文档库 最新最全的文档下载
当前位置:文档库 › 用霍尔元件测量磁场实验报告

用霍尔元件测量磁场实验报告

用霍尔元件测量磁场实验报告
用霍尔元件测量磁场实验报告

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4)

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效 应。1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】

霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作 用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如图13-1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动 。 由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时, f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: 式中:e 为电子电量,为电子的漂移平均速度,B为磁场的磁感应强度。 同时,电场作用于电子所受电场力为: 式中:E H为霍尔电场强度,V H为霍尔电势,l为霍尔元件宽度当达到动态平衡时:  (13-1) 设霍尔元件宽度为l,厚度为d ,载流子浓度为 n ,则霍尔元件的工作电流为

传感器课程设计——霍尔传感器测量磁场要点

目录 一、课程设计目的与要求 (2) 二、元件介绍 (3) 三、课程设计原理 (6) 3.1霍尔效应 (6) 3.2测磁场的原理,载流长直螺线管内的磁感应强度 (8) 四、课程设计内容 (10) 4.1电路补偿调节 (10) 4.2失调电压调零 (10) 4.3按图4-3接好信号处理电路 (10) 4.4按图4-4接好总测量电路 (11) 4.5数据记录与处理 (12) 4.6数据拟合 (14) 五、成品展示 (16) 六、分析与讨论 (17) 实验所需仪器 (19) 个人总结 (20) 致谢 (21) 参考文献 (22) 参考网址 (22)

一、课程设计目的与要求 1.了解霍尔传感器的工作原理 2.掌握运用霍尔传感器测量磁场的方法

二、元件介绍 CA3140 CA3140高输入阻抗运算放大器,是美国无线电公司研制开发的一种BiMOS高电压的运算放大器在一片集成芯片上,该CA3140A和CA3140 BiMOS运算放大器功能保护MOSFET的栅极(PMOS上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。操作电源电压从4V至36V(无论单或双电源),它结合了压电PMOS晶体管工艺和高电压双授晶体管的优点.(互补对称金属氧化物半导体)卓越性能的运放。 应用范围: .单电源放大器在汽车和便携式仪表 .采样保持放大器 .长期定时器 .光电仪表 .探测器 .有源滤波器 .比较器 .TTL接口 .所有标准运算放大器的应用 .函数发生器 .音调控制 .电源 .便携式仪器

3503霍尔元件 UGN3503LT,UGN3503U和UGN3503UA霍尔效应传感器准确地跟踪磁通量非常小的变化,密度变化通常太小以致不方便操作霍尔效应开关。 可作为运动探测器,齿传感器和接近探测器,磁驱动机械事件的镜像。作为敏感电磁铁的显示器,就可以有效地衡量一个系统的负载量可以忽略不计的性能,同时提供隔离污染和电气噪声。 每个霍尔效应集成电路包括一个霍尔传感元件,线性放大器和射极跟随器输出级。 三种封装形式提供了对磁性优化包大多数应用程序。封装后缀“LT”是一个缩影SOT-89/TO243AA表面贴装应用的晶体管封装;后缀“U”是一个微型三引脚塑料SIP,而'UA'是一个三引脚超小型SIP协议。所有器件的额定连续运行温度范围为-20 °C至+85°C。 特点: ·极为敏感 ·至23 kHz的平坦的响应Array·低噪声输出 ·4.5 V至6 V的操作 ·磁性优化装箱 图2-4 3503霍尔元件封装及引脚图

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

霍尔元件测磁场实验报告

霍尔元件测磁场实验报告 The Standardization Office was revised on the afternoon of December 13, 2020

用霍尔元件测磁场 前言: 霍耳效应是德国物理学家霍耳( 1855—1938)于1879年在他的导师罗兰指导下发现的。由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。 利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。了解这一富有实用性的实验,对今后的工作将大有益处。 教学目的: 1.了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。 2.掌握用霍尔元件测量磁场的原理和方法。 3.学习用霍尔器件测绘长直螺线管的轴向磁场分布。 教学重难点: 1. 霍尔效应 2. 霍尔片载流子类型判定。 实验原理 如右图所示,把一长方形半导体薄片放入磁场中, 其平面与磁场垂直,薄片的四个侧面分别引出两对电极(M、N和P、S),径电极M、,则在P、S极所在侧面产生电势差,这一现象称为霍尔效应。这电N通以直流电流I H 势差叫做霍尔电势差,这样的小薄片就是霍尔片。

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

霍尔效应及磁场的测定

霍尔效应及磁场的测定 近年来,在科研和生产实践中,霍尔传感器被广泛应用于磁场的测量,它的测量灵敏度高,体积小,易于在磁场中移动和定位。本实验利用霍尔传感器测量通电螺线管内直流电流与霍尔传感器输出电压之间的关系,证明霍尔电势差与螺线管内的磁感应强度成正比,从而掌握霍尔效应的物理规律;用通电螺线管中心点磁场强度的理论计算值作为标准值来校准霍尔元件的灵敏度;用霍尔元件测螺线管内部的磁场沿轴线的分布。 【实验目的与要求】 1.了解霍尔传感器的工作原理,学习测定霍尔传感器灵敏度的方法; 2.掌握用霍尔传感器测量螺线管内磁感应强度沿轴线方向的分布。 【实验原理】 一、霍尔效应 图8-1 霍尔效应原理图 把矩形的金属或半导体薄片放在磁感应强度为B 的磁场中,薄片平面垂直于磁场方向。如图8-1所示,在横向方向通以电流I ,那么就会在纵向方向的两端面间出现电位差,这种现象称为霍尔效应,两端的电压差称为霍尔电压,其正负性取决于载流子的类型。(图8-1载流子为带负电的电子,是N 型半导体或金属),这一金属或半导体薄片称为霍尔元件。假设霍尔元件由N 型半导体制成,当霍尔元件上通有电流时,自由电子运动的方向与电流I 的流向相反的。由于洛伦兹力B v e F m ?-=的作用,电子向一侧偏转,在半导体薄片的横 向两端面间形成电场,称为霍尔电场H E ,对应的电势差称为霍尔电压U H 。电子在霍尔电场H E 中所受的电场力为H H E e F -=,当电场力与磁场力达到平衡时,有 ()()0=?-+-B v e E e H B v E H ?-=

若只考虑大小,不考虑方向有 E H =vB 因此霍尔电压 U H =wE H =wvB (1) 根据经典电子理论,霍尔元件上的电流I 与载流子运动的速度v 之间的关系为 I=nevwd (2) 式中n 为单位体积中的自由电子数,w 为霍尔元件纵向宽度,d 为霍尔元件的厚度。由式(1)和式(2)可得 IB K IB d R end IB U H H H =?? ? ??== (3) 即 I K U B H H = (4) 式中en R H 1=是由半导体本身电子迁移率决定的物理常数,称为霍尔系数,而K H 称为霍尔 元件的灵敏度。在半导体中,电荷密度比金属中低得很多,因而半导体的灵敏度比金属导体大得多,所以半导体中,电荷密度比金属中低得多,因而半导体的灵敏度比金属导体大得多,所以半导体能产生很强的霍尔效应。对于一定的霍尔元件,K H 是一常数,可用实验方法测定。 图8-2 SS95A 型集成霍尔传感器结构图 虽然从理论上讲霍尔元件在无磁场作用(B =0)时,U H =0,但是实际情况用数字电压表测量并不为零,这是由于半导体材料结晶不均匀、各电极不对称等引起附加电势差,该电势差U HO 称为剩余电压。随着科技的发展,新的集成化(IC)器件不断被研制成功,本实验采用SS95A 型集成霍尔传感器(结构示意图如图8-2所示)是一种高灵敏度传感器,它由霍尔元件、放大器和薄膜电阻剩余电压补偿器组成。其特点是输出信号大,并且已消除剩余电压的影响。SS95A 型集成霍尔传感器有三根引线,分别是:“V +”、“V -”、“V out ”。其中“V +”和“V -”构成“电流输入端”,“V out ”和“V -”构成“电压输出端”。由于SS95A 型集成霍尔传感器它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处于该标准状态。在实验时,只要在磁感应强度为零(B =0)条件下,“V out ”和“V -”之间的电压为2.500V ,则传感器就处于标准工作状态之下。

磁场分布

§3.3 磁场分布 【预习重点】 1.毕奥-萨伐尔定律、载流圆线圈在轴线上某点的磁感应强度公式。 2.亥姆霍兹线圈的组成及其磁场分布的特点。 3.霍尔效应、霍尔传感器原理。 【实验目的】 1.测亥姆霍兹线圈在轴线上的磁场分布。 2.测载流圆线圈在轴线上的磁场分布,验证磁场叠加原理。 3.比较两载流圆线圈距离不同时轴线上磁场分布情况。 【实验原理】 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R B ?+?= 2 /322 2 0) (2μ (3.3.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.3.2) 轴线外的磁场分布情况较复杂,这里简 略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.3.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B ′为 3/23/222222 01222R R B N I R R x R x μ??????????????′=???++++??? ???????????????????????? (3.3.3) 而在亥姆霍兹线圈轴线上中心O 处磁感应强度大小′ 0B 为 003/285N I B μ??′= (3.3.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴 线上任一点的磁感应强度大小B ′′为 3/23/222222 01222d d B N I R R x R x μ??????????????′′=???++++??????????????????????????? (3.3.5) 四、霍尔效应、霍尔传感器 1.霍尔效应 霍尔效应是具有载流子的导体(或半导体)同时处在电场和磁场中而产生电势的一种现象。如图3.3.3(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板的横向两侧面A ,A ′之间就呈现出一定的电势差,这一现象称为霍尔效应,所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB R H 是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数。霍尔效应可以用洛伦兹力来解释。详见附页。 2.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应,即U H =R H d IB =K H IB K H =R H /d K H 称为霍尔元件灵敏度,B 为磁感应强度,I 为流过霍尔元件的电流强度。理论上B 为零时,

实验五用霍尔元件测量磁场

实验五用霍耳元件测量磁场 一、实验目的 1.了解霍耳效应的产生机理。 2.掌握用霍耳元件测量磁场的基本方法。 二、实验仪器 霍尔效应实验仪。 三、实验原理 1、什么叫做霍耳效应? 若将通有电流的导体置于磁场B之中,磁场B(沿z轴)垂直于电流I H(沿x轴)的方 向,如图1 U H,这个现象称 为霍耳效应。 图1 霍耳效应原理 这一效应对金属来说并不显著,但对半导体非常显著。霍耳效应可以测定载流子浓度及载流子迁移率等重要参数,以及判断材料的导电类型,是研究半导体材料的重要手段。还可以用霍耳效应测量直流或交流电路中的电流强度和功率以及把直流电流转成交流电流并对它进行调制、放大。用霍耳效应制作的传感器广泛用于磁场、位置、位移、转速的测量。(1)用什么原理来解释霍耳效应产生的机理? 霍耳电势差是这样产生的:当电流I H通过霍耳元件(假设为P型)时,空穴有一定的漂移速度v,垂直磁场对运动电荷产生一个洛沦兹力 ) (B v F? =q B(1)式中q为电子电荷。洛沦兹力使电荷产生横向的偏转,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E,直到电场对载流子的作用力F E=q E与磁场作用的洛沦兹力相抵消为止,即 E B v q q= ?) ((2)这时电荷在样品中流动时将不再偏转,霍耳电势差就是由这个电场建立起来的。

如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍耳电势差有不同的符号,据此可以判断霍耳元件的导电类型。 (2)如何用霍耳效应侧磁场? 设P 型样品的载流子浓度为p ,宽度为b ,厚度为d 。通过样品电流I H =pqvbd ,则空穴的速度v =I H /pqvbd ,代入(2)式有 pqbd B I E H = ?=B v (3) 上式两边各乘以b ,便得到 d B I R pqd B I Eb U H H H H == = (4) pq R H 1= 称为霍耳系数。在应用中一般写成 U H =K H I H B . (5) 比例系数K H =R H /d =1/pqd 称为霍耳元件灵敏度,单位为mV/(mA ·T)。一般要求K H 愈大愈好。K H 与载流子浓度p 成反比。半导体内载流子浓度远比金属载流子浓度小,所以都用半导体材料作为霍耳元件。K H 与片厚d 成反比,所以霍耳元件都做的很薄,一般只有0.2mm 厚。 由(5)式可以看出,知道了霍耳片的灵敏度K H ,只要分别测出霍耳电流I H 及霍耳电势差U H 就可算出磁场B 的大小。这就是霍耳效应测磁场的原理。 2、如何消除霍耳元件副效应的影响? 在实际测量过程中,还会伴随一些热磁副效应,它使所测得的电压不只是U H ,还会附加另外一些电压,给测量带来误差。 这些热磁效应有埃廷斯豪森效应,是由于在霍耳片两端有温度差,从而产生温差电动势U E ,它与霍耳电流I H 、磁场B 方向有关;能斯特效应,是由于当热流通过霍耳片(如1,2端)在其两侧(3,4端)会有电动势U N 产生,只与磁场B 和热流有关;里吉-勒迪克效应,是当热流通过霍耳片时两侧会有温度差产生,从而又产生温差电动势U R ,它同样与磁场B 及热流有关。 除了这些热磁副效应外还有不等位电势差U 0,它是由于两侧(3,4端)的电极不在同一等势面上引起的,当霍耳电流通过1,2端时,即使不加磁场,3和4端也会有电势差U 0产生,其方向随电流I H 方向而改变。 因此,为了消除副效应的影响,在操作时我们要分别改变I H 的方向和B 的方向,记下四组电势差数据,作运算并取平均值: 由于U E 方向始终与U H 相同,所以换向法不能消除它,但一般U E <

霍尔效应测磁场实验报告

v1.0可编辑可修改 (3) 实验报告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、 实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、 实验学时: 四、 实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为 B 的磁场中,并让薄片平面与磁场 方向(如Y 方向)垂直。如在薄片的横向( X 方向)加一电流强度为|H 的电流,那么在与 磁场方向和电流方向垂直的 Z 方向将产生一电动势 U H 。 如图1所示,这种现象称为霍耳效应, U H 称为霍耳电压。霍耳发现,霍耳电压 U H 与 电流强度I H 和磁感应强度 B 成正比,与磁场方向薄片的厚度 d 反比,即 U H R-^^B ( 1 ) d 式中,比例系数R 称为霍耳系数,对同一材料 R 为一常数。因成品霍耳元件 (根据霍耳效应 制成的器件)的d 也是一常数,故 R/d 常用另一常数 K 来表示,有 U H KI H B 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位 电流I H 和霍耳电压U H ,就可根据式 U H KI H 电流作用下霍耳电压的大小。如果霍耳元件的灵敏度 K 知道(一般由实验室给出),再测出

算出磁感应强度Bo (5) v

(5) v (二)霍耳效应的解释 现研究一个长度为I 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿 X 方向 通以电流I H 后,载流子(对 N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方 向运动,在磁感应强度为 B 的磁场中,电子将受到洛仑兹力的作用,其大小为 f B evB 方向沿Z 方向。在f B 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场 E H (见图2), 它会对载流子产生一静电力 f E ,其大小为 f E eE H 方向与洛仑兹力 f B 相反,即它是阻止电荷继续堆积的。当 f B 和f E 达到静态平衡后,有 f B f E ,即evB eE H eU H /b ,于是电荷堆积的两端面(Z 方向)的电势差为 U H vbB 通过的电流I H 可表示为 I H nevbd 式中n 是电子浓度,得 n ebd 将式(5)代人式(4)可得 (4) 图1霍耳效应示意图 图2霍耳效应解释

大学物理实验讲义实验 用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

霍尔测磁场(大物实验)

用霍尔效应测量磁场分布 霍尔效应是美国科学家霍尔于1879年发现的。由于它揭示了运动的带电粒子在外磁场中因受洛伦兹力的作用而偏转,从而在垂直于电流和磁场的方向上将产生电势差的规律,因此该效应在科学技术的许多领域(测量技术、电子技术、自动化技术等)中都有着广泛的用途。现在霍尔效应产品已经在自动化和信息技术中得到了广泛地应用。特别是在用计算机进行四遥(遥测、遥控、遥信、遥调)监控的一些现代化设备中,应用磁平衡和磁比例式原理研制的霍尔电压传感器、霍尔电流传感器和霍尔开关量传感器进行静电(直流)隔离,实现了直流电压高精度的隔离传送和检测,直流电流高精度的隔离检测和监控量越限时准确的隔离报警。从而在我国引起了许多科技人员对霍尔效应、霍尔元件以及应用霍尔效应的实用知识和 实用技术的关注。 本实验通过研究霍尔电压与工作电流的关系,霍尔电压与磁场的关系以 及消除霍尔效应的副效应的方法,从实验中认识霍尔效应,为在自动检测、自动控制和信息技术中应用霍尔效应打下一个良好的基础。 1897年,霍尔设计了一个根据运动载流子在外磁场中的偏转来确定在导体或半导体中占主导地位的载流子类型的实验。在研究通有电流的导体在磁场中的受力时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。霍尔效应的研究在半导体理论的发展中起到了重要的推动作用。直到现在,霍尔效应的研究仍是研究半导体性质的重要实验方法。利用霍尔系数和导电率的联合测量,可以用来研究半导体的到点机构、散射机构,并可以确定半导体的一些基本参数,如半导体材料的导电类型、载流子浓度、迁移率大小、禁带宽度、杂质电离能等。 【实验目的】 (1)掌握霍尔元件的工作原理。 (2)学习用霍尔元件测量磁场的原理和方法。 (3)学习用霍尔元件测绘载流圆线圈和亥姆霍兹线圈的磁场分布。 (4)学习用霍尔元件测绘螺线管磁场分布。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于(图15-1)所示的半导体试样,若在X 方向通以电流I ,在Z 方向加磁场B ,则在Y 方向即试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。显然,该电场是阻止载 流子继续向侧面偏移,当载流子所受的横向电场力H eE 与洛仑兹力eVB 相等时,样品两侧电 荷的积累就达到平衡,故有: H eE eVB = (15-1) 其中,H E 为霍尔电场,V 是载流子在电流方向上的平均漂移速度。 设试样的宽为b ,厚度为d ,载流子浓度为n ,则 S I neVbd = (15-2) 由(15-1)、(15-2)两式可得: 1S S H H H I B I B V E b R ne d d ==?= (15-3)

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4) 其中pq R H 1 = 称为霍尔系数,在应用中一般写成

霍尔元件测磁场与实验报告

用霍尔元件测磁场 前言: 霍耳效应是德国物理学家霍耳(A.H.Hall 1855—1938)于1879年在他的导师罗兰指导下发现的。由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。 利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。了解这一富有实用性的实验,对今后的工作将大有益处。 教学目的: 1.了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。 2.掌握用霍尔元件测量磁场的原理和方法。 3.学习用霍尔器件测绘长直螺线管的轴向磁场分布。 教学重难点: 1. 霍尔效应 2. 霍尔片载流子类型判定。 实验原理 如右图所示,把一长方形半导体薄片放入磁场中, 其平面与磁场垂直,薄片的四个侧面分别引出两对电极(M、N和P、S),径电极M、N通以直流电流I H,则在P、S极所在侧面产生电势差,这一现象称为霍尔效应。这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。

假设霍尔片是由n 型半导体材料制成的,其载流子为电子,在电极M 、N 上通过的电流由M 极进入,N 极出来(如图),则片中载流子(电子)的运动方向与电流I S 的方向相反为v,运动的载流子在磁场B 中要受到洛仑兹力f B 的作用,f B =e v ×B ,电子在f B 的作用下,在由N →M 运动的过程中,同时要向S 极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(P 极所在侧面)带正电,在上下两侧面之间就形成电势差V H ,即霍尔电势差。薄片中电子在受到f B 作用的同时,要受到霍尔电压产生的霍尔电场E H 的作用。f H 的方向与f B 的方向正好相反,E H =V H /b , b 是上下侧面之间的距离即薄片的宽度,当f H +f B =0时,电子受力为零达到稳定状态,则有 –e E H +(–e v ×B)=0 E H = - v ×B 因 v 垂直B ,故 E H =v B (v 是载流子的平均速度) 霍尔电压为 V H = b E H = b v B 。 设薄片中电子浓度为n ,则 I S =nedb v , v =I S /nedb 。 V H = I S B/ned =K H I S B 式中比例系数K H = 1/ned ,称为霍尔元件的灵敏度。 将V H =K H I S B 改写得 B = V H / K H I S 如果我们知道了霍尔电流I H ,霍尔电压V H 的大小和霍尔元件的灵敏度K H ,我们就可以算出磁感应强度B 。 实际测量时所测得的电压不只是V H ,还包括其他因素带来的附加电压。根据其产生的原因及特点,测量时可用改变I S 和B 的方向的方法,抵消某些因素的影响。例如测量时首先任取某一方向的I S 和B 为正,当改变它们的方向时为负,保持I S 、B 的数值不变,取(I S+,B +)、(I S-、B +)、(I S+、B -)、(I S-,B -)四种条件进行测量,测量结果分别为: V 1= V H +V 0+V E +V N +V RL V 2=-V H -V 0-V E +V N +V RL V 3=-V H +V 0-V E -V N -V RL V 4=V H -V 0+V E -V N -V RL 从上述结果中消去V 0,V N 和V RL ,得到 V H = 4 1 (V 1-V 2-V 3+V 4)-V E

相关文档
相关文档 最新文档