文档库 最新最全的文档下载
当前位置:文档库 › z检验与t检验比较区别.

z检验与t检验比较区别.

z检验与t检验比较区别.
z检验与t检验比较区别.

Z检验和卡方检验

4.6 二项分布和Poisson 分布大样本资料的Z 检验 1.二项分布总体概率的Z 检验(大样本,n 较大) 设 X B n ~(,)π,当n 相当大,以致n π和n ()1-π 都较大(例如,大于5)时,前已学过, X 近似地服从 N n n (,())πππ1-, P 近似地服从 N n (, () )πππ1- (1) 单组样本 例4.7 传染科人员n =150中,乙肝化验阳性35名, 问总体阳性率是否高于当地一般人群的阳性率17%? 欲检验 H H 0010:,:ππππ=≠ (或 H 10:ππ> 或 H 10:ππ<) ,05.0=α

H 0成立时, Z P n N = --πππ0 00101() ~(,) 若Z 的当前值所对应的P 值很小,则拒绝H 0, 否则,不拒绝H 0。 例4.7的解:欲检验%17:%,17:10>=ππH H (单侧) α=005., Z =--=35 1500170171017150 206..(.) ., 2.06>1.645,P<0.05,故拒绝H 0 。 可认为传染科人员的总体阳性率高于当地一般人群的阳性率。 (2) 两组样本

例4.8 常规治疗组:80名中有效者48名 常规+心理治疗组:75名中有效者55名 问两组有效率是否相等? P X n 111 = 近似地服从)) 1(, (1111n N πππ- P X n 222 = 近似地服从)) 1(, (2222n N πππ- P P 12- 近似地服从 N n n (,()() )ππππππ12111222 11--+- 欲检验 H H 012112:,:ππππ=≠ (或 H 112:ππ>) α=005., H 0成立时会如何? πππ12==

统计百科:T检验_F检验_卡方检验

什么是Z检验(U检验)? Z检验是一般用于大样本(即样本容量大于30)平均值差异性检验的方法。它是用标准正态分布的理论来推断差异发生的概率,从而比较两个平均数>平均数的差异是否显著。 当已知标准差时,验证一组数的均值是否与某一期望值相等时,用Z检验。 Z检验的步骤 第一步:建立虚无假设,即先假定两个平均数之间没有显著差异。 第二步:计算统计量Z值,对于不同类型的问题选用不同的统计量计算方法。 1、如果检验一个样本平均数()与一个已知的总体平均数(μ0)的差异是否显著。其Z值计算公式为: 其中: 是检验样本的平均数; μ0是已知总体的平均数; S是样本的方差; n是样本容量。 2、如果检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显著。其Z值计算公式为: 其中: 是样本1,样本2的平均数; S1,S2是样本1,样本2的标准差; n1,n2是样本1,样本2的容量。 第三步:比较计算所得Z值与理论Z值,推断发生的概率,依据Z值与差异显著性关系表作出判断。如下表所示: 第四步:根据是以上分析,结合具体情况,作出结论。 Z检验举例 某项教育技术实验,对实验组和控制组的前测和后测的数据分别如下表所示,比较两组前测和后测是否存在差异。 实验组和控制组的前测和后测数据表

前测实验组n1 = 50 S1a = 14 控制组n2 = 48 S2a = 16 后测实验组n1 = 50 S1b = 8 控制组n2 = 48 S2b = 14 由于n>30,属于大样本,所以采用Z检验。由于这是检验来自两个不同总体的两 个样本平均数,看它们各自代表的总体的差异是否显著,所以采用双总体的Z检验方法。 计算前要测Z的值: ∵|Z|=0.658<1.96 ∴ 前测两组差异不显著。 再计算后测Z的值: ∵|Z|= 2.16>1.96 ∴ 后测两组差异显著。 什么是T检验? T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。 T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。 t检验是对各回归系数的显著性所进行的检验,是指在多元回归分析中,检验回归系数是否为0的时候,先用F检验,考虑整体回归系数,再对每个系数是否为零进行t检验。t检验还可以用来检验样本为来自一元正态分布的总体的期望,即均值;和检验样本为来自二元正态分布的总体的期望是否相等) 目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。 自由度:v=n – 1 T检验注意事项 要有严密的抽样设计随机、均衡、可比 选用的检验方法必须符合其适用条件(注意:t检验的前提是资料服从正态分布) 单侧检验和双侧检验 单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能 性大。 假设检验的结论不能绝对化

SPSS非参数检验之卡方检验

SPSS 中非参数检验之一:总体分布的卡方(Chi-square )检验 在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。这可以通过绘制样本数据直方图的方法来进行粗略的判断。如果需要进行比较准确的判断,则需要使用非参数检验的方法。其中总体分布的卡方检验(也记为χ2检验)就是一种比较好的方法。 一、定义 总体分布的卡方检验适用于配合度检验,是根据样本数据的实际频数推断总 体分布与期望分布或理论分布是否有显著差异。它的零假设H0:样本来自的总体分布形态和期望分布或某一理论分布没有显著差异。 总体分布的卡方检验的原理是:如果从一个随机变量尤中随机抽取若干个观察样本,这些观察样本落在X 的k 个互不相交的子集中的观察频数服从一个多项分布,这个多项分布当k 趋于无穷时,就近似服从X 的总体分布。 因此,假设样本来自的总体服从某个期望分布或理论分布集的实际观察频数同时获得样本数据各子集的实际观察频数,并依据下面的公式计算统计量Q ()2 1 k i i i i O E Q E =-=∑ 其中,Oi 表示观察频数;Ei 表示期望频数或理论频数。可见Q 值越大,表示 观察频数和理论频数越不接近;Q 值越小,说明观察频数和理论频数越接近。SPSS 将自动计算Q 统计量,由于Q 统计量服从K-1个自由度的X 平方分布,因此SPSS 将根据X 平方分布表给出Q 统计量所对应的相伴概率值。 如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为样本来自的总体分布形态与期望分布或理论分布存在显著差异;如果相伴概率值大于显著性水平,则不能拒绝零假设HO ,认为样本来自的总体分布形态与期望分布或理论分布不存在显著差异。 因此,总体分布的卡方检验是一种吻合性检验,比较适用于一个因素的多项分类数据分析。总体分布的卡方检验的数据是实际收集到的样本数据,而非频数数据。 二、实例 某地一周内各日患忧郁症的人数分布如下表所示,请检验一周内各日人们忧

卡方检验 (Chi-square)

卡方检验(Chi-square) ?参数与非参数检验 ?卡方匹配度检验 ?卡方独立性检验 ?卡方检验的前提和限制 ?卡方检验的应用 参数与非参数检验 ?参数检验 ◆用于等比/等距型数据 ◆对参数的前提:正态分布和方差同质 ?非参数检验 ◆不用对参数进行假设 ◆对分布较少有要求,也叫d i s t r i b u t i o n-f r e e t e s t s ◆用于类目/顺序型数据 ◆没有参数检验敏感,效力低 ◆因此在二者都可用时,总是用参数检验 卡方匹配度检验 ?用样本数据检验总体分布的形状或比率,以确定与假设的总体性质的匹配度?是对次数分布的检验 ?研究情境 ◆在医生职业中,男的多还是女的多? ◆在三种咖啡中,哪种被国人最喜欢? ◆在北京大学中,各国留学生的比例有代表性吗? 卡方匹配度检验的公式 ?χ2=∑[(f0-f e)2/f e] ?f e=p n ?d f=C-1 ◆F0:观察次数 ◆f e:期望次数 ◆C:类目的个数 ◆Χ2:统计量 卡方独立性检验 ?检验行和列的两个本来变量彼此有无关联 卡方独立性检验的公式 ?χ2=∑[(f0-f e)2/f e] ?f e=(r o w t o t a l)(c o l u m n t o t a l)/n, ?d f=(R-1)(C-1)

◆F0:观察次数 ◆f e:期望次数 ◆R:行类目的个数C:列类目的个数◆Χ2:统计量 例:х2检验 1.计算期望次数fe=(fc*fr)/n 2.计算每个单位格的х2值 22 df=(R-1)(C-1)= (3-1)(2-1)=2,х2的临界值为5.99 拒绝Ho,对手表显示的偏好程度与被试的年龄段有关

t检验及公式

(二)t 检验 当总体呈正态分布,如果总体标准差未知,而且样本容量n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t 分布。 t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否 显着。t 检验分为单总体t 检验和双总体t 检验。 1.单总体t 检验 单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 着。当总体分布是正态分布,如总体标准差σ未知且样本容量n <30,那么样本平均数与总体平均数的离差统计量呈t 分布。检验统计量为: X t μ σ-= 。 如果样本是属于大样本(n >30)也可写成: X t μ σ-= 。 在这里,t 为样本平均数与总体平均数的离差统计量; X 为样本平均数; μ为总体平均数;

X σ为样本标准差; n 为样本容量。 例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。问二年级学生的英语成绩是否有显着性进步? 检验步骤如下: 第一步 建立原假设0H ∶μ=73 第二步 计算t 值 第三步 判断 因为,以0.05为显着性水平,119df n =-=,查t 值表,临界值0.05(19) 2.093t =,而样本离差的t =1.63小与临界值2.093。所以,接受原假设,即进步不显着。 2.双总体t 检验 双总体t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显着。双总体t 检验又分为两种情况,一是相关样本平均数差异的显着性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独立样本平均数的显着性检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非相关样本被试所获得的数据的差异性。

教育科研中的统计方法——Z检验和t检验

教育科研中的统计方法——Z检验和t检验 乌海市海勃湾区教研室王根运 通常我们用平均分比较两个班的成绩的优劣是不妥的。即某次考试中初二、二班数学成绩平均分低于初二、五班的平均分,不一定说明初二、二班数学真实成绩比初二、五班的差。这是因为一个班的的平均成绩具有统计意义,存在抽样误差,其平均成绩在一定范围内波动,假如再进行一次考试也许初二、二班数学成绩平均分高于初二、五班的平均分。所以比较成绩时应用平均数差异的显著性检验更科学。 统计学中平均数差异的显著性检验时规定一个显著性水平,经过检验所得差异超过这个显著性水平,表明这个差异不属于抽样误差,确实存在差异,反之属于抽样误差。这个平均数差异的显著性检验在教育科研统计中总结为Z检验或t 检验。一般地样本容量大于30时,用Z检验;样本容量小于30时,用t检验。当问题所给的条件用t检验方便时,样本容量虽然大于30,也可以用t检验。 下面是样本容量大于30时的Z检验和样本容量小于30时的t检验案例。 一、样本容量大于30时的Z检验 案例:比较初三第一学期期末实验班和对比班的化学成绩 表1、初三、八班(实验班)第一学期期末化学成绩表

表2、初三、七7班(对比班)第一学期期末化学成绩表 时间:2010年1月 实验班和对比班学生人数均为52,样本容量大于30,用Z 检验看实验班和对比班成绩有无显著性差异(用计算机处理)。 实验班:初三、八班,据表1,样本容量:n 1=52,平均分:1X = 1 1 n X ∑=69.84 每个学生分数与平均分离差的平方和:∑21d ==-∑211)(X X 13243.86 标准差:S 1= 1 2 1n d ∑ =15.96 对比班:初三、七班,据表2,样本容量:n 2=52, 平均分 :2 X = 2 2 n X ∑=66.92 每个学生分数与平均分离差的平方和:∑2 2d ==-∑222)(X X 7967.19 标准差:S 2= 2 2 2 n d ∑ =12.38, Z= 2 22 121 21n S n S X X +-=1.043 Z 检验的判断方法: 0<Z <1.96时,两个班的成绩无显著性差异;1.96<Z <2.58时,两个班的成绩成绩有显著性差异。 本题0<Z=1.043<1.96,所以:实验班和对比班化学成绩无显著性差异。 点评:初三、八班(实验班)第一学期期末化学成绩表平均分 1 X = 1 1 n X ∑=69.84,初三、七班(对比班)第一学期期末化学成绩表平均分

(完整版)T检验F检验和卡方检验

什么是Z检验? Z检验是一般用于大样本(即样本容量大于30)平均值差异性检验的方法。它是用标准正态分布的理论来推断差异发生的概率,从而比较两个平均数>平均数的差异是否显著。 当已知标准差时,验证一组数的均值是否与某一期望值相等时,用Z检验。 Z检验的步骤 第一步:建立虚无假设,即先假定两个平均数之间没有显著差异。 第二步:计算统计量Z值,对于不同类型的问题选用不同的统计量计算方法。 1、如果检验一个样本平均数()与一个已知的总体平均数(μ0)的差异是否显著。其Z值计算公式为: 其中: 是检验样本的平均数; μ0是已知总体的平均数; S是样本的方差; n是样本容量。 2、如果检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显著。其Z值计算公式为: 其中: 是样本1,样本2的平均数; S1,S2是样本1,样本2的标准差; n1,n2是样本1,样本2的容量。 第三步:比较计算所得Z值与理论Z值,推断发生的概率,依据Z值与差异显著性关系表作出判断。如下表所示: 第四步:根据是以上分析,结合具体情况,作出结论。 Z检验举例 某项教育技术实验,对实验组和控制组的前测和后测的数据分别如下表所示,比较两组前测和后测是否存在差异。 实验组和控制组的前测和后测数据表 前测实验组n1 = 50 S1a = 14

控制组n2 = 48 S2a = 16 后测实验组n1 = 50 S1b = 8 控制组n2 = 48 S2b = 14 由于n>30,属于大样本,所以采用Z检验。由于这是检验来自两个不同总体的两 个样本平均数,看它们各自代表的总体的差异是否显著,所以采用双总体的Z检验方法。 计算前要测Z的值: ∵|Z|=0.658<1.96 ∴ 前测两组差异不显著。 再计算后测Z的值: ∵|Z|= 2.16>1.96 ∴ 后测两组差异显著。 T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。 t检验是对各回归系数的显著性所进行的检验,是指在多元回归分析中,检验回归系数是否为0的时候,先用F检验,考虑整体回归系数,再对每个系数是否为零进行t检验。t检验还可以用来检验样本为来自一元正态分布的总体的期望,即均值;和检验样本为来自二元正态分布的总体的期望是否相等) 目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。 自由度:v=n –1 T检验注意事项 要有严密的抽样设计随机、均衡、可比 选用的检验方法必须符合其适用条件(注意:t检验的前提是资料服从正态分布) 单侧检验和双侧检验 单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能 性大。 假设检验的结论不能绝对化 不能拒绝H0,有可能是样本数量不够拒绝H0 ,有可能犯第Ⅰ类错误 正确理解P值与差别有无统计学意义P越小,不是说明实际差别越大,而 是说越有理由拒绝H0 ,越有理由说明两者有差异,差别有无统计学意义和有无 专业上的实际意义并不完全相同 假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H 0成立与否的概率。 适用条件

非参数检验(卡方检验)实验报告

. . 大学实验报告 课程名称生物医学统计分析 实验名称非参数检验(卡方检验)专业班级 姓名 学号 实验日期 实验地点 2015—2016学年度第 2 学期

a. 不假定零假设。 b. 使用渐进标准误差假定零假设。 分析:表11为LPA和FA两种检测结果的的一致性检验。Kappa值是部一致性系数,除数据P值判断一致性有无统计学意义外,根据经验,Kappa≥0.75,表明两者一致性较好0.7>Kappa ≥0.4,表明一致性一般,Kappa<0.4,则表明一致性较差。 本例Kappa值为0.680,P=0.000<0.01,拒绝无效假设,即认为两种检测方法结果存在一致性,Kappa值=0.680,0.7>Kappa≥0.4,表明一致性一般。 例1 表12 周日频数表 观察数期望数残差 1 11 16.0 -5.0 2 19 16.0 3.0 3 17 16.0 1.0 4 1 5 16.0 -1.0 5 15 16.0 -1.0 6 16 16.0 .0 7 19 16.0 3.0 总数112 分析:表12结果显示一周各日死亡的理论数(Expected)为16.0,即一周各日死亡均数;还算出实际死亡数与理论死亡数的差值(Residual)。 表13 检验统计量 周日 卡方 2.875a df 6 渐近显著性.824 a. 0 个单元 (.0%) 具有小于 5 的期望频率。单元最小期望频率为 16.0。 分析:Chi-Square过程,调用此过程可对样本数据的分布进行卡方检验。卡方检验适用于配合度检验,主要用于分析实际频数与某理论频数是否相符。卡方值X2=2.875,自由度数(df)=6,P=0.824>0.05,差异不显著,即可认为一周各日的死亡危险性是相同的。 例2 表14 二项式检验 类别N 观察比例检验比例精确显著性(双侧)性别组 1 0 12 .30 .50 .017 组 2 1 28 .70

t检验、u检验、卡方检验、F检验、方差分析

统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说: t检验有单样本t检验,配对t检验和两样本t检验。 单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。 配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。 u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t分布),当x为未知分布时应采用秩和检验。 F检验又叫方差齐性检验。在两样本t检验中要用到F检验。 从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。 其中要判断两总体方差是否相等,就可以用F检验。

简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。 在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。 卡方检验 是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。方差分析 用方差分析比较多个样本均数,可有效地控制第一类错误。方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。 其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。我们要学习的主要内容包括 单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。 两因素方差分析即配伍组设计的方差分析(two-way ANOVA):

心统六七章复习 六假设检验初步z检验效力与效应t检验 假设检验 单尾

心统六七章复习 六假设检验初步z检验效力与效应t检验 假设检验 单尾考验: 假设处理会在某一特定方向上造成差异。 双尾考验: 作一个更一般的假设:处理应当改变均值。 Z检验的步骤 陈述H0和H1,确定显著性标准(须事先确定)。 确定考验是单尾还是双尾(根据题意)。 确定临界z分数。 计算样本的实际z分数。 比较样本的实际z分数与临界z分数。 对H0作出结论。 z检验的前提(只有对于同分布独立随机变量,z检验的统计学基础CLT才成立) 随机样本,样本必须对总体有代表性。随机取样有助于确保取样的代表性。(社会学的取样方法) 独立观察也与样本代表性有关, 每个观察应该与所有其它观察是独立的。一个特定的观察的概率应当保持恒定。(被试间不能交流) σ保持恒定,原总体的标准差必须保持恒定。为什么? 一般的说,处理就是假定对总体中的每一个个体都加上(或减去) 一个常数。所以总体的均值可能因处理而导致变化,但是并不改变其标准差。---------这一点对于区分z检验与t检验十分重要 取样样本是相对正态的,或者因为原始观察的样本是相对正态的, 或者因为中心极限定理(或二者都有) 。 违反以上任何一个前提会严重地危及依据样本对总体作出推论的有效性。 效力,效应大小: 效力:该考验能够正确地拒绝一个错误的虚无假设的概率,即当效应存在(虚无假设不正确)时侦察到处理效应(统计量落入拒绝区域)的能力(概率)。0.8,0.9较高。较低效力易犯二类错误。 对应的样本均值分布的图像,一类错误,二类错误,效力之间的关系。 如何计算?SPSS,用于确定被试人数。 提高效力的途径:注意样本均值分布的图像辅助理解 增加处理效应(操作强度,d增加):两总体间差异增大 减少误差(问卷信度,实验条件控制):样本均值标准误减小 增大样本量:样本均值标准误减小 降低显著性水平(alpha增加,犯一类错误概率增加) 采用单尾检验(相当于alpha增加) 处理效应的大小与显著性水平(只有肯定或否定的结论,太过武断) 显著性检验解决效应是由处理还是机遇造成。 效应大小则回答处理效应有多大的问题。d=(M-μ)/σ 0.2 0.5 0.8 两类统计,有四种结论。显著性水平高且效应强,显著性水平低且效应弱是我们认为合理的结果。 效应大小对显著性的解释:统计检验显著但效应弱则无实际意义,不显著但效应大也可以

【原创】R语言自编t检验和z检验函数 附代码数据

有问题到淘宝找“大数据部落”就可以了 R语言自编t检验和z检验函数代码 myt.test(1:10 ,alternative="less") ## ## One Sample t-test ## ## data: 1:10 ## t = 5.7446, df = 9, p-value = 0.9999 ## alternative hypothesis: true mean is less than 0 ## 95 percent confidence interval: ## -Inf 7.255072 ## sample estimates: ## mean of x ## 5.5 My.z.test(x,sigma.x=1) ## ## One-sample z-Test ## ## data: x ## z = 0.68502, p-value = 0.4933 ## alternative hypothesis: true mean is not equal to 0 ## 95 percent confidence interval: ## -0.3680456 0.7635401 ## sample estimates: ## mean of x ## 0.1977473 myt.test <- function(x, y =NULL, alternative =c("two.sided", "less", "greater"), mu =0, paired =FALSE, var.equal =FALSE, conf.level =0.95 ) { if( !is.null(y) ) {

相关文档