文档库 最新最全的文档下载
当前位置:文档库 › §2.3 常微分方程在正则奇点邻域的级数解法

§2.3 常微分方程在正则奇点邻域的级数解法

§2.3 常微分方程在正则奇点邻域的级数解法
§2.3 常微分方程在正则奇点邻域的级数解法

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

常微分方程数值解法的误差分析教材

淮北师范大学 2013届学士学位论文 常微分方程数值解法的误差分析 学院、专业数学科学学院数学与应用数学 研究方向计算数学 学生姓名李娜 学号 20091101070 指导教师姓名陈昊 指导教师职称讲师 年月日

常微分方程数值解法的误差分析 李娜 (淮北师范大学数学科学学院,淮北,235000) 摘要 自然界与工程技术中的很多现象,往往归结为常微分方程定解问题。许多偏微分方程问题也可以化为常微分方程问题来近似求解。因此,研究常微分方程的数值解法是有实际应用意义的。数值解法是一种离散化的数学方法,可以求出函数的精确解在自变量一系列离散点处的近似值。随着计算机计算能力的增强以及数值计算方法的发展,常微分方程的数值求解方法越来越多,比较成熟的有Euler 法、后退Euler法、梯形方法、Runge—Kutta方法、投影法和多步法,等等.本文将对这些解的误差进行分析,以求能够得到求解常微分数值解的精度更好的方法。 关键词:常微分方程, 数值解法, 单步法, 线性多步法, 局部截断误差

Error Analysis of Numerical Method for Solving the Ordinary Differential Equation Li Na (School of Mathematical Science, Huaibei Normal University, Huaibei, 235000) Abstract In nature and engineering have many phenomena , definite solution of the problem often boils down to ordinary differential equations. So study the numerical solution of ordinary differential equations is practical significance. The numerical method is a discrete mathematical methods, and exact solution of the function can be obtained in the approximation of a series of discrete points of the argument.With the enhanced computing power and the development of numerical methods,ordinary differential equations have more and more numerical solution,there are some mature methods. Such as Euler method, backward Euler method, trapezoidal method, Runge-Kutta method, projection method and multi-step method and so on.Therefore, numerical solution of differential equation is of great practical significance. Through this paper, error of these solutions will be analyzed in order to get a the accuracy better way to solve the numerical solution of ordinary differential. Keywords:Ordinary differential equations, numerical solution methods, s ingle ste p methods, l inear multi-step methods, local truncation error

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

各类微分方程的解法大全

各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x 两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1 y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程

令y ’=p 则y ”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C 1) 即dy/dx=φ(y,C 1),即dy/φ(y,C 1)=dx,所以∫dy/φ(y,C 1)=x+C 2 5.二阶常系数齐次线性微分方程解法 一般形式:y ”+py ’+qy=0,特征方程r 2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y ”+py ’+qy=f(x) 先求y ”+py ’+qy=0的通解y 0(x),再求y ”+py ’+qy=f(x)的一个特解y*(x) 则y(x)=y 0(x)+y*(x)即为微分方程y ”+py ’+qy=f(x)的通解 求y ”+py ’+qy=f(x)特解的方法: ① f(x)=P m (x)e λx 型 令y*=x k Q m (x)e λx [k 按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m (x)的m+1个系数 ② f(x)=e λx [P l(x)cos ωx+P n (x)sin ωx ]型 令y*=x k e λx [Q m (x)cos ωx+R m (x)sin ωx ][m=max ﹛l,n ﹜,k 按λ+i ω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m (x)和R m (x)的m+1个系数

常微分方程数值解法

第八章 常微分方程的数值解法 一.内容要点 考虑一阶常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节 点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。 用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。 (一)常微分方程处置问题解得存在唯一性定理 对于常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 如果: (1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。 (2) ),(y x f 对于y 满足利普希茨条件,即 2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程?????==0 0)() ,(y x y y x f dx dy 的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。 定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。 收敛性定理:若一步方法满足: (1)是p 解的. (2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件. (3) 初始值y 0是精确的。则),()()(p h O x y kh y =-kh =x -x 0,也就是有 0x y y lim k x x kh 0h 0 =--=→)( (一)、主要算法 1.局部截断误差 局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~ +k y 的误差y (x k+1)- 1~ +k y 称为局部截断误差。 注意:y k+1和1~ +k y 的区别。因而局部截断误差与误差e k +1=y (x k +1) -y k +1不同。 如果局部截断误差是O (h p+1),我们就说该数值方法具有p 阶精度。

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

常微分方程数值解法

常微分方程数值解法 【作用】微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步: 1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。 2. 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。 3. 运用这些规律列出方程和定解条件。基本模型 1. 发射卫星为什么用三级火箭 2. 人口模型 3. 战争模型 4. 放射性废料的处理通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以得到这样的解,而绝大多数变系数方程、非线性方程都是所谓“解不出来” 的于是对于用微分方程解决实际问题来说,数值解法就是一个十分重要的手段。 1. 改进Euler 法: 2. 龙格—库塔( Runge—Kutta )方法: 【源程序】 1. 改进Euler 法: function [x,y]=eulerpro(fun,x0,x1,y0,n);%fun 为函数,(xO, x1)为x 区间,yO 为初始值,n 为子 区间个数 if nargin<5,n=5O;end h=(x1-xO)/n; x(1)=xO;y(1)=yO; for i=1:n x(i+1)=x(i)+h; y1=y(i)+h*feval(fun,x(i),y(i)); y2=y(i)+h*feval(fun,x(i+1),y1); y(i+1)=(y1+y2)/2; end 调用command 窗口 f=i nlin e('-2*y+2*x A2+2*x') [x,y]=eulerpro(f,O,,1,1O) 2 x +2x , (0 < x < , y(0) = 1 求解函数y'=-2y+2 2. 龙格—库塔( Runge—Kutta )方法: [t,y]=solver('F',tspan ,y0) 这里solver为ode45, ode23, ode113,输入参数F是用M文件定义的微分方程y'= f (x, y)右端的函数。tspan=[t0,tfinal]是求解区间,y0是初值。 注:ode45和ode23变步长的,采用Runge-Kutta算法。 ode45表示采用四阶-五阶Runge-Kutta算法,它用4阶方法提供候选解,5阶方法控制误差,是一种自适应步长(变步长)的常微分方程数值解法,其整体截断误差为(△ 口人5解 决的是Nonstiff(非刚性)常微分方程。

二阶常微分方程的降阶解法

郑州航空工业管理学院 毕业论文(设计) 2015届数学与应用数学专业1111062班级 题目二阶常微分方程的降阶解法 姓名贾静静学号111106213 指导教师程春蕊职称讲师 2015年4月5号

二阶常微分方程的降阶解法 摘要 常微分方程是数学领域的一个非常重要的课题,并在实践中广泛于解决问题,分析模型。常微分方程在微分理论中占据首要位置,普遍应用在工程应用、科学研究以及物理学方面,不少应用范例都归结为二阶线性常微分方程的求解问题。而正常情况下,常系数微分方程依据线性常微分方程的日常理论是可以求解的.不过对于变系数二阶线性常微分方程的求解却有一定程度的困难,迄今为止还没有一个行之有效的普遍方法。 本文主要考虑了二阶常系数线性微分方程的降阶法。关于二阶常系数线性微分方程的求解问题,首先,我们给出二阶齐次常系数线性微分方程的特征方程,并求解出特征方程的两个特征根;其次,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解。关于二阶变系数齐次线性微分方程的求解问题,化为恰当方程通过降阶法求解二阶齐次变系数微分方程的通解。对于非齐次线性微分方程,只需再运用常数变易法求出它的一个特解,问题也就相应地解决了。 关键词 二阶常微分方程;降阶法;特征根;常数变易法;一阶微分形式

Order reduction method of second order ordinary differential equations Jingjing Jia Chunrui Cheng 111106213 Abstract Ordinary differential equation is a very important topic in the field of mathematics, it has been widely used in solving the problem and analyzing model in practice . Ordinary differential equations in the theory of differential occupied first place, it has been widely used in engineering application and scientific research as well as physics, many application examples are attributed to second order linear ordinary differential equation solving problem. And under normal circumstances,ordinary coefficient differential equation on the basis of the linear often daily theory of differential equations is can be solved. But for the solution for variable coefficient second order linear ordinary differential equations have a certain degree of difficulty, so far we haven't a well-established general method. This paper mainly introduces the method of reduction of order two order linear differential equation with constant coefficients.On the problem of solving the linear differential equation with two order constant coefficients,first, we give homogeneous ordinary coefficient linear differential equation of the characteristic equation and solve the two characteristic roots of characteristic equation;secondly,we should use the integral factor times differential equation and derivative operation and turn two order constant

15第十五章 常微分方程的解法

-293- 第十五章 常微分方程的解法 建立微分方程只是解决问题的第一步,通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以得到这样的解,而绝大多数变系数方程、非线性方程都是所谓“解不出来”的,即使看起来非常简单的方程如 22x y dx dy +=。于是对于用微分方程解决实际问题来说,数值解法就是一个十分重要的手段。 §1 常微分方程的离散化 下面主要讨论一阶常微分方程的初值问题,其一般形式是 ?????=≤≤=0 )() ,(y a y b x a y x f dx dy (1) 在下面的讨论中,我们总假定函数),(y x f 连续,且关于y 满足李普希兹(Lipschitz)条 件,即存在常数L ,使得 |||),(),(|y y L y x f y x f ?≤? 这样,由常微分方程理论知,初值问题(1)的解必定存在唯一。 所谓数值解法,就是求问题(1)的解)(x y 在若干点 b x x x x a N =<<<<=L 210 处的近似值),,2,1(N n y n L =的方法,),,2,1(N n y n L =称为问题(1)的数值解, n n n x x h ?=+1称为由n x 到1+n x 的步长。今后如无特别说明,我们总取步长为常量h 。 建立数值解法,首先要将微分方程离散化,一般采用以下几种方法: (i )用差商近似导数 若用向前差商h x y x y n n ) ()(1?+代替)('n x y 代入(1)中的微分方程,则得 )1,,1,0())(,() ()(1?=≈?+N n x y x f h x y x y n n n n L 化简得 ))(,()()(1n n n n x y x hf x y x y +≈+ 如果用)(n x y 的近似值n y 代入上式右端,所得结果作为)(1+n x y 的近似值,记为1+n y , 则有 )1,,1,0() ,(1?=+=+N n y x hf y y n n n n L (2) 这样,问题(1)的近似解可通过求解下述问题 ?? ?=?=+=+) () 1,,1,0(),(01a y y N n y x hf y y n n n n L (3) 得到,按式(3)由初值0y 可逐次算出N y y y ,,,21L 。式(3)是个离散化的问题,称为差分方程初值问题。

(整理)常微分方程数值解法

i.常微分方程初值问题数值解法 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法--差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<<<<=L (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1,,1n n n n u u hf t u n N +=+=-L 方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t L 上的差分解1,,N u u L 。

(完整版)专题一(二阶常微分方程解法)

二阶微分方程: 时为非齐次 时为齐次,0)(0)()()()(22≠≡=++x f x f x f y x Q dx dy x P dx y d 二阶常系数齐次线性微分方程及其解法: 2 122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数; 式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤: 为常数; ,其中?'''=++?=+'+''式的通解:出的不同情况,按下表写、根据(*),321r r 二阶常系数非齐次线性微分方程 型 为常数; 型,为常数 ,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+'' 二阶常系数非齐次线性微分方程的一般形式是 ''+'+=y py qy f x () (1) 其中p q ,是常数。 方程(1)的通解为对应的齐次方程 0=+'+''qy y p y (2) 的通解Y 和方程(1)的一个特解*y 之和。即 *y Y y +=.我们已解决了求二阶常系数齐 次线性方程通解的问题,所以,我们只需讨论求二阶常系数非齐次线性微分方程的特解* y 的方法。 下面我们只介绍当方程(1)中的)(x f 为如下两种常见形式时求其特解*y 的方法。 一、 f x e P x x m ()()=?λ型 由于方程(1)右端函数f x ()是指数函数e x λ?与m 次多项式P x m ()的乘积,而指数

函数与多项式的乘积的导数仍是这类函数,因此,我们推测: 方程(1)的特解应为 y e Q x x *?=λ()( Q x ()是某个次数待定的多项式 ) y e Q x e Q x x x *??'=+'λλλ()() y e Q x Q x Q x x *?"=?+'+''λλλ[()()()]22 代入方程(1),得 e Q x p Q x p q Q x e P x x x m λλλλλ???''++'+++≡?[()()()()()]()22 消去e x λ?,得 ''++'+++≡Q x p Q x p q Q x P x m ()()()()()()22λλλ (3) 讨论 01、如果λ不是特征方程 r pr q 20++=的根。 即 02≠++q p λλ 由于P x m ()是一个m 次的多项式,欲使(3)的两端恒等,那未Q x ()必为一个m 次多项式,设为 Q x b x b x b x b m m m m m ()=++++--0111Λ 将之代入(3),比较恒等式两端x 的同次幂的系数,就得到以b b b b m m 01 1,,,,Λ-为未知数的m +1个线性方程的联立方程组,解此方程组可得到这m +1个待定的系数,并得到特解 y e Q x x m *?=λ() 02、如果λ是特征方程 r pr q 20++=的单根。 即 λλ20++=p q ,但 20λ+≠p 欲使(3)式的两端恒等,那么'Q x ()必是一个m 次多项式。 因此,可令 Q x x Q x m ()()=? 并且用同样的方法来确定)(x Q 的系数b b b b m m 0 11,,,,Λ-。 03、如果λ是特征方程 r pr q 20++=的二重根。 即 λλ20++=p q ,且 20λ+=p 。 欲使(3)式的两端恒等,那么''Q x ()必是一个m 次多项式 因此, 可令 Q x x Q x m ()()=?2 并且用同样的方法来确定)(x Q 的系数b b b b m m 011,,,,Λ-。

二阶常微分方程的解法及其应用

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

相关文档
相关文档 最新文档