文档库 最新最全的文档下载
当前位置:文档库 › 何谓稀土元素

何谓稀土元素

何谓稀土元素

何谓稀土元素

新稀土铕三元配合物合成表征

新的稀土铕三元配合物的合成及表征摘要:通过乙酰蒽与乙酸乙酯的克莱森缩合反应,合成新配体9-蒽甲酰丙酮,并与邻菲罗啉、稀土铕(ⅲ)合成三元稀土配合物。通过元素分析、edta配位滴定分析、红外、荧光光谱分析测定了配合物的组成、结构和发光性能;利用差热-热重分析测定了配合物的热稳定性。研究结果表明,稀土三元配合物在612.05 nm处发出强的eu3+特征荧光。 关键词:克莱森缩合;三元稀土配合物;荧光性质 1 前言 稀土β-二酮配合物作为强荧光配合物的研究一直为人们所重视。这是由于配合物中存在着螯合环并包含电子可运动的共轭键,使β-二酮与稀土生成的配合物在只含有氧的配体中是最稳定的;而且在这类配合物中存在着从具有高吸收系数的β-二酮配体到 tb3+、eu3+等的高效能量传递,从而使得它们在所有稀土有机配合物中发光效率最高。 本文利用克莱森(claisen)缩合[6]的方法合成新的β-二酮配体9-蒽甲酰丙酮,并利用元素分析、红外光谱、核磁共振氢谱、对配体进行了表征;配体与邻菲罗啉、稀土铕(ⅲ)合成三元稀土配合物,用荧光光度法对三元稀土配合物的荧光性质进行了研究,并讨论了铕配合物的荧光性质。 2 实验部分 2.1原料与试剂

乙酰蒽按文献方法合成,纯化后产物熔点:74℃~75℃;氢化钠nah,纯度99%,含量80%;乙酸乙酯ch3cooc2h5,纯度99.9%;氧化铕eu2o3,纯度99.99%。本文所用其它试剂均为分析纯,所用溶剂使用前均经过脱水重蒸处理。 2.2仪器与测试条件 熔点用上海产x4型显微熔点仪测定;元素分析用elementar vario eliii 型元素分析仪测定;红外光谱用bruker equinox55 型红外光谱仪,kbr压片法测定;荧光光谱采用美国varina公司cary-eclipse荧光分光光度仪测定,测定条件为常温。 2.3 9-蒽甲酰丙酮的合成 反应方程式: 氮气保护下,以四氢呋喃为溶剂,2mmol的乙酰蒽和4mmol的乙酸乙脂在8mmol氢化钠存在下进行反应,反应温度约65℃,反应开始后有氢气缓慢放出。反应8小时后,氢气不再释放,停止反应。用少量无水乙醇破坏未反应的氢化钠。用水溶解褐色液体,用 3mol/l 的盐酸调节ph值至4。用无水乙醚进行萃取,有机相依次用5%碳酸氢钠溶液和水洗涤,无水硫酸镁干燥。过滤,滤液蒸除溶剂后,得到橘红色固体。用中性al2o3柱层析分离,旋干溶剂得橘红色固体。产率20%,m.p.132~134℃。 2.4 三元稀土配合物的合成 反应方程式: 其中en :9-蒽甲酰丙酮(c14h9coch2coch3)

铌钽矿知识

一、矿床时空分布及成矿规律 我国锂、铍、铌、钽等稀有金属矿床的成矿规律在时空分布上呈现一定的规律,基本上是从北到南成矿期由老到新,北方以海西期为主,南方以燕山期为主,印支期、海西期次之。 从成矿时代来看,燕山期是稀有金属矿床成矿的极盛时期,在南方几乎所有的特大型、大中型矿床都与燕山期岩浆构造活动有关,属燕山期成矿。仅有少数矿床,如川西锂辉石伟晶岩型矿床印支期成矿和广东广宁、福建西坑伟晶岩型钽铌矿床属海西期成矿。北方的稀有金属矿床成矿期主要是海西期。在兴安岭-内蒙古区、阿尔泰区、天山-北山区、昆仑-祁连山区、东秦岭及黑吉辽胶区等都有海西岩带存在。白云鄂博型铌、稀土矿床,海西期偏碱性岩浆活动可能提供部分铌、稀土的物质来源。阿尔泰区锂、铍、铌、钽、锆的伟晶岩以及天山-北山与昆仑-祁连山北西西构造带的大部伟晶岩是属于海西期的。 从空间分布来看,目前已发现并勘探的特大型、大中型稀有金属矿床主要分布在以下成矿区带: 华南成矿区是稀有、钨锡多金属矿床的重要成矿区域。主要矿床类型有花岗岩型,如特大型江西宜春钽铌锂矿床、广西栗木钽铌锡矿床(钽为大型),伟晶岩型也是华南的主要矿床类型之一,如福建南平西坑钽铌矿床(钽为大型)等;其次有云英岩型(如广东万峰铍矿床)、夕卡岩或条纹岩型矿床(如湖南香花岭铍矿床)以及石英脉型矿床等。砂矿主要分布在东南沿海地区,如广东台山残坡积、河流冲积型铌钽砂矿床、增城派潭铌铁矿河流冲积型砂矿(铌为大型)等。 阿尔泰山南缘成矿区是我国重要的稀有金属矿产集中区。主要矿床类型为伟晶岩型锂铍铌钽矿床。在阿尔泰褶皱系的中间隆起区——卡拉额尔齐斯复背斜带内,有许多伟晶岩矿田,是我国稀有金属生产主要基地。其中,有开采多年的新疆富蕴县可可托海锂铍铌钽矿、柯鲁木特锂铍铌钽矿、福海县库卡拉盖锂矿、青河县阿斯卡尔特铍矿、福海县群库尔绿柱石钽铌矿等。近年来在阿尔泰成矿区,还陆续发现一些花岗岩型、火山沉积型及砂矿等类型稀有金属矿床。 兴安岭-内蒙古成矿区蕴藏着丰富的稀有、稀土矿产资源。其中以白云鄂博铁铌稀土矿床著称,铌、稀土均达到超大型规模,是世界上最大的稀土矿床。70年代在哲里木盟扎鲁特旗地区又发现并勘查出碱性花岗岩型巴尔哲大型铌钽、稀土矿床。 川西伟晶岩密集区成矿区带:在四川西部康定、石渠、金川和马尔康等地分布有大量而密集的稀有金属伟晶岩矿脉,并形成大型、特大型锂铍矿床,如康定甲基卡锂铍矿(锂为特大型、铍为大型);金川地区锂铍矿(锂为大型、铍为中型)位于金川、马尔康两县接壤地带,以可尔因为中心,锂铍矿化花岗伟晶岩脉成群分布,是川西锂铍等稀有金属的重要成矿区带之一。 东秦岭成矿区稀有金属矿化分布较广,其中以陕西商南和河南卢氏等地矿化较好,有找矿远景;蓝田—潼关—嵩县,是一条与正长岩和偏碱性花岗岩有关的铌、稀土金属矿化带,也具有找矿潜力;特别是在秦岭东段南坡,鄂陕交界的竹园沟—贺家山一带,于80年代初勘查出一个特大型的湖北庙垭碳酸岩型铌稀土矿床。 盐湖锂成矿区,由盐湖形成的锂矿资源主要分布于青藏高原。现已查明大型、特大型盐湖锂矿床,分布在青海柴达木盆地中部的一里坪,东、西台吉乃尔湖及西端的尕斯库勒湖。矿床中锂均以晶间卤水、孔隙卤水及地表卤水的形态出现,赋存于上更新统至全新统的地层中。在西藏的西北部地区有众多的盐湖区,也是我国卤水锂资源的重要成矿区之一。此外,卤水锂还见湖北潜江凹陷油田内,其锂资源规模也极其可观。 二、矿床类型 我国锂、铍、铌、钽矿床按成矿岩石类型和有关成矿作用划分,有以下类型:

稀土提取与分离技术 (发)

产业技术情报—————————————————————————————————————————————————————————————2013年12月18日第6期(总第6期) 编者按: 稀土提取及分离技术的基本内容有如下几个方面:稀土矿物的富集、稀土的提取、稀土富集物的制备、稀土元素的分离与提纯、稀土化合物的制备。本期通过专利分析,对稀土提取及分离技术的专利数量、专利国家和地区分布、专利技术布局,以及稀土提取与分离技术国家分布、技术主题、核心专利等进行了分析,并得出以下结论。 本期重点:稀土提取与分离技术专利分析 ●中国在稀土提取与分离技术领域起步较早,但由于我国稀土技术保密规定等 原因,文献报道不多,2006年后迅速发展,专利数量跃居世界第一,但专利影响力(核心专利)很小。 ●稀土提取与分离技术主要集中在提取与分离过程与方法、分离过程中使用的 体系和萃取剂、稀土分离、提取的设备与装置以及对稀土提取过程中废水的处理。 ●日本企业为该技术领域的主要专利持有人,专利均集中在从合金或其他混合 物中回收稀土元素以及提取与分离过程中所使用的萃取剂。此外,日本机构还擅长从一些废料(例如荧光粉材料和磁性材料)中回收稀土金属。 ●中国有5家高校、科研单位和5家企业专利申请量进入全球Top30,分别为 北京大学、北京科技大学、东北大学、内蒙古科技大学、中科院长春应用化学研究所、北京有色金属研究总院、包头稀土研究院、甘肃稀土新材料有限公司等。 ============================================================= 主编:刘细文执行主编:贾苹本期策划:徐慧芳陆彩女陈枢舒联系地址:北京北四环西路33号中科院国家科学图书馆区域信息服务部邮编:100190 电话:82625972邮件地址:xxcykb@mail.las.ac.cn

稀土基本知识

稀土元素基本知识 1稀土元素 稀土元素是钪(Sc)、钇(Y)和15个镧系元素的总称。通常用RE表示,其氧化物用REO表示。镧系元素包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。所以稀土元素共有17个元素。 全部稀土元素的发现是从1794年发现钇至1947年从核反应堆裂变产物中分离出钷,历时150年。其中钪是典型的分散元素,钷是自然界中极少见的放射性元素。这两个元素与其它稀土元素在矿物中很少共生,因此在稀土生产中一般不包括它们。 稀土元素同属元素周期表第IIIB族,化学性质十分相似。除钪和钷外,根据分离工艺要求或产品方案,可将它们分为两组或三组。前者是以铽为界,镧至钆为铈组稀土,通常称作轻稀土,铽至镥和钇为钇组稀土,通常称为重稀土。后者是依据P 204 萃取分为轻稀土(镧至钕)、中稀土(钐至铽)和重稀土(镝至镥和钇)。 2稀土元素的价态 稀土元素易于失去电子,通常呈正三价。所以稀土是非常活泼的金属元素,其活泼性仅次于碱土金属。铈、镨、铽在外界氧化剂的作用下又可呈正四价,而钐、铕、镱在还原剂的作用下也可呈正二价离 子。因此各三价单一稀土氧化物的分子式可表示为M 2O 3 (M—La、Nd…),而铈、镨、铽的氧化物的分子式 分别为CeO 2、Pr 6 O 11 、Tb 4 O 7 。 3镧系收缩 镧系元素的原子半径、离子半径都随原子序数(从镧到镥)的增加而减小,将这一现象称为镧系收缩。由于镧系收缩,从镧到镥的碱性随原子序数的增加而减弱;络合物的稳定性随原子序数的增加而增强。这就是能将性质及其相似的稀土元素逐一分离的主要依据。 4稀土元素的主要化合物 稀土元素的化合物很多,有无机化合物、有机化合物、金属间化合物等。这里仅将在湿法冶金生产实际产出的几种化合物予以简单介绍。 4.1氧化物 在800~10000C下灼烧稀土氢氧化物、草酸盐、碳酸盐、硫酸盐、硝酸盐都可获得稀土氧化物,其 中铈、镨、铽在一定的灼烧条件下生成CeO 2、Pr 6 O11(Pr 2 O 3 ·4PrO 2 )、Tb 4 O 7 (Tb 2 O 3 ·TbO 2 )。 稀土氧化物不溶于水,而溶于盐酸、硫酸、硝酸,生成相应的盐,其溶解的难易程度与灼烧温度和时间有关。亦即时间越长,温度越高则越难溶。例如在8500C以上灼烧得到的氧化铈难溶于盐酸、硝酸,但能溶于浓硫酸。也可采取在盐酸、硝酸溶解过程中加入还原剂(如双氧水)的方法将Ce4+还原成Ce3+而便于溶解。 将稀土氧化物同水蒸气一起加热可得到RE(OH) 3和REO(OH) 。稀土氧化物在空气中能吸收CO 2 生成

XX铌稀土选冶试验样采集设计书

XX省XX县XX铌、稀土矿区正长斑岩型矿石半工业选矿试验样 采样设计书 XXXX集团矿业有限责任公司 二○一一年九月

XX省XX县XX铌、稀土矿区正长斑岩型矿石半工业选矿试验样 采样设计书 编写单位:XX省鄂西北地质矿产调查所 项目负责:XXX 编写人:XXX、XXX 审查人: 所长:XXX 总工程师:XXX 提交单位:XXXX集团矿业有限责任公司 提交时间:二○一一年九月

目录 一、工作目的任务 (1) 二、矿区位置交通 (1) 三、矿区以往工作概况 (2) 四、矿床地质特征 (2) 五、样品采集 (4) 1、样品种类 (4) 2、样品采集方案 (5) 3、样品采集结果 (7) 4、样品包装与送样 (9) 5、岩矿标本采集 (9) 6、样品采集的代表性 (9) 附图目录 图号顺序号图名比例尺 1:1000 1 1 XX县XX铌、稀土矿区正长斑岩型矿石 半工业选矿试验样采样分布图

XX省XX县XX铌、稀土矿区 正长斑岩型矿石半工业选矿试验样采样设计书 一、工作目的任务 为加快XX县XX铌、稀土矿床开发(综合利用)步伐,为XXXX 集团矿业有限责任公司立项论证阶段的可行性研究乃至初步设计提供技术指标,首先应对矿石半工业选矿试验大样进行采集与分析测试。其目的首先研究正长斑岩型矿石的选冶性能、选冶方法、矿石矿物的物理机械性能、加工方法和步骤,为矿床的技术经济评价和社会效益提供可靠资料,特编制本设计。其主要任务是: 1、1:2000地质调查2km2; 2、1:1000勘探线剖面4条,工作量1300m; 3、TC 4、TC 5、TC 6、TC7探槽清理、编录与采样; 4、ZK61、ZK63、ZK65钻孔岩芯清理、编录与采样; 5、采集选冶试验大样20吨(样点46个),作Nb2O5、TR2O3(分量)、K2O化学分析; 6、2011年12月提交XX铌、稀土矿区正长斑岩型矿石半工业选矿试验样采样说明书。 二、矿区位置交通 矿区位于XX省XX县得胜镇境内,地理坐标:东经XXX,北纬XX。有XX—XX公路纵贯全区,北距XX车站75 km,南距XX县89 km,交

稀土元素的分离方法

稀土元素的分离方法 目前,除Pm以外的16个稀土元素都可提纯到6N(99.9999%)的纯度。由稀土精矿分解后所得到的混合稀土化合物中,分离提取出单一纯稀土元素,在化学工艺上是比较复杂和困难的。其主要原因有二个,一是镧系元素之间的物理性质和化学性质十分相似,多数稀土离子半径居于相邻两元素之间,非常相近,在水溶液中都是稳定的三价态。稀土离子与水的亲和力大,因受水合物的保护,其化学性质非常相似,分离提纯极为困难。二是稀土精矿分解后所得到的混合稀土化合物中伴生的杂质元素较多(如铀、钍、铌、钽、钛、锆、铁、钙、硅、氟、磷等)。因此,在分离稀土元素的工艺流程中,不但要考虑这十几个化学性质极其相近的稀土元素之间的分离,而且还必须考虑稀土元素同伴生的杂质元素之间的分离。 现在稀土生产中采用的分离方法: (1)分步法从1794年发现的钇(Y)到1905年发现的镥(Lu)为止,所有天然存在的稀土元素间的单一分离,还有居里夫妇发现的镭,都是用这种方法分离的。分步法是利用化合物在溶剂中溶解的难易程度(溶解度)上的差别来进行分离和提纯的。方法的操作程序是:将含有两种稀土元素的化合物先以适宜的溶剂溶解后,加热浓缩,溶液中一部分元素化合物析出来(结晶或沉淀)。析出物中,溶解度较小的稀土元素得到富集,溶解度较大点的稀土元素在溶液中也得到富集。因为稀土元素之间的溶解度差别很小,必须重复操作多次才能将这两种稀土元素分离开来,因而这是一件非常困难的工作。全部稀土元素的单一分离耗费了100多年,一次分离重复操作竟达2万次,对于化学工作者而言,其艰辛的程度,可想而知。因此用这样的方法不能大量生产单一稀土。 (2)离子交换法由于分步法不能大量生产单一稀土,因而稀土元素的研究工作也受到了阻碍,第二次世界大战后,美国原子弹研制计划即所谓曼哈顿计划推动了稀土分离技术的发

地球化学-稀土元素标准化计算

表中数据为辉长岩、沂南花岗岩7件样品的REE组成(ppm) 1,用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明; 2,计算各样品的Eu/Eu*,并对其地球化学意义进行说明; ,3,假设辉长岩中造岩矿物的组成为:CPX45%,PL35%,OL20%。结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成,并作REE配分模式图。

解答: 1,如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1 球粒陨石数据(Sun & McDonough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1 表1-1

表1-2 图1-1 通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素而亏损重稀土元素,这与花岗岩的成分岩性有一定关系,花岗岩为酸性岩,主要矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出Eu的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈Eu 的负异常。辉长岩的样品配分模式图表现出来的富集轻稀土元素没有沂南花岗岩样品那么显著,富集程度较低,这也与辉长岩的岩性成分有关,辉长岩中主要矿物为辉石和长石,长石富集轻稀土元素较为显著,而辉石相对较富集重稀土元素,

但程度不是很显著,所以岩石总体表现较为富集轻稀土元素,但程度不是那么显著。并且从图中可以看出Eu的正异常,只是不是很显著,说明长石结晶出来使岩石呈Eu的正异常。 2,Eu/Eu*=2×Eu/(Sm+Gd)(其中Eu、Sm、Gd都是为球粒陨石标准化值),根据这个求出各样品中的Eu/Eu*,如下表1-3: 表1-3 由上表中的Eu/Eu*值可知的辉长岩为Eu的正异常,说明在岩浆结晶时,长石和辉石先结晶出去形成辉长岩,而长石中富集Eu元素,所以在辉长岩中Eu 为正异常,而后期岩浆因长石的结晶分异而呈Eu的负异常,并且逐渐向酸性过渡,结晶形成酸性岩。可以推测这样品为同源岩浆所形成,主要是形成时间不同导致Eu异常不同和岩性的不同。 3,根据课件可查出REE在CPX、PL、OL等矿物和熔体间的分配系数,如下表1-4:

稀土配合物研究进展总结

稀土元素 稀土配合物研究进展稀土元素包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)这15种镧系元素以及与镧系元素密切相关的钪(Sc)和钇(Y),共17种元素。根据稀土元素物理化学性质的相似性和差异性,除钪之外划分为三组:La-Nd为轻稀土,Sm-Ho为中稀土,Er-Lu加上Y为 重稀土。稀土离子发光具有线性、不重叠的和可辨认的发射谱带,更特殊的是它们比有机荧光团和半导体荧光纳米晶体(NCS)的谱带宽度更窄。这是由于发射激发态和基态具有相同的fn电子结构,并且f轨道被外层的s和p层电子所屏蔽。同样的原因,稀土离子的发射波长不受环境影响,不像有机荧光团,它们会随溶液性质[3]或pH值而改变发射波长。镧系稀土离子在可见和紫外光谱范围内具有很小的吸收系数,故无机稀土发光材料的发光强度低。有些有机配体吸光系数比较高,与稀土离子配位后,配体分子(天线) 在靠近稀土离子的位置使其敏化,通过天线效应提高了稀土离子的发光强度,这种有机稀土发光材料成为人们研究的重点。羧酸是合成稀土配合物的一类常用配体。羧基可以多种方式与稀土离子络合,同时具有芳香环的羧酸类配体,它们在结构上具有刚性和稳定性,已被广泛用于稀土离子配位聚合物的研究稀土配合物的配位特性 稀土配合物的配位特性 配体中含有负电荷的氧原子时,一般可以形成较稳定的稀土配合物。N-酰化氨基酸 一般以阴离子形式通过羧基氧与稀土离子配位,而氨基中氮与酰基中氧都不参与配位[4]。对于稀土离子来说,H2O也是一种很强的配体,与稀土离子的络合能力比较强。在选择配体时,不能选择比水配位能力弱的配体,因为水会与配体竞争配位,因此要选择在极性比较弱的溶剂中反应。而含有羧基的配体与稀土离子配位后可以在水溶液中析出相应的稀土配合物,但是这种稀土配合物往往会含有配位水分子,而含配位水的稀土配合物的脱水是非常困难的[5]。 稀土配合物中稀土离子的配位数一般比较高,主要是由稀土离子较大的半径和以离 子型为主的键型特点决定的。当稀土离子与配体的相对大小合适的情况下,形成的稀土 配合物中的稀土离子一般都是八或者八以上配位的。配合物中稀土离子的价态一般为正三价,含有的正电荷较高,如果从电中性的角度看,为了满足电中性,稀土离子也容易形成较高配位数的比较稳定的稀土配合物。弱碱性的配位原子如含N原子的联吡啶和邻菲啰啉等中性配体,它们作为第二配体时,也可以与稀土离子配位[5]。。 稀土有机配合物在光伏器件中的应用

竹山庙垭铌稀土概况

初步查明该矿为碳酸岩型铌、稀土矿床,赋存在碳酸岩杂岩体中。矿体呈似层状、透镜状,共45个,其中铌、稀土矿体24个,铌矿体14个,稀土矿体7个。矿体规模大小不等,最大两矿体长2300米,厚99.8米和210.13米。品位较稳定,含五氧化二铌一般0.1%以上,稀土含量1.5%左右,此外尚含铀、钍、磷、硫、锆等元素。回收率铌为23.61%,稀土为61.14%。省地矿局审查核实储量为:五氧化二铌B 级储量14051.0吨、C级储量106557.8吨,D级储量808926.7吨;稀土B级储量143257.1吨,C级储量249716.5吨,D级储量822110.8吨。 庙垭铌稀土矿区位于湖北省竹山县境内,南距竹山县城89km,处于鄂陕交界地段,是一个与正长岩-碳酸岩杂岩体有关的特大型铌稀土矿床,累计探明储量:铌(Nb2O5)92.95万t、轻稀土氧化物121.5万t(中国矿床发展史8226;湖北卷,地质出版社,1996),并伴生大量磷灰石及铀、锆石、金红石等,可综合回收利用。 1960年陕西省区测队在1∶20万平利幅区调时,发现庙垭地区放射性伽马异常,认为值得进一步检查。1961~1981年,先后由该区测队、湖北省地质局鄂西北地质队、七○一地质队、第十四地质队、第五地质队、省局中心实验室和地质部第九实验室等,对庙垭地区的铌稀土矿做了大量颇有成效的地质普查评价、详查、初勘和矿石可选性试验研究。1981年由第五地质大队提交了湖北省竹山县庙垭铌稀土矿区详查-初勘地质报告,探明了国内最大的碳酸岩型铌稀土矿床。矿床位于武当隆起的西部边缘。 庙垭岩体由正长岩和碳酸岩组成的杂岩体(图3.20.5),在海西早期侵入于青白口系—下震旦统耀岭河群与下志留统梅子垭组的接触带上,受东西向梁家院-田鸡垭断裂控制。杂岩体为东西向纺锤状岩株,长2950m,宽580~820m,倾向延深控制到500m。杂岩体以正长岩类为主,占岩体出露面积的90%。碳酸岩呈小岩枝、岩瘤、岩脉依附正长岩分布,占杂岩体的7.5%,另有2.5%为围岩残留体。杂岩体矿化普遍,含矿率约65%。矿化以铌、铈族稀土为主,钽和钇族稀土含量很低,并伴生磷、硫、锆、铀、钍等有益组分。杂岩体内有3个矿带,全区共圈定矿体45个,其中稀土矿7个,铌矿体14个,铌稀土矿体24个。主要稀土矿体Ⅲ15呈似层状,长800m,宽410m,平均厚18.17m,埋深0~318m。主要铌矿体Ⅲ6长2300m,宽498m,厚210.13m,埋深0~290m,呈似层状。主要铌稀土矿体Ⅰ4长640m,宽402m,厚49.96m,埋深0~220m,呈不规则透镜状。矿石中铌矿物主要有铌铁矿、铌金红石,次要为贝塔石、烧绿石等;稀土矿物主要有独居石、氟碳铈矿,次要为氟碳钙铈矿、褐帘石等。矿床品位,不论是正长岩体、混杂岩体,还是碳酸岩体,其铌、稀土含量均超过了工业要求。Nb2O5含量最高可达1.16%,RE2O3最高可达13.21%。矿床类型为碳酸岩型铌、稀土矿床。图3.20.5庙垭矿区岩相蚀变图(湖北省地质矿产局,1985) 湖北省竹山县庙垭铌稀土矿区处于鄂陕交界地段,南距竹山县城

稀土掺杂铝酸锶荧光材料的制备

目录 1 引言 ................................................................... 1.1 稀土荧光材料的概述................................................ 1.2 稀土离子的发光颜色................................................ 1.3 荧光材料发光的主要原理............................................ 1.4稀土荧光材料的制备方法 ............................................ 1.4.1水热合成法................................................... 1.4.2高温固相反应法............................................... 1.4.3燃烧法....................................................... 1.4.4共沉淀法..................................................... 2 实验部分 ............................................................... 2.1 实验仪器、药品.................................................... 2.2 实验过程.......................................................... 2.2.1 溶液的配置 .................................................. 2.2.2 实验步骤 .................................................... 3 结果与讨论 ............................................................. 3.1 水热合成制备稀土荧光材料.......................................... 3.2燃烧法制备稀土荧光材料 ............................................ 4 实验结论 ............................................................... 参考文献 ................................................................. 致谢 .. (9)

地球化学-稀土元素标准化计算

表中数据为山东济南辉长岩、沂南花岗岩7件样品的REE组成(ppm) 1,用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明; 2,计算各样品的Eu/Eu*,并对其地球化学意义进行说明; ,3,假设辉长岩中造岩矿物的组成为:CPX45%,PL35%,OL20%。结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成,并作REE配分模式图。

解答: 1,如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1 球粒陨石数据(Sun & McDonough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1 表1-1 表1-2

图1-1 通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素而亏损重稀土元素,这与花岗岩的成分岩性有一定关系,花岗岩为酸性岩,主要矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出Eu的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈Eu 的负异常。济南辉长岩的样品配分模式图表现出来的富集轻稀土元素没有沂南花岗岩样品那么显著,富集程度较低,这也与辉长岩的岩性成分有关,辉长岩中主要矿物为辉石和长石,长石富集轻稀土元素较为显著,而辉石相对较富集重稀土元素,但程度不是很显著,所以岩石总体表现较为富集轻稀土元素,但程度不是那么显著。并且从图中可以看出Eu的正异常,只是不是很显著,说明长石结晶出来使岩石呈Eu的正异常。 2,Eu/Eu*=2×Eu/(Sm+Gd)(其中Eu、Sm、Gd都是为球粒陨石标准化值),根据这个求出各样品中的Eu/Eu*,如下表1-3: 表1-3 由上表中的Eu/Eu*值可知山东济南的辉长岩为Eu的正异常,说明在岩浆结晶时,长石和辉石先结晶出去形成辉长岩,而长石中富集Eu元素,所以在辉长岩中Eu为正异常,而后期岩浆因长石的结晶分异而呈Eu的负异常,并且逐渐向酸性过渡,结晶形成酸性岩。可以推测这样品为同源岩浆所形成,主要是形成

稀土金属矿山开采

稀土金属矿山开采 我国稀土金属矿山主要是露天开采,仅有个别矿山是地下开采。露天开采主要是白云鄂博铁-铌、稀土矿山和一些砂矿、淋积型稀土矿以及稀有、稀土风化壳等矿山。地下开采矿山目前仅有山东微山稀土矿山。 白云鄂博铁-铌、稀土矿山,1956年开始建设,设计规模为1200万t/a,是属大型露天机械化开采的矿山。其开拓系统为铁路、公路联合开拓运输,采矿方法是全面开采法。山东微山稀土矿山采用竖井机械化开采。 砂矿,主要是海滨砂矿的开采,有国营开采和民采两类。国营开采有两种方式:一种是以斗轮挖掘机、圆锥选矿机为主或以装载机、螺旋选矿机为主体的移动式开采工艺进行机械化开采,生产规模较大,具有省水、省电、资源利用率高、金属回收率高、成本较低等优点。自80年代以来,不少矿山采用这种采选联合方式开采海滨砂矿(钛铁矿、金红石、锆石英、独居石、磷钇矿等)。另一种是用水枪、砂泵开采,螺旋溜槽粗选的开采工艺。民采主要有三种方式:一是全部是人工开采,手工掏洗,这是一种原始、落后的方法,回收率低,资源浪费严重。二是半机械化开采,供水和排尾矿实现了机械化,但采矿仍然用人工,选矿仍然用三角槽,回收率也较低,目前仍有许多民营矿山用这种方式开采海滨砂矿和河流冲积砂矿。三是小型机械化开采,用浮船、砂泵采矿,用螺旋溜槽粗选,用水泵供水,用砂泵排尾矿,采选全部实现了机械化,回收率和资源利用比前两种方式明显提高,工人劳动强度也减轻了,这是今后民采矿山的基本方向。 风化壳淋积型稀土矿床开采简易,因稀土元素以离子状态吸附于粘土矿物表面,矿石呈土状、疏软,用锹、镐和手推车为工具即可开采,因而民采普遍用这简易方法采矿。稀土元素提取,不需要机械选矿,用较简单的化学处理即可得到混合稀土氧化物。国营开采已实现简易半机械化或全部机械化,提取工艺也日臻完善。

稀土分离方法概述

稀土分离方法概述 姓名:任嘉琳班级:应化1102 学号:1505110619 摘要:近年来我国许多单位,在稀土分离工艺研究中,取得新的成果,重点是南方离子吸附性稀土矿,特点是单一稀土或部分稀土的分离转向整个镧系元素的全分离,从偏重技术指标到转为重视技术经济指标 关键词:稀土全分离单一分离 引言:稀土元素氧化物是指元素周期表中原子序数为57 到71 的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc)和钇(Y)共17 种元素的氧化物。稀土具有4f电子亚层,丰富的跃迁能级,大的原子磁距,多变的配位数,在光电磁材料中显示不可替代的作用,被誉为“工业维生素”。我国是稀土大国,所拥有的稀土储量占世界总工业储量的80%以上,由于稀土元素电子结构相似,化学性质相似,分离十分困难,但是为了探索功能材料。探索其本质特征,发现新的功能体系,拓展应用领域,必须解决分离稀土的难题[1]现在,常用的方法有溶剂萃取和离子交换。除Pm以外的16个稀土元素都可以提纯到6N(99.9999%)的纯度。由稀土精矿分解后所得到的混合稀土化合物中,分离提取出单一纯稀土元素,在化学工艺上是比较复杂和困难的。其主要原因有二个,一是镧系元素之间的物理性质和化学性质十分相似,多数稀土离子半径居于相邻两元素之间,非常相近,在水溶液中都是稳定的三价态。稀土离子与水的亲和力大,因受水合物的保护,其化学性质非常相似,分离提纯极为困难。二是稀土精矿分解后所得到的混合稀土化合物中伴生的杂质元素较多(如铀、钍、铌、钽、钛、锆、铁、钙、硅、氟、磷等)。因此,在分离稀土元素的工艺流程中,不但要考虑这十几个化学性质极其相近的稀土元素之间的分离,而且还必须考虑稀土元素同伴生的杂质元素之间的分离。 1.萃取分离 轻稀土(P204弱酸度萃取)—镧、铈、镨、钕和钷; 中稀土(P204低酸度萃取)—钐、铕、钆、铽和镝; 重稀土(P204中酸度萃取)—钬、铕、铒、铥、镱、镥和钪。 2.萃取工艺 (1)分步法[2] 从1794年发现的钇(Y)到1905年发现的镥(Lu)为止,所有天然存在的稀土元素间的单一分离,还有居里夫妇发现的镭,都是用这种方法分离的。分步法是利用化合物在溶剂中溶解的难易程度(溶解度)上的差别来进行分离和提纯的。方法的操作程序是:将含有两种稀土元素的化合物先以适宜的溶剂溶解后,加热浓缩,溶液中一部分元素化合物析出来(结晶或沉

稀土元素及用途

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【名称由来】 17种稀土元素名称的由来及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.

我国稀土矿物概述

我国稀土矿物概述 摘要:稀土是化学元素周期表中镧系(镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥)15个元素和21号元素钪、39号元素钇(共17个元素)的总称。据其物理化学性质的差异性和相似性,可分成三个组:轻稀土组(镧~钷)、中稀土组(钐~镝)、重稀土组(钬~镥加上钪和钇)。世界稀土资源丰富, 在地壳内含量比人们熟悉的铅、锌多,远超过金和铂的含量。我国是世界第一稀土大国。稀土资源在全国分布广泛,而且品种齐全,储量大。 Abstract: Rare earth is a periodic table of the chemical elements in the lanthanide ( lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, promethium, terbium, dysprosium, holmium erbium, thulium, ytterbium, lutetium, ) the 15 element and21elements scandium, yttrium element 39(17 elements). According to its physical and chemical properties of the differences and similarities, which can be divided into three groups: Group ( light rare earth lanthanum ~ promethium ), in the rare earth group ( Sm ~ dy), heavy rare earth group ( holmium and lutetium with scandium and yttrium ). World rich rare earth resource, in the earth's crust content than the familiar lead, zinc, far more than gold and platinum content. China is the world's rare earth power. Rare earth resources in the country are widely distributed, and complete varieties, large reserves. 关键词:稀土矿物、应用、可持续发展 Key words: rare earth mineral, application, sustainable development 一、稀土矿物简介 稀土元素在地壳中主要以矿物形式存在,其赋存状态主要有三种:作为矿物的基本组成元素,稀土以离子化合物形式赋存于矿物晶格中,构成矿物的必不可少的成分。这类矿物通常称为稀土矿物,如独居石、氟碳铈矿等。 作为矿物的杂质元素,以类质同象置换的形式,分散于造岩矿物和

第 章稀土元素 习题答案

第九章稀土元素 【习题答案】 9.1 什么叫内过渡元素?什么叫镧系元素?什么叫稀土元素? 解:内过渡元素:指镧系和锕系元素,位于f区,也称为内过渡元素。 镧系元素:从57号元素镧到第71号元素镥,共15种元素,用Ln表示。 稀土元素:是15个镧系元素加上钪(Sc)和钇(Y),共计17个元素。 9.2 从稀土元素的发现史,你能得到何种启示? 解:请阅读“9.1.1 稀土元素的发现”一节的内容,体会科学研究的精神。 9.3 稀土元素在地壳中的丰度如何?主要的稀土矿物有哪些?世界和我国的稀土矿藏分布 情况如何? 解:稀土元素在地壳中的丰度如下表所示: 元素名称Sc Y La Ce Pr Nd Pm Sm 丰度/g·t-1 5 28.1 18.3 64.1 5.53 23.9 4.5×10-20 6.47 元素名称Eu Gd Tb Dy Ho Er Tm Yb Lu 丰度/g·t-1 1.06 6.36 0.91 4.47 1.15 2.47 0.20 2.66 0.75 主要的稀土矿物有独居石、氟碳铈矿、磷酸钇矿等。 我国稀土资源极其丰富,其特点可概括为:储量大、品种全、有价值的元素含量高、分 布广。已在18个省市发现蕴藏各类稀土矿,储量占世界已探明稀土矿藏的55%左右。南方 以重稀土为主,内蒙古以轻稀土为主。在内蒙古包头市北边白云鄂博,称为“世界稀土之都”, 储量占全国储量70%以上。国外稀土资源集中在美国、印度、巴西、澳大利亚和俄罗斯等国。 9.4 如何从稀土矿物中提取稀土元素? 解:从稀土矿物中提取稀土元素主要包括三个阶段: (1)精矿的分解:利用化学试剂与精矿作用使稀土元素富集在溶液或沉淀中,与伴生元 素分离开来。方法可分为干法和湿法。 (2)化合物的分离与纯化:从混合稀土氧化物或混合稀土盐中分离出单一的稀土元素。 方法有分级结晶法、分级沉淀法、选择性氧化还原法、离子交换法、溶剂萃取法等。 (3)稀土金属的制备:通常采用熔融盐电解和热还原法。

中南大学有机稀土配合物的合成及荧光特性

中南大学 有机稀土配合物的合成及 其荧光特性 学院名称:化学化工学院 、

有机稀土配合物的合成及其荧光特性 一、实验目的 1.掌握苯甲酸铕、苯甲酸-邻菲咯啉-铕三元配合物的制备方法; 2.了解苯甲酸铕、苯甲酸-邻菲咯啉-铕的荧光性质; 3.了解三元配合物第二配体的协同效应。 二、背景知识及实验原理 稀土有机配合物发光是无机发光、有机发光与生物发光的交叉学科,有着重要的理论研究意义及应用价值。稀土铕、铽配合物具有荧光强度高,单色性好,耐候性强和不易被氧化等优点,越来越受到人们的重视。以苯甲酸、邻苯二甲酸为配体的稀土配合物的合成及荧光性能已有较多研究,并且以二羧酸为桥联配体,可更有效地传递能量。 在20世纪80年代中期,前苏联地Golodkova LN等人已经研制出了保温大棚膜的稀土光转换剂。它能吸收97%的200-450nm的紫外光,并能将其转换为500-750nm 的红橙光。近年来,稀土有机配合物由于具有发光强度高和稳定性较好的优点,越来越引起人们的广泛关注,其应用研究非常活跃。稀土配合物发光机理在于有机配位体将所吸收的能量传递给稀土离子,使其4f电子被激发产生f-f电子跃迁并发光,例如铕β-二酮配合物是发红光的荧光材料,主要产生5D0-7F2的跃迁。这种发光材料能吸收太阳光中的紫外光并转换为可见光,将其添加到塑料膜中能改善光质,更好地利用太阳能。 这种铕的配合物在365nm高压汞灯下观察有明亮的红色发光。从荧光的激发与发射光谱结果来看,配合物激发态处于长波紫外范围,这是配体的吸收,由于配合物是个大的共轭体系,所以π-π*吸收强度特别高,吸收的能量通过分子内能量传递,使中心离子Eu3+发出强的红光。 金属离子与有机配体的配位反应: EuCI3+3C6H5COOH Eu(C6H5COOH)3+3HCI Eu(C6H5COOH)3+phen Eu(C6H5COOH)3 phen 三.仪器与试剂 试剂:36%-38%的盐酸,氢氧化钠,苯甲酸(或苯甲酸钠),邻菲咯啉(phen),pH试纸(或ph计),无水乙醇。 仪器:荧光分光光度计,恒温磁力搅拌器,烘箱,减压抽滤装置,烧杯,温度计,移液管等。

稀土元素分配型式及地球化学参数的计算

一、实习目的 由于稀土元素的原子结构、原子半径、离子半径及化合价的相似性,导致它们在自然界中常常紧密共生在一起。因镧系收缩的缘故,使得稀土元素的离子半径从La→Lu逐渐减小,于是在岩浆过程中,这些元素在固相和液相间的分配呈现出明显的规律性变化。Ce和Eu在自然界具有变价(Ce4+、Eu2+)的特征,Ce 和Eu的相对富集与亏损程度往往反映了特殊的地质背景。 本次实习要求掌握稀土元素的计算和作图方法,理解稀土元素的富集程度、分馏程度的地质意义,掌握Eu的亏损与富集的地质背景。 二、实习内容 某地区的岩浆岩种类极为发育(表1—1和表1—2),请画出各岩类的稀土配分曲线图、结合稀土元素参数进行地质过程分析。两种方法所得到的稀土元素参数 表1—1 岩浆岩稀土元素成分表(×10-6) 注:1-橄榄苏长岩,2-钾长花岗岩,3-H型花岗岩,4-A型花岗岩,5-石英闪长岩(M型花岗岩)。稀土元素由某单位等离子光谱方法分析。 表1—2 岩浆岩稀土元素成分表(×10-6) 注:表中数据由中子活化方法分析

一、基本原理 稀土元素通常指的是镧系元素的(La 、Ce 、Pr 、Nd 、Pm 、Sm 、Eu 、Gd 、Tb 、Dy 、Ho 、Er 、Tm 、Yb 、Lu ,其中Pm 在自然界无天然同位素),由于稀土元素的原子结构、原子半径、离子半径(RE 3+变化于0.86?—1.14?)及化合价的相似性使得它们在自然界往往紧密共生。因镧系收缩造成稀土元素的离子半径从La →Lu 逐渐减小,Ce 和Eu 在自然界具有变价(Ce 4+、Eu 2+)的特征,以及介质(岩石、土壤、矿物等)的不同而引起稀土元素在自然界的分离。 为便于研究稀土元素在某介质中的分配型式,必须排除“偶数规则”的影响,最常用的方法是利用球粒陨石丰度值对稀土元素进行标准化。 这里向大家推荐W.V .Boynton(1984)提出的球粒陨石丰度值(×10-6): La 0.31;Ce 0.808;Pr 0.122;Nd 0.6;Sm 0.195;Eu 0.0735;Gd 0.259;Tb 0.047;Dy 0.322;Ho 0.0718;Er 0.21;Tm 0.0324;Yb 0.209;Lu 0.0322。 1.计算球粒陨石标准化有关的稀土元素地球化学参数 N RE RE RE = 式中 RE ——某稀土元素的丰度; RE N ——某稀土元素轻球粒陨石标准化以后的丰度; RE 0——某稀土元素的球粒陨石丰度值。 )Pr (La 2 1Ce *Ce Ce Ce N N N N +==δN N N Pr La 2Ce += 式中:Ce δ——铈异常系数; Ce*——铈的理想值。 )Gd (Sm 2 1Eu *Eu Eu Eu N N N N +==δN N N Gd Sm 2Eu += Eu δ——铕异常系数;Eu*——铕的理想值。

相关文档
相关文档 最新文档