文档库 最新最全的文档下载
当前位置:文档库 › 课程设计

课程设计

课程设计
课程设计

南京工业大学

化学化工学院《化工过程与工艺设计》

设计题目酯化法生产柠檬酸三丁酯的工艺设计

学生姓名庄永祥班级、学号J1001100633 指导教师姓名周浩力

设计时间2013年6月27日--2013年7月5日

课程设计成绩(五级分制):

设计说明书、计算书及设计图纸质量,70%

独立工作能力、综合能力及设计过程表现,20%

设计答辩及回答问题情况,10%

设计最终成绩(百分制)

指导教师签字

前言

在塑料制品大行其道的今天,塑化剂超标风险可谓无处不在。塑化剂或称增塑剂,是一种增加材料柔软性或是使材料液化的添加剂,种类多达百余种。近年来,随着食品、药品等工业的发展, 人们在对增塑剂的需求与日俱增同时, 对增塑剂的卫生也越来越关心。目前, 工业上常用的增塑剂是邻苯二甲酸酯类, 但已有大量研究发现, 此类增塑剂有可能致癌, 许多国家已严格控制其在食品包装材料、医疗器械及儿童玩具等产品中的使用。研究开发新型、绿色增塑剂已经成为当务之急。柠檬酸三丁酯就是一种新型的良好的无毒增塑剂, 因其具有相溶性好、增塑效率高、不易挥发、无毒、无气味、耐寒性强等特点而倍受关注。因此,近年来,柠檬酸三丁酯的合成研究较为活跃。

本设计针对目前国内生产及供需现状,对年产800吨无毒增塑剂柠檬酸三丁酯项目进行工艺设计。设计中,参考同类工业生产的工艺现状,将生产过程分为酯化、脱醇,水洗及分离,干燥,脱色和过滤等5个操作单元。通过进行物料衡算,确定每个操作单元进出物料量,并由此确定消耗定额,同时为热量衡算、设备选择、平面布置设计、管道设计、设备投资奠定基础。对该工艺中所涉及到的各换热过程如酯化等操作单元的加热釜、冷凝器等设备均进行热量衡算,确定各换热器的传热面积、加热过程所用加热蒸气量和最大加热蒸气量、冷却过程冷却水消耗量和最大消耗量,为各换热设备的选择和公用工程中涉及到的加热蒸气、冷却水的供应提供了依据。也为设备平面布置设计、管道设计和经济核算提供必要的数据。

结合对各个单元所进行的物料衡算和热量衡算,根据各操作单元所涉及的物料性质,对该工艺中所涉及到的设备进行了选择,其中的定型设备根据《化工工艺设计手册》进行选择,非定型设备如蒸馏塔则根据进入蒸馏物料量进行必要计算,确定各塔所需理论板数,根据所选填料特性确定所需填料层高度,最终确定各设备的材质和规格。各个设备的选择为平面布置设计、管道布置设计及经济核算提供更为充分的依据。对该工艺中所涉及的酯化反应和乙酰化反应及脱醇、脱酸、干燥等精馏过程,根据各操作设备的温度和压力,在综合考虑经济因素和操作因素的基础上,对所用的温度和压力测量仪表进行选型,为整个生产工艺的正常操作控制提供依据。

在前述工作的基础上,进行工艺流程设计,在设计时首先考虑工艺的优化组合,合理布置各设备的位置,充分考虑各工艺管道所输送物料的性质选择适当材质,综合考虑管道投资和输送动力消耗选择合适的管径,以达到最佳效益。在工艺流程设计和设备选择的基础上进行平面布置设计,对于振动设备布置在一楼基础上,各储罐相对集中布置在罐区,对用量较大的物料和最终的产品贮罐尽可能靠近道路,对回流物质料罐尽可能布置在相对较高的位置,利用位能,以达到优化的目标。

第一部分设计说明书

第一概述

1.1催化酯化法生产TBC概述

柠檬酸和过量正丁醇在催化剂和脱色剂存在下发生酯化反应,生成柠檬

酸三正丁酯和水,经分水器分离过量醇和水,中和,再经减压和汽提进一步

脱醇,达到闪点指标,脱色,过滤脱去机械杂质,计量、包装,即为成品TBC。在这其中酯化反应是整个工艺的关键。酯化反应催化剂一般都是具有强酸性

的物质,如强质子酸、超强酸、杂多酸等,筛选出适合催化剂用于该酯化反应。

目前国内外研究热点主要集中在酯化反应新催化剂的开发上,寻找高活性,高选择性,制备工艺简单,经济实用,对环境友好的新型催化剂成为国

内外学者的研究方向。

1.2与传统增塑剂相比,TBC的优点

柠檬酸三丁酯是一种绿色环保的新型增塑剂,已成为传统增塑剂邻苯二甲酸二辛酯(DOP)的绿色替代品,受到了人们广泛关注。其主要特点在于:

(1)无毒无味、绿色环保;(2)耐光、耐热、稳定性好、经久耐用;(3)与聚合

物及树脂的相容性极好。

可广泛用于食品包装、医疗器具、儿童玩具以及个人卫生等各种橡塑制品。第二设计说明书

2.1 柠檬酸性质

柠檬酸是一种重要的有机酸,又名枸橼酸,无色晶体,常含一分子结晶水,无臭,有很强的酸味,易溶于水。其钙盐在冷水中比热水中易溶解,此性质常用来鉴定和分离柠檬酸。结晶时控制适宜的温度可获得无水柠檬酸。在工业,食品业,化妆业等具有极多的用途。结构式如下:

中文名称:柠檬酸

英文名称:Citric Acid

化学名称:2-羟基丙烷-1,2,3-三羧酸

CAS:77-92-9

分子式:C6H8O7

分子量:192.14

外观与性状:白色结晶粉末,无臭。

熔点(℃):153℃

沸点(℃):(175℃分解)

相对密度(水=1):1.6650

闪点(℃):100

溶解性:溶于水、乙醇、丙酮,不溶于乙醚、苯,微溶于氯仿。水溶液显酸性。物理性质:在室温下,柠檬酸为无色半透明晶体或白色颗粒或白色结晶性粉末,无臭、味极酸,在潮湿的空气中微有潮解性。它可以以无水合物或者一水合物的形式存在:柠檬酸从热水中结晶时,生成无水合物;在冷水中结晶则生成一水合物。加热到78 ℃时一水合物会分解得到无水合物。在15摄氏度时,柠檬酸也可在无水乙醇中溶解。柠檬酸结晶形态因结晶条件不同而不同,有无水柠檬酸C6H8O7也有含结晶水的柠檬酸2C6H8O7.H2O、C6H8O7.H2O或C6H8O7.2H2O。

化学性质:从结构上讲柠檬酸是一种三羧酸类化合物,并因此而与其他羧酸有相似的物理和化学性质。加热至175 ℃时它会分解产生二氧化碳和水,剩余一些白色晶体。柠檬酸是一种较强的有机酸,有3个H+可以电离;加热可以分解成多种

产物,与酸、碱、甘油等发生反应。

2.2 正丁醇性质

中文名称:正丁醇

中文别名酪醇; 丙原醇; 丁醇;

分子式: C4H10O;CH3(CH2)3OH

CAS编号:71-36-3

分子量: 74.12

熔点: -88.9℃

沸点:117.25

相对密度: d(20,4)=0.8098;

蒸汽压: 0.82kPa/25℃

溶解性: 微溶于水,溶于乙醇、醚等多数有机溶剂

外观与性状:无色透明液体,具有特殊气味

主要用途

正丁醇主要用于制造邻苯二甲酸、脂肪族二元酸及磷酸的正丁酯类增塑剂,它们广泛用于各种塑料和橡胶制品中,也是有机合成中制丁醛、丁酸、丁胺和乳酸丁酯等的原料。还是油脂、药物(如抗生素、激素和维生素)和香料的萃取剂,醇酸树脂涂料的添加剂等,又可用作有机染料和印刷油墨的溶剂,脱蜡剂。储存注意事项:正丁醇应储存于阴凉、通风的库房。远离火种、热源。防止阳光直射。包装密封。储区应备有合适的材料收容泄漏物

2.3柠檬酸三丁酯性质

化学名称:3-羟基-3-羧基戊二酸三丁酯

中文名称:柠檬酸三丁酯

中文别名:柠檬酸三正丁基酯;柠檬酸三正丁酯

英文名称:Tributyl citrate

分子式:C18H32O7

分子量:360.44

沸点:225℃

熔点:-20℃

相对密度:(25/25℃)1.0418

折射率:(25℃)1.4431

结构式如下所示:

主要性质如下:

无色透明油状液体,熔点-20℃,沸点 170℃(133.3Pa),闪点(开

杯)185℃。溶于多数有机溶剂如甲醇、冰酯酸、矿物油等。不溶于水,无毒无味,挥发性小,耐热耐光耐水,与乙烯基树脂、醋酸纤维素、乙酰基丁酸纤维素、乙基纤维素、苄基纤维素等相容性好,为增塑效能较好的增塑剂;还具抗细菌又不滋长细菌、无刺激性,阻燃性及可降解性;可赋予制品良好的耐寒性、耐水性和抗霉性。

2.4设计依据

依据1991年8月24日河南省石油化学工业厅《无毒增塑剂柠檬酸三丁酯合成研究》(91)豫石化鉴字004号,采用该研究成果,并参考国内外同类产品生产方法进行工艺设计。

2.5催化剂

2.5.1磺酸催化剂

对甲苯磺酸(PTSA)是~种强有机酸,其催化活性高、用量少,不易引起副

反应,产品色泽好,对设备的腐蚀性和环境的污染都较小,是一种研究较多

的催化剂。它在乙酰化过程产乙酸正丁酯,原料利用高,目的产物经活性炭

脱色,反应产率98%以上,效果较好。在优化条件下,TBC反应产率95%。2.5.2固体超强酸催化剂

固体超强酸是指酸性比100%硫酸更强的固体酸,其酸的酸性可达100%

硫酸的1万倍以上。与传统催化剂相比,固体超强酸具有以下优点:

①催化效率高,使用量小,副产物少;

②可在高温下重复使用,催化剂与产物易于分离;

③表面酸性强,且对设备无腐蚀性,有人自制固体超强酸s042州02催化合

成TBC,酯化率大于98%。

2.5.3树脂催化剂

树脂催化剂合成羧酸酯具有以下优点:

①产品色泽好;

②产物与催化剂易分离,后处理方便;

③不腐蚀设备,无三废产生;

④树脂再生后可重复利用等。以D001型树有人以脂固载~C13催化合成TBC,TBC酯化产率96.27%,催化剂可熏复使用6次,应用前景看好。

2.5.4 杂多酸催化剂

杂多酸是由不同的含氧酸缩合而制得的含氧多元酸的总称,是以杂原予P5+,

P3+,Ge4+,B3+,As5+,si4+为中心原子,以w03,M003,V205等为配体的

一类化合物,是强度均匀的质子酸,其活性较硫酸高,且不腐蚀设备,具有

很好的稳定性,对环境污染较小,是一类有发展前景的绿色催化剂。在优化

条件下酯化率97%以上。微球负载杂多酸,非均相反应合成TBc,催化剂重

复使用5次,柠檬酸转化率仍高于91%,该催化剂易于产物分离,催化活性高,反应温度低,重复使用次数多,工业化前景较好。有人以活性炭固载杂

多酸合成TBC,催化剂重复使用5次,酯化率达96.3%以上,生产成本降低。但杂多酸类催化剂用于柠檬酸酯类的生产仍需在降低使用成本,提高稳定性

上进一步完善与提高。

2.6现有方法

目前工业化生产柠檬酸三丁酯所用方法主要是以浓硫酸为催化剂的合成方法,这是因为使用硫酸为催化剂制备柠檬酸三丁酯的反应过程为均相反应,不存在传质影响,因此催化活性高,即酯化过程中柠檬酸转化率高,产品的综合成本较其它催化剂都低,且工艺成熟,操作方便,虽然以浓硫酸为催化剂合成柠檬酸三丁酯存在诸如腐蚀等缺点,但基于上述优势,目前仍广泛应用于柠檬酸三丁酯合成工艺中。所以本设计以强酸性离子交换树脂作为柠檬酸三丁酯合成首选催化剂,同时兼顾未来新型固体酸催化剂的使用。

2.7基本工艺过程

工艺流程简述:

柠檬酸与正丁醇按摩尔比l:6的配比进入酯化反应釜,加入浓硫酸(加入量为柠檬酸的0.7%)做催化剂进行酯化反应,反应釜夹套内通入水蒸气将反应物料加热到120℃反应4小时至酯化合格。酯化合格后的物料转入脱醇塔,在绝压2666Pa下进行减压精馏,正丁醇蒸气经脱醇冷凝器降温后,部分回流,其余含98%正丁醇的溶液进入丁醇回收罐循环使用

合成柠檬酸三丁酯的工艺流程图如下: 柠檬酸 离子交换树脂 正丁醇、水恒沸物 水

正丁醇 正丁醇 水

产品

活性炭

2.8基础数据

年产量600吨TBC ,质量分数97%,年工作日280天。

2.8.1酯化过程:

原料:柠檬酸质量分数90%

正丁醇质量分数98%

为了提高柠檬酸转化率,采用正丁醇过量的方法,原料配比:

n(柠檬酸):n (正丁醇)=1:6

催化剂离子交换树脂加入量为柠檬酸量的5%(质量分数),恒沸物水中含77%(质

量分数),醇中含水20.1%(质量分数)。

反应温度:120℃

反应时间:每批物料处理时间8h

柠檬酸转化率:98.5%

柠檬酸三丁酯收率(TBC ): 98.5%。

2.8.2脱醇过程

正丁醇出料质量分数:≥98%

塔釜正丁醇质量分数:≤1.1%

酯化

脱醇 水洗及分离

干燥 脱色

压力:2666Pa(绝对压力)

柠檬酸三丁酯收率:98.5%

③水洗及分离过程

TBC收率:99.4%。

水的加入量和物料量的质量比为1.2:1,洗三次,每次用时4h

④干燥(脱水过程)

TBC收率:99.4%

操作压力2666Pa

每批物料处理时间8h

⑤脱色过程

活性炭加入量为物料量的8% (质量分数)

脱色温度60℃

每批物料处理时间为8h

过滤机每5天出一次滤饼

TBC收率:99.6%

第三工艺流程叙述

3.1平面布置设计说明

在进行平面布置时,将泵集中布置在一层基础上,减轻对其余楼层的振动。板框式压滤机、各种大型贮罐也布置在一层,减轻楼层的负荷;在进行蒸馏分离时,采用了真空精馏,此时用到真空泵,将真空泵统一布置在真空泵房,周围进行隔离,减轻噪声污染;反应釜用罐耳悬挂在楼板的设备预留孔中;三楼平面主要设计了回流罐、换热器等设备,减少人员来回上下操作的麻烦。对用量较大的物料如正丁醇、醋酸酐等储罐和产品ATBc布置在便于运输的主要通道旁,使这些物料容易进出。若未来改用固体酸催化剂,只需在酯化和乙酰化釜出料位置设置一固液分离装置即可满足工艺要求。

在平面布置时除考虑生产用房的布置外,.还兼顾了辅助用房和生活用房的布置设计,如控制室、配电室、更衣室、分析室均布置在厂房内,使操作控制、原料及产品分析和生活方便。

3.2管道设计说明

管道布置在满足生产需要的前提下,考虑了易于安装和检修,在可能的前提下,尽量缩短管线,在布簧时充分考虑了集中布置的原则,尽可能沿墙壁、楼板底或柱子边等,并适当兼顾美观。不常检修的、常温的、管径大的、无腐蚀性介质的管路靠墙面布置,而小管径、不保温、冷介质、有腐蚀性介质的管路靠外布置。具体布置时,对泵的管道布置主要是保证良好的吸入条件和方便检修,泵的吸入管道尽可能短,以尽量减小吸入阻力,在泵的上方不布置管道主要是考泵的检修方便。换热器在布置时,尽量缩短管道长度,使操作、维修方便;阀门、自动调节阀、仪表等常靠近通道布置,便于操作人员检修和观察。容器管道在布置时根据每个容器所起作用不同,结合平面布置把操作相同的管道一起布置在各相应容器的相应位置,避免误操作。

3.3安全生产与环境保护

3.3.1 安全生产

原料正丁醇有一定毒性,且易挥发并易燃,应密闭低温储存,操作过程中避免进入口中。硫酸有很强腐蚀性,应避免与人体接触,并配备必要的劳保用品,储存时应采取可靠的措施防止泄漏。醋酸酐具有很强的挥发性和腐蚀性,对人体有较强毒性,在贮存和使用过程中为避免发生泄漏、爆炸事故,应注意密闭,并配备必需的劳动防护用品。在整个工艺设计中,涉及到易燃、易爆物质的各个设备,均安装阻火器,防止明火进入设备内部,产生爆炸。3.3.2环境保护

该产品在生产过程中三废情况如下,经简单处理可达排放标准。

废水I:产品排放量:160kg;年排放量:80t,其中含正丁醇2%。对该部分废水须经汽提回收其中的大部分正丁醇后与废水II混合经生化处理排放。

废水II:产品排放量:6t:年排放量:300lot。其中含醋酸钠5‰,硫酸钠1‰,柠檬酸钠1‰,柠檬酸三丁酯0.5‰,乙酰柠檬酸三丁酯1‰,经回收其中的有机物后与废水I混合经生化处理后排放。

废渣:产品排放量约100吨;年排放量50T,其中含柠檬酸三丁酯lo%。乙酰柠檬酸三丁酯20%,其余为活性炭,用焚烧炉焚烧处理。

3.4生产技术的先进性和通用性

增塑剂TBC生产的基本化学原理是酯化反应。通常,酯化反应需要在催化

剂存在下才能顺利完成。因此,催化剂的选择是本工艺的技术核心。选择催

化剂的原则,一是高效,二是环保。因此,综合考虑,增塑剂TBC的生产,

采用本工艺,没有固体和气体废物排放,生产过程有少量轻度废水,易处理,可以达到符合环境保护的政策和法律的要求。

增塑剂TBC生产设备可以用来生产其他增塑剂,比如邻苯二甲酸二异辛酯(DOP)、邻苯二甲酸二仲辛酯(DCP)、邻苯二甲酸二丁酯(DBP)、癸二酸二

异辛酯(DOS)、尼龙酸二辛酯、二甘醇二苯甲酸酯(DEDB)、二丙二醇二苯甲

酸酯(DPGDB)、柠檬酸三异辛酯(TOC)等。因此,设备生产弹性强,利用率高。

第三部分设计计算书

第一物料平衡

结合化工企业生产特点,选择一个班产(8小时)为计算基准。

1.1由TBC质量计算脱醇过程及酯化过程所生成TBC质量

1.1.1 各操作单元每班所得TBC的质量

1产品TBC的量

600X103/280X3=714.29kg

产品中纯TBC的量

714.29X97%=629.86kg

脱色及过滤过程

629.86/0.996=695.64kg

干燥过程

695.64/0.994=699.84kg

水洗及分离过程

699.84/0.994=704.06kg

脱醇过程TBC的量

704.06/0.985=714.78

酯化过程柠檬酸的质量

714.78÷0.985÷360.44X192.14=386.83kg

酯化过程正丁醇的实际用量为:

386.83*3*74.12/192.14=447.67kg

但是总共加入量为386.83*6*74.12/192.14=895.34kg

1.2各操作单元物料平衡

1.2.1酯化过程

酯化过程如图所示。

柠檬酸柠檬酸

正丁醇酯化 TBC

水水

离子交换树脂杂质

离子交换树脂

酯化过程简图

酯化反应如下:

由柠檬酸三丁酯的质量经物料衡算得,理论上消耗柠檬酸386.83kg,消耗

正丁醇447.67kg,生成水108.72kg。实际需加入90%柠檬酸431.44Kg,加

入98%正丁醇913.6kg,加入强酸性离子交换树脂19.34kg。酯化反应后剩余

柠檬酸1.466kg,正丁醇447.658 kg,水170.136kg,离子交换树脂18.34kg (每生产一吨产品消耗一公斤催化剂),杂质1.126kg。

酯化釜物料平衡见表。

酯化釜物料平衡表

酯化反应前酯化反应后

物料名称物料质量(kg) 物料名称物料质量(kg) 90%柠檬酸431.44 柠檬酸 1.466 98%正丁醇913.60 正丁醇447.658 离子交换树脂19.34 离子交换树脂18.34

水170.13

柠檬酸三丁酯725.66

杂质 1.126 合计1364.38 合计1364.38 水在正丁醇中的溶解度为20.1%(质量%,水),正丁醇在水中溶解度为7.7%(质量%),最终未反应的正丁醇与水分为两部分。通过物料衡算得,

从酯化回流罐中分离出正丁醇4.53kg,水58.83kg,出酯化釜物料中正丁醇324.76kg,水65.27kg。

1.2.2脱醇过程

脱醇过程如图所示。

假设脱醇时,硫酸、柠檬酸不会从塔顶蒸出,设脱醇塔釜杂质(相对于塔釜物料)质量分数为0.5%,水和正丁醇均可从塔顶全部蒸出,塔顶蒸出的水和正 醇分为两部分,一部分为水与正丁醇组成的含正丁醇7.7%(质量%)的恒沸混合物,另一部分为含水2%(质量%)的正丁醇。经物料衡算得,塔顶回收质量分数为98%的正丁醇443.066kg,7.7%正丁醇恒沸物174.72kg。

脱醇塔物料平衡表

进塔物料|出塔物料

|塔釜物料塔顶物料

物料名称物料质量

(kg) 物料名称物料质量

(kg)

物料名称物料质

量(kg)

柠檬酸 1.466 柠檬酸 1.466 98%正丁醇443.066

正丁醇447.658 TBC 714.78 7.7%恒沸物

正丁醇

174.72 水170.13 杂质 1.126 TBC 10.88 TBC 725.66

杂质 1.126

合计1346.04 合计717.372 合计628.666

1.2.3水洗过程

计算依据:水的加入量和物料量的质量比为1.2:1的水洗三次,柠檬酸三丁酯收率99.4%。

每次洗涤用水量286.95kg,每班洗涤水用量860.85kg,进入洗涤水中柠檬酸含量为1.126kg。水洗后进入油相中水量为3%(质量%,以TBC计),则进入油相水量为21.4434kg。

水洗釜物料平衡见表。

水洗釜物料平衡表

进水洗釜物料出水洗釜物料

水相油相

名称物料质量名称物料质量物料物料质量TBC 714.78 水839.41 TBC 710.49

水860.85 TBC 4.29 水21.4434 杂质 1.126 柠檬酸1.466 杂质 1.126

柠檬酸 1.466

合计1578.222 合计845.166 合计733.06

1.2.4干燥过程

计算依据:柠檬酸三丁酯收率99.4%。

干燥过程随水带出TBC4.26kg,设干燥产品中含水量0.2%(质量%,以TBC 计),进入产品中水量为1.42kg,蒸发掉水分20.02kg。

干燥塔物料平衡表

进干燥塔物料出干燥塔物料

蒸发物料塔顶产品

名称物料质量名称物料质量名称物料质量TBC 710.49 TBC 4.26 TBC 706.23 水21.44 水20.02 水 1.42

杂质 1.126 杂质 1.126 合计733.06 合计24.28 合计708.78 1.2.5脱色过程

计算依据:乙酰柠檬酸三丁酯收率99.6%。

脱色釜内加入活性炭的质量为进料量的5%,则加入脱色釜内活性炭35.44kg,

可循环使用。脱色后进入活性炭中的柠檬酸三丁酯2.82kg。过滤后得产品柠檬酸三丁酯703.41kg。废渣滤饼39.38kg,其中:活性炭35.44kg,柠檬酸三丁酯2.82kg,其他杂质:1.126kg。

1.3总物料平衡

物料平衡总表

进料出料

物料名称物料质量(kg) 物料名称物料质量(kg) 90%柠檬酸431.44 TBC 725.66

98%正丁醇913.60 98%正丁醇443.066 离子交换树脂19.34 7.7%正丁醇恒沸物174.72 水860.85 水860.85 活性炭35.44 活性炭35.44

柠檬酸 1.466

离子交换树脂18.34

杂质 1.126 合计2260.67 合计2259.25

第二热量衡算

2.1所用常数

① K不锈钢=1464.4kJ/(h·m2·℃) 不锈钢的传热系数

K=895.376kJ(h·m2·℃) 搪玻璃传热系数V=3.556kJ/(h·m2·℃) 搪玻璃导热系数

b=1.5mm 搪玻璃壁厚

热损失取5%

设计传热面积/计算传热面积=1.15

10.2反应热数据:

△H=77.822kJ/MOL

△H酰化反应=69.329kJ/m01

计算所用物质的恒压热容C。及汽化潜热△H值热

不同物料在不同温度下的Cp值

温度柠檬酸正丁醇TBC 水

20 173.720 75.312 25 179.912

31 180.330

52.5 191.593 674.416

56.3 376.56 192.280 694.544

61.3 376.56 193.296

75 196.648

备注:水在其他温度下的Cp值也近似取75.312.

不同物质的气化潜热值

温度正丁醇水

30 51208

38

42 50208

85

92.6 45433 41158

150 38169

3.3.2 酯化釜

1.每釜物料

柠檬酸:正丁醇

其它(以水计):

2.升温假设

物料由室温在1小时内升至92.6°C,物料所含水在1小时(92.6C)

第三设备选择

3.1主要设备

3.1.1正丁醇原料贮槽

每班需加入98%(质量分数)正丁醇913.60kg,水和正丁醇的密度分别为998.2kg/m3和810.9kg/m3,则物料平均密度可由下式求得:

正丁醇原料贮槽以贮存5天的量为准,装料系数取0.85,则正丁醇原料贮槽容积为:

913.60÷813.95×5×3÷0.85=19.80。

由文献查得,选择公称容积10的立式平底平盖正丁醇贮罐两个。

3.1.2正丁醇计量罐

每班消耗正丁醇913.60kg,以装一班的量为准,装料系数取0.8,所需正丁醇计量罐容积为:

913.60÷813.95÷0.8=1.40。

混凝土课设

钢筋混凝土结构-2 课程设计 ――单层工业厂房设计 姓名: 班级: 学号: 指导教师:韩建强 日期:

混凝土结构-2课程设计任务书 工程名称:唐山xx 机械厂装配车间 1、设计资料: (1)装配车间跨度24m ,总长l02m ,柱距6m ,详细尺寸见图1、图2所示。 (2)车间内设有两台5~20t 中级工作制吊车,其轨顶设计标高10.0m 。 (3)建筑地点为唐山市郊区。 (4)车间所在场地,地面下0.8m 内为填土,填土下层3.5m 内为粉质粘土,地基承载力设计值f =200kN/m 2,地下水位为-4.05m ,无腐蚀性;基本风压w 0=0.35kN/m 2;基本雪压s 0=0.30kN/m 2。 (5)厂房中标准构件选用情况 ①屋面板采用92G410(一)标准图集中的预应力混凝土大型屋面板,板重标准值1.5kN/m 2。 ②天沟板采用92G410(三)标准图集中JGB77-1天沟板, 板重标准值2.0kN /m 。 ③天窗架自重标准值2340kN /榀,天窗端壁自重标准值2360kN /每榀(包括自重、侧板、窗档、窗扇、支撑、保温材料、天窗、电动启动机、消防栓等。) ④屋架自重标准值l00kN /榀。 ⑤吊车梁梁高1200mm ,自重标准值为45kN /根,轨道及零件重lkN /m ,轨道及垫层构造高度200mm 。吊车参数:kN P k 200max,=,kN P k 50min,=, mm B 5000=,mm K 4000= 。 ⑥厂房上、下窗尺寸分别为mm 18004000?和mm 51004000?,自重为 2/5.0m kN ;墙体(含做法)自重为2/24.5m kN 。 (6)排架往及基础材料选用情况 ①柱: 混凝土采用C30;钢筋采用HRB335级钢筋;箍筋为HPB235。 ②基础:混凝土采用C20;钢筋采用HRB335级钢筋。 参考资料:混凝土结构(下册) 彭少民主编 武汉理工大学出版社 2、设计任务要求: ①、结构计算书; ②、排架柱和基础配筋图1张(2号图)

数据库课程设计大作业

《数据库原理》课程设计报告 专业:测控技术与仪器 班级:测控071班 学号:200710402112 200710402115 姓名:杜文龙王京京 题目名称:物资管理系统 完成日期:2009年12月25日 昆明理工大学信息工程与自动化学院 2009年12月

物资管理系统 一、课程设计目的: 1.加深对讲授内容的理解 《数据库原理及应用》中有关数据库技术的基本理论、基本概念、设计与实现的方法和阶段性知识,光靠课堂讲授既枯燥无味又难以记住,但它们都很重要,要想熟练掌握,必须经过大量实践环节加深对它们的理解。 2.通过课程设计,掌握数据库系统设计与开发的方法及步骤 数据库是一门应用性很强的学科,开发一个数据库系统需要集理论、系统和应用三方面为一体,以理论为基础,以系统(DBMS)作支柱,以应用为目的,将三者紧密结合起来。同时结合实际需要开发一个真实的数据库系统,对于较大型的系统可多人一起完成,但无论如何都应完成数据库的需求分析、数据的分析与建模、数据库的建立、数据库的开发与运行等全部过程。在此过程中将所学的知识贯穿起来,达到能够纵观全局,分析、设计具有一定规模的题目要求,基本掌握数据库系统设计与开发的基本思路和方法并且做到对知识的全面掌握和运用。 3.培养学生自学以及主动解决问题的能力 通过本次设计,使同学能够主动查阅与数据库相关资料,掌握一些课堂上老师未曾教授的知识,从而达到培养学生自学以及主动解决问题的能力的目的。 二、课程设计基本要求: 1.课程设计应由学生本人独立完成,严禁抄袭。 2.掌握所学的基础理论知识,数据库的基本概念、基本原理、关系数据库的设 计理论、设计方法等。熟悉数据建模工具Visio与数据库管理系统SQLServer 软件的使用。 3.按时上机调试,认真完成课程设计。 4.认真编写课程设计报告。 三、需求分析 信息管理系统是集计算机技术、网络通讯技术为一体的信息系统工程,它能够使企业运行的数据更加准确、及时、全面、详实,同时对各种信息进一步地加工,使企业领导层对生产、经营的决策依据更充分,更具有合理性和库、科学性,并创建出更多的发展机会;另外也进一步加强企业的科学化、合理化、制度化、规范化管理,为企业的管理水平跨上新台阶,为企业持久、健康、稳定的发展打下基础。 这个物资管理系统是以客户机/服务器模式的信息管理模式的信息管理系统。它的开发过程不仅仅是一个编写应用程序的过程,而是以软件工程的思想为指导,从可行性研究开始,经过系统分析、系统设计、系统实施

智能计算导论课程设计

西安电子科技大学 智能计算导论课程实验报告SAR图像变化检测

SAR图像变化检测 1 引言 遥感变化检测是指通过对不同时期同一区域的遥感图像进行比较分析,根 据图像之间的差异得到我们所需要的地物或目标的变化信息。现代遥感技术的飞速发展为变化检测提供了一种便捷的途径,遥感数据成为变化检测的主要数据源。 与可见光和红外遥感相比,微波遥感具有无可比拟的优点:微波能穿透云雾、雨雪,具有全天候、全天时的工作能力。二,微波对地物有一定穿透能力。三,采用侧视方式成像,覆盖面积大。正是这些优点,使得SAR 图像日益成为变化 检测的重要数据源。 SAR 变化检测技术的需求日益广泛。目前,全球坏境变化加剧,城市急速发展,洪水、地震等自然灾害时有发生,这些都需要及时掌握相关动态信息,为相关决策部门提供支持,而SAR 的种种优点为快速响应提供了技术支持和应急保障。 2 定义 变化检测是指通过分析同一地区不同时间的图像,检测出该地区的地物随时间发生变化的信息 SAR图像的变化检测是指利用多时相获取的同一地表区域的SAR图像来确定和分析地表变化,能提供地物的空间展布及其变化的定性与定量信息 3 常用方法

本报告所用算法流程图 4 实验结果

5 程序 %initial clc clear all close all

Ia=imread('2002.5.bmp');%read image Ib=imread('2005.4.bmp'); Iag=Ia(:,:,1);%rgb2gray Ibg=Ib(:,:,1); %midfilt Iam=medfilt2(Iag); Ibm=medfilt2(Ibg); %find difference ia_double = double(Iam)+1; %uint8todouble ia1 = ia_double/255; %unit ib_double = double(Ibm)+1; ib1 = ib_double/255; di_image=di(ia1,ib1); %构造模糊差异 di_image1=uint8(di_image.*256); di_image1=double(di_image1); %FCM bilateral_di_image=bilateral(di_image1,36,6); %双边滤波 bilateral_di_image1=uint8(bilateral_di_image); bilateral_di_image=double(bilateral_di_image1); fcm_image=fcm(bilateral_di_image); %聚类 [T]=mis(Re,fcm_image,N,L); k=T; disp(sprintf('12óD%d??????£??ó2??????a%d',N*L,k)); p=k/(N*L)*100 disp(sprintf('?ó2??ê?a%2.4f',p)) %display figure(1); subplot(2,3,1),imshow(Ia); title('原图a'); subplot(2,3,2),imshow(Iam); title('图a中值滤波图'); subplot(2,3,3),imshow(Ib); title('原图b'); subplot(2,3,4),imshow(Ibm); title('图b中值滤波图'); subplot(2,3,5),imshow(di_image); title('模糊差异图'); subplot(2,3,6),imshow(bilateral_di_image1); title('双边滤波图'); figure(2); imshow(fcm_image); title('聚类图'); function [img1] = bilateral(img,winsize,sigma) winsize = round( (winsize-1)/2 )*2 + 1;

(完整版)大工16秋《道路勘测设计课程设计》大作业答案

网络教育学院《道路勘测设计课程设计》 题目:某公路施工图设计 学习中心: 专业: 年级: 学号: 学生: 指导教师:

学 号学 生: 指导教师: 乔 娜 1 设计交通量的计算 设计年限内交通量的平均年增长率为7%,路面竣工后第一年日交通量如下: 桑塔纳2000:2300辆; 江淮a16600:200辆; 黄海dd680:420辆; 北京bj30:200辆; Ep140:580辆; 东风sp9250:310辆。 设计交通量:d N =0N ×() 1 1n r -+ 式中:d N —远景设计年平均日交通量(辆/日); 0N —起始年平均交通量(辆/日); r —年平均增长率; n —远景设计年限。 代入数字计算: 解: 0N =2300+200+420+200+580+310=4010(辆/日) 假设远景设计年限为20年,则将上述的种种数字带入公式后计算: 设计交通量:d N =0N ×() 1 1n r -+ =4010×(1+0.07)19 =14502(辆/日)

2 平面设计 路线设计包括平面设计、纵断面设计和横断面设计三大部分。道路是一个三维空间体系,它的中线是一条空间曲线。中线在水平面上的投影称为路线的平面。沿着中线竖直的剖切,再展开就成为纵断面。中线各点的法向切面是横断面。道路的平面、纵断面和各个横断面是道路的几何组成。 道路的平面线形,受当地地形、地物等障碍的影响而发生转折时,在转折处需要设置曲线,为保证行车的舒顺与安全,在直线、圆曲线间或不同半径的两圆曲线之间要插入缓和曲线。因此,直线、圆曲线、缓和曲线是平面线形的主要组成因素。 直线是平面线形中的基本线形。在设计中过长和过短都不好,因此要加以限制。直线使用与地形平坦、视线目标无障碍处。直线有测设简单、前进方向明确、路线短截等特点,直线路段能提供较好的超车条件,但长直线容易使司机由于缺乏警觉产生疲劳而发生事故。 圆曲线也是平面线形中常用的线性。《公路路线设计规范》规定,各级公路不论大小均应设置圆曲线。平曲线的技术标准主要有:圆曲线半径,平曲线最小长度以及回头曲线技术指标等。 平曲线的半径确定是根据汽车行驶的横向稳定性而定: )(1272 i V R +=μ 式中:V-行车速度km/h ; μ-横向力系数; i -横向超高,我国公路对超高的规定。 缓和曲线通过曲率的逐渐变化,适应汽车转向操作的行驶轨迹及路线的顺畅,以构成美观及视觉协调的最佳线形;离心加速度的逐渐变化,不致产生侧向冲击;缓和超高最为超高变化的过渡段,以减小行车震荡。 平曲线要素: 切线增长值:q=2s L -2 3 240R L s 内移值: p=R L s 242-3 4 2384R L s

人工智能课程设计doc资料

人工智能课程设计

人工智能<五子棋> 技术报告 简介 本课程设计是基于alpha-beta剪枝算法的五子棋的博弈游戏,具有悔棋,可选择禁手,支持人机对战,人人对战等功能。整个设计基于Java语言开发,界面美观大方。 alpha-beta剪枝技术的基本思想或算法是,边生成博弈树边计算评估各节点的倒推值,并且根据评估出的倒推值范围,及时停止扩展那些已无必要再扩展的子节点,即相当于剪去了博弈树上的一些分枝,从而节约了机器开销,提高了搜索效率。具体的剪枝方法如下: (1) 对于一个与节点MIN,若能估计出其倒推值的上确界β,并且这个β值不大于 MIN的父节点(一定是或节点)的估计倒推值的下确界α,即α≥β,则就不必再扩展该 MIN节点的其余子节点了(因为这些节点的估值对MIN父节点的倒推值已无任何影响了)。这一过程称为α剪枝。 (2) 对于一个或节点MAX,若能估计出其倒推值的下确界α,并且这个α值不小于 MAX的父节点(一定是与节点)的估计倒推值的上确界β,即α≥β,则就不必再扩展该MAX节点的其余子节点了(因为这些节点的估值对MAX父节点的倒推值已无任何影响了)。这一过程称为β剪枝。 1、数据结构定义 本文定义15*15的五子棋棋盘,实现算法,在算法中采用的数据结构包括:int isChessOn[][]描述当前棋盘,0表示黑子,1表示白字,2表示无子;int pre[][]记录棋点的x,y坐标。 由于本课程设计是基于Java语言开发的,在Java中只能用类表示并实现所定义的数据结构。所以下面将用类来描述相应的数据结构及算法:public class ChessPanel{ private ImageIcon map; //棋盘背景位图 private ImageIcon blackchess; //黑子位图 private ImageIcon whitechess; //白子位图 public int isChessOn [][]; //棋局 protected boolean win = false; // 是否已经分出胜负 protected int win_bw; // 胜利棋色 protected int deep = 3, weight = 7; // 搜索的深度以及广度 public int drawn_num = 110; // 和棋步数 int chess_num = 0; // 总落子数目 public int[][] pre = new int[drawn_num + 1][2]; // 记录下棋点的x,y坐标最多 (drawn_num + 1) 个 public int sbw = 0; //玩家棋色黑色0,白色1 public int bw = 0; // 当前应该下的棋色 0:黑色(默认), 1:白色 protected int x_max = 15, x_min = 0; // 边界值,用于速度优化

智能控制课程设计(报告)

HUNAN UNIVERSITY 智能控制课程设计(报告) 课程设计题目:基于模糊控制光伏并网发电系 统的研究 学生姓名: 学生学号: 专业班级: 学院名称: 指导老师: 2017年5月30 日

目录 第1章绪论 (1) 第2章光伏并网发电系统MPPT的研究进展 (2) 2.1 光伏发电系统最大功率跟踪控制 (2) 2.2 几种最大功率点跟踪方法的比较 (3) 第3章光伏并网发电系统MPPT模糊控制器 (7) 3.1 模糊化 (7) 3.2 模糊控制规则库的建立 (7) 3.3 解模糊 (7) 第4章 MPPT模糊控制器设计 (8) 4.1选择观测量和控制量 (8) 4.2 输入量和输出量的模糊化 (8) 4.3 制定模糊规则 (9) 4.4 求解模糊关系 (9) 4.5进行模糊决策 (10) 4.6 控制量的反模糊化 (10) 第5章模糊控制光伏并网发电系统仿真 (11) 附录 (15)

第1章绪论 在应对全球能源危机和保护环境的双重要求下,开发利用清洁可再生的太阳能越来越受到人们的关注。伴随着太阳能光电转换技术的不断发展,大规模的利用太阳能成为可能。光伏并网发电系统将成为太阳能利用的主要形式。目前,转换效率低是光伏并网发电系统面临的主要问题,这成为阻碍光伏并网发电系统广泛应用的一个重点问题。智能控制是这门新兴的理论和技术,它是传统控制发展的高级阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制。智能控制包括专家系统、神经网络和模糊控制,而模糊控制是目前在控制领域中所采用的三种智能控制方法中最具实际意义的一种方法。在光伏系统MPPT控制中,由于外界光照强度和温度变化的不确定性以及并网逆变器的非线性特性,则使用模糊逻辑的MPPT控制方法进行控制,有望获得理想的控制效果。 随着近年智能控制的不断发展和完善,模糊控制技术也日趋成熟,被人们广泛接受。模糊控制的优点很多,例如:模糊控制器设计简单,不需要依赖被控对象的精确数学模型;模糊规则用自然语言表述,易于被操作人员接受;模糊控制规则可以转换成数学函数,易与其他物理规律结合,便于用计算机软件实现;模糊控制抗干扰能力强,且响应快,对复杂的被控对象能有效控制,鲁棒性和适应性都易达到要求。模糊控制以其适应面广泛和易于普及等特点,成为智能控制领域最重要,最活跃和最实用的分支之一。目前,模糊控制已经在工业控制领域、经济系统、人文系统以及医学系统中解决了传统控制方法难以解决甚至无法解决的实际控制问题。本文正是基于光伏发电系统存在的处理复杂,外界不确定因素多等特点,将模糊控制理论应用于光伏发电最大功率跟踪系统中,跟踪系统最大功率工作点,提高光电转换效率,充分利用太阳能资源。 本文以光伏并网发电系统最大功率点跟踪为研究对象,将模糊控制理论应用于光伏并网系统最大功率跟踪控制中,从光伏阵列的原理和特性、光伏并网系统的结构设计、最大功率点跟踪的原理和模糊控制理论等方面进行详细的分析和探讨。本设计报告比较多种最大功率点跟踪控制技术,实现光伏并网发电系统的研究,根据其不同的优缺点,然后选用模糊控制方法来实现最大功率跟踪。通过对模糊论域、隶属度函数计算,制定处模糊规则,设计出模糊控制器。最后建立光伏并网发电系统仿真模型,并对仿真结果进行了分析。

钢筋混凝土课程设计心得体会

钢筋混凝土课程设计心得体会 《钢筋混凝土结构》课程设计是在学完钢筋混凝土结构基本原理的基础上进行的,《钢筋混凝土结构基本原理》这门课主要是讲解受弯构件(梁、板)、受压构件(柱子)、受扭构件在荷载作用下承载能力极限状态和正常使用极限状态的配筋计算,计算结果要满足《混凝土结构设计规范》的要求。而这次课程设计我是从以下几个方面进行的: 一.题目的选取: 在平时的教学和作业中,要求学生熟练掌握了各种构件的配筋与计算,并且能进行配筋验算(配筋满足适筋梁的要求,不能是超筋梁和少筋梁的配置),而课程设计是理论与实践相结合的一个重要环节,一方面要基于课本,另一方面又要高于课本,根据我们专业的特点,我没有选取简单的构件设计,也没有选取复杂的高层或复杂体系的设计,而是选取了一种简单的结构体系——钢筋混凝土多层框架结构的设计。 二.设计的思路与要求: 软件编程综合实习已经告一段落,但在实习中我们收获颇多。这是我们完成的第一个数据库系统,也是到目前为止最为完善的系统。这一过程,我们掌握到了软件开发的一系列步骤,这能应用到今后的工作生活中去。我相信能给我们带来很大的帮助! 要求学生根据设计任务书,查阅《混凝土结构规范》、《荷载规范》计算结构上所施加的荷载;然后根据任务书要求进行内力计算以及配筋计算,同时用PKPM软件进行内力分析和同时自动生成配筋图;最后对手算和软件计算进行比较和调整。要求学生上交:结构设计计算书一份:要求有封皮、目录、详细的计算内容;并在计算书里绘出相应的结构施工图。 紧张而又辛苦的几周的课程设计终于结束了。当我们快要成为下达给我们“四工位专用机床”的任务的时候,想想老师最初给我们说的课程设计,因为开始的大意吧,没能在第一时间开始运做,所以使得我们在这最后的几周里真的是逼着,压着,强迫着才弄完,当然,完成后的喜悦那是没得说的,尽管这样的设计使的我们烦恼着、无奈着,但只要经过了过程,我们就能得到自己所需的,所以还是能够尽心尽力的完成的,尽管那路途是那样的曲折! 设计的目的旨在让学生掌握荷载的计算过程、内力的计算方法和配筋计算过程,另一方面通过对PKPM软件的学习,能熟练地掌握结构的建模和分析,更重要的是掌握有软件进行设计的过程,分析完以后要把配筋图转到cad上,进行图形的摘取。 医疗机构是卫生系统的主要窗口,也是社会的重要窗口。医德、医风的好坏是社会风气好坏的反映,也是全民族整体道德素质的重要表现。因为医疗行为关系到人的健康与生命,所以,医德、医风一直受到社会各界、舆论的经常关注和很高的要求,常常形成一时

内燃机设计课程设计大作业

第一部分:四缸机运动学分析 绘制四缸机活塞位移、速度、加速度随曲轴转角变化曲线(X -α,V -α,a -α)。 曲轴半径r=52.5mm 连杆长度l=170mm, 连杆比31.0==l r λ 1、位移:)]2cos 1(4 1 )cos 1[(αλα-+-=r x 2、速度:)2sin 2 (sin αλ αω+ =r v 3、加速度:)2cos (cos 2αλαω+=r a

第二部分:四缸机曲柄连杆机构受力分析 1、初步绘制四缸机气缸压力曲线(g F -α),绘制活塞侧击力变化曲线(N F -α),绘制连杆力变化曲线(L F -α),绘制曲柄销上的切向力(t F ),径向力(k F )的变化曲线(-α),(-α)。 平均大气压MPa p 09839.098.39kPa 0== 缸径D=95mm 则 活塞上总压力 6 010 )(?-=A P P F g g 24 D A π = 单缸活塞组质量:kg m h 277.1= 连杆组质量: 1.5kg =l m 则 往复运动质量:l h j m m m 3.0+= 往复惯性力:)2cos (cos 2αλαω+-=-=r m a m F j j j )sin arcsin(αλβ=又 合力:g j F F F += 侧击力:βtan F F N = 连杆力:β cos F F L = 切向力:)sin(βα+=L t F F 径向力:)cos(βα+=L k F F t F k F

2.四缸机连杆大头轴承负荷极坐标图,曲柄销极坐标图 连杆大头集中质量产生的离心力:2 227.0ωωr m r m F l rL == 连杆轴颈负荷: qy qx p F F arctan =α 连杆轴承负荷: ?+++=180βαααq P )sin(p P px F F α= 2m rL L q F F F +=k rL qx F F F -=t qy F F =q p F F -=)(p p py con F F α=

智能控制系统课程设计

目录 有害气体的检测、报警、抽排.................. . (2) 1 意义与要求 (2) 1.1 意义 (2) 1.2 设计要求 (2) 2 设计总体方案 (2) 2.1 设计思路 (2) 2.2 总体设计方框图 2.3 完整原理图 (4) 2.4 PCB制图 (5) 3设计原理分析 (6) 3.1 气敏传感器工作原理 (7) 3.2 声光报警控制电路 (7) 3.3 排气电路工作原理 (8) 3.4 整体工作原理说明 (9) 4 所用芯片及其他器件说明 (10) 4.1 IC555定时器构成多谐振荡电路图 (11) 5 附表一:有害气体的检测、报警、抽排电路所用元件 (12) 6.设计体会和小结 (13)

有害气体的检测、报警、抽排 1 意义与要求 1.1.1 意义 日常生活中经常发生煤气或者其他有毒气体泄漏的事故,给人们的生命财产安全带来了极大的危害。因此,及时检测出人们生活环境中存在的有害气体并将其排除是保障人们正常生活的关键。本人运用所学的电子技术知识,联系实际,设计出一套有毒气体的检测电路,可以在有毒气体超标时及时抽排出有害气体,使人们的生命健康有一个保障。 1.2 设计要求 当检测到有毒气体意外排时,发出警笛报警声和灯光间歇闪烁的光报警提示。当有毒气体浓度超标时能自行启动抽排系统,排出有毒气体,更换空气以保障人们的生命财产安全。抽排完毕后,系统自动回到实时检测状态。 2 设计总体方案 2.1 设计思路 利用QM—N5气敏传感器检测有毒气体,根据其工作原理构成一种气敏控制自动排气电路。电路由气体检测电路、电子开关电路、报警电路、和气体排放电路构成。当有害气体达到一定浓度时,QM—N5检测到有毒气体,元件两极电阻变的很小,继电器开关闭合,使得555芯片组成的多谐电路产生方波信号,驱动发光二极管间歇发光;同时LC179工作,驱使蜂鸣器间断发出声音;此时排气系统会开始抽排有毒气体。当气体被排出,浓度低于气敏传感器所能感应的范围时,电路回复到自动检测状态。

混凝土课程设计

1 设计资料 (1)楼盖面层做法:20mm 厚水泥砂浆面层;钢筋混凝土现浇板;板底采用20mm 厚混合砂浆天棚抹灰。 (2)材料:混凝土强度等级C30;主梁及次梁受力筋采用HRB335级钢筋,板内及梁内的其它钢筋采用HPB235级钢筋。环境类别为一类。 楼面活荷载:活荷载标准值7.0kN/m2; 楼面面层:水泥砂浆容重3m /kN 20=γ ; 钢筋混凝土容重:3 m /kN 25=γ; 混合砂浆容重:3m /kN 17=γ; 荷载分项系数:恒载分项系数为1.2,活载分项系数为1.3。 2 楼盖的结构平面布置 主梁沿横向布置,次梁沿纵向布置。主梁的跨度为7.2m ,次梁的跨度为6.96m ,主梁每跨内布置两根次梁,板的跨度为2.4m ,l02/l01=7.2/2.4=3,因此按单向板设计。 按跨高比条件,要求板厚h ≧2400/40=50mm ,对工业建筑的楼盖板,要求h ≧80mm ,取板厚h=80mm 。 次梁截面高度应满足h=l0/18~l0/12=6960/18~6960/12=387~580mm 。考虑到楼面可变荷载比较大,取h=500mm 。截面宽度取为b=200mm 。 主梁截面高度应满足h=l0/15~l0/10=7200/15~7200/10=400~600mm 。取h=700mm 。截面宽度取为b=300mm 。 楼盖结构平面布置图见图1 图1 楼盖结构平面布置图

3 板的设计 (1)荷载 板的永久荷载标准值 20mm厚水泥砂浆面层0.02m*20kN/m3=0.40kN/m2 80mm厚钢筋混凝土板0.08m*25kN/m3=2.00kN/m2 20mm厚混合砂浆天棚抹灰0.02m*17kN/m3=0.34kN/m2 小计 2.74kN/m2 板的可变荷载标准值7.00kN/m2 永久荷载分项系数取1.2;因楼面可变荷载标准值大于4.0km/m2,所以可变荷载分项系数应取1.3。于是板的 永久荷载设计值g=2.74*1.2=3.29kN/m2 可变荷载设计值q=7.00*1.3=9.10kN/m2 荷载总设计值g+q=12.388kN/m2近似取为g+q=13.0kN/m2 (2)计算简图 次梁截面为200mm*500mm,现浇板在墙上的支承长度不小于100mm,取板在墙上的支承长度为120mm。按塑性内力重分布设计,板的计算跨度: 边跨l0=ln+h/2=2400-100-120+80/2=2220mm<1.025*ln=2275.5mm,取l0=2220mm 中间跨l0=ln=2400-200=2200mm 因跨度相差小于10%,可按等跨连续板计算。取1m宽板带作为计算单元,计算简图见图2 (3)弯矩设计值 由表可查得,板的弯矩系数αm分别为:边跨中,1/11;离端第二支座,-1/11;中跨中,1/16;中间支座,1/14。 M1=-MB=(g+q)l012/11=13.0*2.222/11=5.82kN?m MC=-(g+q)l012/14=-13.0*2.22/14=-4.49kN?m M2=(g+q)l012/16=13.0*1.802/16=3.93kN?m 这是对端区格单向板而言,对于中间区格单向板,其MC和M2应乘以0.8,分别为 MC=0.8*(-4.49)=-3.59kN?m;M2=0.8*3.39=3.15kN?m (4)正截面受弯承载力计算

智能仪器设计课程设计

智能仪器设计课程设计 8. 试设计智能仪表 实现智能数字显示仪表。要求8位数码管显示(4位显示测量值,4位显示设定值),4输入按钮(功能选择、数码管选择、数字增加、数字减少),可设定上下限报警(蜂鸣器报警)。适配Cu100热电阻,测温范围为0℃~150℃。采用位式(两位、三位,具有滞环)控制、并用晶闸管过零驱动1000W电加热器(电源电压为AC220V)。 《智能仪器设计基础课程设计》----40题目 教学说明: 如下设计题目应该在课程开始时布置,并在教学中安排时间,以产品设计案例教学方式讲授如何理解题目以及如何实现题目,并补充完成题目所需要的相关知识。 如下的智能仪表课程设计题目,都是小型智能仪表产品开发方面的题目。涉及智能仪表硬件与软件设计。智能仪器课程设计是智能仪器课程教学的重要环节,根据设计智能仪表产品的课程改革目的,特选择一些小型智能仪表产品作为课设题目,满足教学需求。课程题目小,学生容易学,上手快,可以在短时间走完智能仪表设计的全过程,学会产品设计步骤。 1.设计基本要求 (1)正确理解设计题目,经过查阅资料,给出正确设计方案,画出详细仪表原理框图(各个功能部分用方框表示,各块之间用实际信号线连接)。 在互连网上收集题目中所用到的器件资料,例如传感器(热偶分度表等)、信号调理电路、AD转换器、单片机、继电器、电源、显示器件等。 在互连网上收集相关单片机的显示、AD转换、显示、控制算法等程序。 在充分研究这些资料基础之上,给出设计方案(选择信号调理电路、单片机、显示、按键输入、继电器驱动、电源等,简要说明选择的理由) (2)用Protel99SE软件设计仪表详细原理图。 要求正确标记元件序号、元件数值、封装名。 (3)设计PCB图 在画PCB前应该购买元件,因为有了元件才知道封装尺寸,但也可以不购买元件,只到元件商店测量实际元件尺寸后,画封装图。 (4)熟悉单片机内部资源,学会ADC、SPI接口、定时器、中断、串口、I/O引脚等模块的编程。 (5)采用C语言开发所设计仪表的程序。 按照题目要求,确定仪表需要完成的任务(功能),然后分别编制各任务的程序。程序应该有说明,并有详细注释。 说明:若是不安装实验板或是最小系统板,就只能用Atmel公司的A VR Studio软件或是Keil软件(随意下载)仿真,则学习效果将大打折扣。 2.设计(考试)说明书 说明书内容: (1)封面内容: 《智能仪器设计基础》考试题 题目号:

智能控制课程设计报告书

《智能控制》课程设计报告题目:采用BP网络进行模式识别院系: 专业: 姓名: 学号: 指导老师: 日期:年月日

目录 1、课程设计的目的和要求 (3) 2、问题描述 (3) 3、源程序 (3) 4、运行结果 (6) 5、总结 (7)

课程设计的目的和要求 目的:1、通过本次课程设计进一步了解BP网络模式识别的基本原理,掌握BP网络的学习算法 2、熟悉matlab语言在智能控制中的运用,并提高学生有关智能控制系统的程序设计能力 要求:充分理解设计容,并独立完成实验和课程设计报告 问题描述 采用BP网络进行模式识别。训练样本为3对两输入单输出样本,见表7-3。是采用BP网络对训练样本进行训练,并针对一组实际样本进行测试。用于测试的3组样本输入分别为1,0.1;0.5,0.5和 0.1,0.1。 表7-3 训练样本 说明:该BP网络可看做2-6-1结构,设权值wij,wjl的初始值取【-1,+1】之间的随机值,学习参数η=0.5,α=0.05.取网络训练的最终指标E=10^(-20),在仿真程序中用w1,w2代表wij,wjl,用Iout代表 x'j。 源程序 %网络训练程序

clear all; close all; xite=0.50; alfa=0.05; w2=rands(6,1); w2_1=w2;w2_2=w2; w1=rands(2,6); w1_1=w1;w1_2=w1; dw1=0*w1; I=[0,0,0,0,0,0]'; Iout=[0,0,0,0,0,0]'; FI=[0,0,0,0,0,0]'; k=0; E=1.0; NS=3; while E>=1e-020 k=k+1; times(k)=k; for s=1:1:NS xs=[1,0; 0,0; 0,1]; ys=[1,0,-1]'; x=xs(s,:); for j=1:1:6 I(j)=x*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end y1=w2'*Iout;

混凝土课程设计(1)

现浇钢筋混凝土楼盖课程设计指导书 学生姓名: 专业学号: 指导教师: 电话号码: 九江学院土木与城市建设学院 结构工程教研室 2012年04月

钢筋混凝土单向板肋梁楼盖课程设计任务书 一、设计题目 某多层工业建筑楼盖平面图如图1所示,L1、L2尺寸见表1,环境类别为一类,楼梯采用室外悬挑楼梯。楼面均布可变荷载标准值如表2所示,楼盖拟采用现浇钢筋混凝土单向板肋梁楼盖。 图1 楼盖平面图 表1 楼盖柱网l 1、l 2 取值(mm) 表2 楼面均布可变荷载标准值(kN/m 2)

二、设计资料 1、生产车间的四周外墙均为承重砖墙,纵横墙墙厚均为370mm ,采用MU10烧结普通砖、M5混合砂浆砌筑。车间内设钢筋混凝土柱,其截面尺寸为350mm×350mm 。 2、材料:混凝土采用C30或C35;主梁及次梁受力筋用HRB335或HRB400级钢筋,板内及梁内的其它钢筋采用HPB300级。 3、楼面面层:水磨石地面20.65/kN m ;楼盖自重:钢筋混凝土自重标准值 325/kN m γ= 三、设计内容 1、按指定的设计号进行设计,提交纸质稿计算书。 2、结构平面布置图:柱网、主梁、次梁及板的布置 3、板的强度计算(按塑性内力重分布计算) 4、次梁强度计算(按塑性内力重分布计算) 5、主梁强度计算(按弹性理论计算) 6、用2号图纸2~3张绘制楼盖结构施工图: ①结构平面布置图(1:200) ②板的配筋图(1:50) ③次梁的配筋图(1:50;1:25) ④主梁的配筋图(1:40;1:20)及材料抵抗弯矩图;

四、具体要求 1、计算书要求采用A4纸书写或打印,严禁部分书写部分打印。 2、计算字迹要求工整,条理清楚,页码齐全,表格规范并编写表格序号,主要计算步骤、计算公式、计算简图均应列入(否则判为不及格),并尽量利用表格编制计算过程。 3、图面应整洁,布置应匀称,字体和线型应符合制图标准(否则判为不及格)。 4、提交全部成果时请在计算书第一页页眉上注明专业、姓名、学号、手机号等,图纸按照标准格式折叠。 五、参考文献 1、《建筑结构荷载规范》(GB 50009-2006),中国建筑工业出版社 2、《混凝土结构设计规范》(GB50010-2010),中国建筑工业出版社 3、《混凝土结构》(上册、中册)(第四版),东南大学、天津大学、同济大学 合编,中国建筑工业出版社 4、《混凝土结构及砌体结构》(上册)(第二版),滕智明、朱金铨,中国建 筑工业出版社

现代控制理论课程设计(大作业)

现代控制理论课 程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析 项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (3) 2.课程设计题目描述和要求 (3) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (4) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (7) 4.1 能控性分析 (7) 4.2 能观性分析 (8) 4.3 稳定性分析 (8) 5. 总结 (10)

项目组成员具体分工 打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会使用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验

证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮带驱动式打印机的例子。其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。 图1 打印机皮带驱动系统 3.2 系统参数取值情况 表1打印装置的参数

智能控制课程设计(报告)(DOC)

HUNAN UNIVERSITY 智能控制课程设计(报告) 课程设计题目:基于模糊控制光伏并网发电系 统的研究 学生姓名: 学生学号: 专业班级: 学院名称: 指导老师: 2017年5月30 日

目录 第1章绪论 (1) 第2章光伏并网发电系统MPPT的研究进展 (2) 2.1 光伏发电系统最大功率跟踪控制 (2) 2.2 几种最大功率点跟踪方法的比较 (3) 第3章光伏并网发电系统MPPT模糊控制器 (7) 3.1 模糊化 (7) 3.2 模糊控制规则库的建立 (7) 3.3 解模糊 (7) 第4章 MPPT模糊控制器设计 (8) 4.1选择观测量和控制量 (8) 4.2 输入量和输出量的模糊化 (8) 4.3 制定模糊规则 (9) 4.4 求解模糊关系 (9) 4.5进行模糊决策 (10) 4.6 控制量的反模糊化 (10) 第5章模糊控制光伏并网发电系统仿真 (11) 附录 (15)

第1章绪论 在应对全球能源危机和保护环境的双重要求下,开发利用清洁可再生的太阳能越来越受到人们的关注。伴随着太阳能光电转换技术的不断发展,大规模的利用太阳能成为可能。光伏并网发电系统将成为太阳能利用的主要形式。目前,转换效率低是光伏并网发电系统面临的主要问题,这成为阻碍光伏并网发电系统广泛应用的一个重点问题。智能控制是这门新兴的理论和技术,它是传统控制发展的高级阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制。智能控制包括专家系统、神经网络和模糊控制,而模糊控制是目前在控制领域中所采用的三种智能控制方法中最具实际意义的一种方法。在光伏系统MPPT控制中,由于外界光照强度和温度变化的不确定性以及并网逆变器的非线性特性,则使用模糊逻辑的MPPT控制方法进行控制,有望获得理想的控制效果。 随着近年智能控制的不断发展和完善,模糊控制技术也日趋成熟,被人们广泛接受。模糊控制的优点很多,例如:模糊控制器设计简单,不需要依赖被控对象的精确数学模型;模糊规则用自然语言表述,易于被操作人员接受;模糊控制规则可以转换成数学函数,易与其他物理规律结合,便于用计算机软件实现;模糊控制抗干扰能力强,且响应快,对复杂的被控对象能有效控制,鲁棒性和适应性都易达到要求。模糊控制以其适应面广泛和易于普及等特点,成为智能控制领域最重要,最活跃和最实用的分支之一。目前,模糊控制已经在工业控制领域、经济系统、人文系统以及医学系统中解决了传统控制方法难以解决甚至无法解决的实际控制问题。本文正是基于光伏发电系统存在的处理复杂,外界不确定因素多等特点,将模糊控制理论应用于光伏发电最大功率跟踪系统中,跟踪系统最大功率工作点,提高光电转换效率,充分利用太阳能资源。 本文以光伏并网发电系统最大功率点跟踪为研究对象,将模糊控制理论应用于光伏并网系统最大功率跟踪控制中,从光伏阵列的原理和特性、光伏并网系统的结构设计、最大功率点跟踪的原理和模糊控制理论等方面进行详细的分析和探讨。本设计报告比较多种最大功率点跟踪控制技术,实现光伏并网发电系统的研究,根据其不同的优缺点,然后选用模糊控制方法来实现最大功率跟踪。通过对模糊论域、隶属度函数计算,制定处模糊规则,设计出模糊控制器。最后建立光伏并网发电系统仿真模型,并对仿真结果进行了分析。

C语言课程设计大作业

郑州大学 课程报告 课程名称:C语言程序设计 专业班级:(15)班 学生姓名:谢* 学号: *** 任课教师:赵** 学期: 2012-2013-2 课程报告任务书

成绩评定教师:一. 需求分析

1,具有数据的插入、修改、删除、显示和查询功能的电话簿管理程序。 2,数据包括:人名、工作单位、电话号码和E-MAIL地址。 3,可对记录中的姓名和电话号码进行修改。 4,可增加和删除记录。 5,可显示所有的保存记录。 6,可按人名或电话号码进行查询。 分析 建议采用结构体数组和文件系统实现。结构体成员包括人名、工作单位、电话号码和E-MAIL地址。 根据题目的要求程序应该采用结构体数组和文件系统实现。应该有文件的操作功能;在程序中应该包括输入、显示、删除、查询、添加、修改、保存、加载和退出的功能。 二、概要设计 (1).程序的模块组成及各个函数的功能: 程序的模块组成: 主函数:main(); 输出数据函数:printf(); 读取数据函数:scanf(); 显示记录函数:Display(); 删除记录函数:shanchu(); 查找记录函数:chaxun(); 自定义清屏函数:system(“cls”); 自定义输入函数:input(); 字符输入函数:getchar(); 修改数据函数:xiugai(); 保存数据函数:baocun(); 排序数据函数:paixu(); 各函数的主要功能: 输出数据函数:随时输出数据; 读取数据函数:读取输入的数据信息;

显示菜单函数:显示可供选择的主菜单; 显示记录函数:显示通讯录所有输入的信息; 删除记录函数:显示要删除的通讯录所有输入的信息; 查找记录函数:显示要查询的通讯录所有输入的信息; 自定义清屏函数:清除前面运行留下的信息; 自定义输入函数:输入通讯录的成员;; 字符输入函数:从终端输入一个字符,遇回车键返回; 修改数据函数:修改通讯录的成员信息; 保存数据函数:保存通讯录的成员信息; 排序数据函数:排序通讯录的成员信息; (2)程序中的抽象数据类型的定义: 用户的状态结构 用户 { 编号: 姓名: 电话; 年龄; 邮箱: 地址; (3)总体流程图 根据上面的分析,可以将程序系统的设计分为如下几个模块:插入、显示、删除、查询、修改、保存和退出。 } 三. 详细设计

智能家居课程设计报告

南通大学 智能家居监控系统设计 学院:电气工程 班级:电115 姓名:刘家辰 学号: 1112002083

目录 1 引言 (3) 2 系统设计 (3) 3 硬件设计 (4) 3.1单片机的选型 (4) 3.2温度监测模块 (5) 3.2.1 温度传感器简介 . (5) 3.2.2测量原理 (5) 3.2.3电路仿真 (6) 3.3烟雾监测模块 (7) 3.4 Zigbee 模块 (8) 3.5报警模块 (9) 3.6键盘输入模块 (10) 3.7液晶显示模块 (11) 3.8人体红外感应模块 . (11) 4 主机软件设计 (12) 4.1主机程序整体框架 (13) 4.2无线发送 / 接收程序 . (13) 4.3温度监测节点程序 . (15) 4.4烟雾监测节点程序 . (17) 4.5红外热释电监测节点程序 . (18) 5 设计体会 (20)

6 参考文献 (20) 7 附录 (21) 主机电路原理图 (21)

1引言 随着社会经济和科学技术的发展,社会信息化程度越来越高,物联网的推出是 时代发展的需要,“三网合一”、“ 三屏合一” 等新概念不断提出,智能家居 成为未来家居的发展方向。智能家居在两个方面具有重要作用: (1)家居智化,继而实现住户舒适最大化,家庭安全最大化。智能家居通过 其智能家庭控制帮助人们改进生活方式,重新安排每天的时间计划表,并为高质 量的生活环境提供安全保障。 (2)智能家居的另一个重要作用是降低能源消耗,操作成本最小化,帮助人们 节约日常能源消耗开支。 智能家居主要通过智能家庭控制系统实现,家庭控制网络是实现智能家庭控制 系统的关键。近几年,各种家庭网络推进组织相继成立,并各自推出了相 关建议和标准,但这些技术标准缺乏统一的通信接口,相互间不兼容 , 无法提供家 庭控制网络的完整解决方案。因此,智能家居研究者面临的最大挑战和机遇是家用 电子领域缺乏统一的通信标准和互操作协议。 2系统设计 智能家居监控系统的总体设计框图如图 1 所示。该系统采用主从方式,主机 负责接收无线信息、GSM远程报警、传感器阈值设置,从机负责温度、气体、烟雾、等环境信号采集处理及无线发送。本文研制的智能家居环境监测报警系统能够实时 监测煤气泄漏、火灾、电热毯过热等温度异常、外人闯入等危险状态, 并可实现电话号码报警,设置传感器阈值等功能。

相关文档