广泛使用。随着近些年来,电力系统规模的不断扩大,电压等级的提高,增加了很多大容量的变压器,因而它的安全运行与否,是整个电力系统能否连续稳定工作的关键,也是电力系统可靠工作的必要条件。而且电力变压器本身造价昂贵,一旦发生故障而遭到破坏,将给维修带来很大困难,造成大的经济损失。因此,必须根据变压器的容量和重要程度,并考虑到可能发生的各种故障类型和不正常运行状态,来装设性能良好、工作可靠的继电保护装置。 分析电力变压器的故障,可分为短路故障和不正常运行状态两种Ⅲ,而变压器的短路故障,又可按发生在变压器的内外部情况分为内部故障和外部故障。变压器的内部故障主要是指各相绕组之间发生的相间短路、绕组的线匝之间发生的匝间短路、绕组或引出线通过外壳发生的接地短路故障等。变压器的外部故障主要是指外部绝缘套管和引出线上发生相间短路和直接接地短路故障。 变压器的不正常运行状态主要有:由于外部相间短路引起的过电流和外部接

电力系统微机综合保护装置用途

微机综合保护装置用途 微机型保护装置是用于测量、控制、保护、通讯一体化的一种经济型保护;针对配网终端高压配电室量身定做,以三段式无方向电流保护为核心,配备电网参数的监视及采集功能,可省掉传统的电流表、电压表、功率表、频率表、电度表等,并可通过通讯口将测量数据及保护信息远传上位机,方便实现配网自动化;装置根据配网供电的特性在装置内集成了备用电源自投装置功能,可灵活实现进线备投及母分备投功能。 保护类型:定时限/反时限保护、后加速保护、过负荷保护、负序电流保护、零序电流保护、单相接地选线保护、过电压保护、低电压保护、失压保护、负序电压保护、风冷控制保护、零序电压保护、低周减载保护、低压解列保护、重合闸保护、备自投保护、过热保护、逆功率保护、启动时间过长保护、非电量保护等。 监控系统适用范围:变电站综合自动化系统、配电室综合自动化系统、泵站综合自动化系统、水电站综合自动化系统、工业/工厂自动化系统。 微机保护与测控装置采用了国际先进的DSP和表面贴装技术及灵活的现场总线(CAN)技术,满足变电站不同电压等级的要求,实现了变电站的协调化、数字式及智能化。此系列产品可完成变电站

的保护、测量、控制、调节、信号、故障录波、电度采集、小电流接地选线、低周减载等功能,使产品的技术要求、功能、内部接线更加规范化。产品采用分布式微机保护测控装置,可集中组屏或分散安装,也可根据用户需要任意改变配置,以满足不同方案要求。 微机保护装置适用于110KV及以下电压等级的保护、监控及测量,可用于线路、变压器、电容器、电动机、母线PT检测、备用电源自投回路及主变保护、控制与监视。单元化的设计使其不但能方便地配备于一次设备,也可以集中组屏、集中控制。规范的现场总线接口支持多个节点协调工作,实现系统级管理和综合信息共适用范围 随着科学技术手段的进步,和对适用环境更高要求,微机保护功能性也越趋完善。通用型微机综合保护装置可作为35KV及以下电压等级的不接地系统、小电阻接地系统、消弧线圈接地系统、直接接地系统的各类各类电器设备和线路的保护及测控,也可作为部分66KV、110KV电压等级中系统的电压电流的保护及测控其它自动控制系统。 随着技术进步和市场的需求,我公司对微机保护装置的硬件和软件进行了升级,推出了微机保护装置。CPU采用美国德州仪器的DSP数字中央处理器,具有先进内核结构、高速运算能力和实时信号处理等优良特性新型保护装置已通过测试及检验,开始投入批量生产

第二章 电力系统继电保护原理微机继电保护基本历程汇总

第二章微机继电保护基本历程 一、微机继电保护基础 §2.1 微机保护基本结构 微机保护的基本结构包括数据处理单元、模拟量输入系统、开关量输入输出系统、人机对话和外部通信系统四个部分, 图2-1是微机保护系统方框图。 ㈠数据处理单元一般由中央处理器(CPU )、存储器、定时器/计数器及控制电路等部分组成,并通过数据总线、地址总线、控制总线连成一个系统。继电保护程序在数字核心部件内运行,指挥各种外围接口部件运转、完成数字信号处理,实现保护原理。 CPU 是数字核心部件以及整个微机保护的指挥中枢,计算机程序的运行依赖于

CPU 来实现。存储器用来保存程序和数据,它的存储容量和访问时间也会影响整个微机保护系统的性能。定时器/计数器除了为延时动作的保护提供精确计时外,还可以用来提供定时采样触发信号、形成中断控制等作用。数字核心部件的控制电路包括地址译码器、地址锁存器、数据缓冲器、中断控制器等等,它的作用是保证微机数字电路协调工作。 ㈡模拟量输入系统 微机保护装置模拟量输入接口部件的作用是将电力传感器输入的模拟电量正确地变换成离散化的数字量,提供给数字核心部件进行处理。交流模拟量输入接口部件内部按信号传递顺序为:电压输入变换器和电流输入变换器及其电压形成回路、前置模拟低通滤波器、采样保持器、多路转换器、模数变换器。前置模拟低通滤波器是一种简单的低通滤波器,其作用是为了在对输入模拟信号进行采样的过程中满足采样定理的要求。采样保持器完成对输入模拟信号的采样。多路转换器是一种多信号输入、单信号输出的电子切换开关,可通过编码控制将多通道输入信号依次与其输出端连通,而其输出端与模数变换器的输入端相连。模数变换器实现模拟量到数字量的变换。 ㈢开关量输入输出系统 开关量是指反映“是”或“非”两种状态的逻辑变量,如断路器的“合闸”或“分闸”状态、控制信号的“有”或“无”状态等。开关量输入接口部件的作用是为正确地反映开关量提供输入通道,并在微机保护装置内外部之间实现电气隔离,以保证内部弱电电子电路的安全和减少外部干扰。开关量输出接口部件的作用是为正确地发出开关量操作命令提供输出通道,并在微机保护装置内外部之间实现电气隔离,以保证内部弱电电子电路的安全和减少外部干扰。 ㈣人机对话和外部通信系统 微机保护人机对话接口部件通常包括以下几个部分:简易键盘、小型显示屏、指示灯、打印机接口、调试通信接口。

相关文档
相关文档 最新文档