文档库 最新最全的文档下载
当前位置:文档库 › 电压等级为110_∕35∕10kV降压变电站电气一次系统设计作业讲解

电压等级为110_∕35∕10kV降压变电站电气一次系统设计作业讲解

电压等级为110_∕35∕10kV降压变电站电气一次系统设计作业讲解
电压等级为110_∕35∕10kV降压变电站电气一次系统设计作业讲解

电子信息工程学院

发电厂变电所电气部分设计

班级:

学号:

姓名:

指导教师评语:_______________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ ______________________

《发电厂电气部分》作业

题目5:试设计一110KV变电所电气主接线

该变电所电压等级为110/35/10KV,其中110KV侧4回线;35KV 侧4回,负荷为4-6MW;10KV侧8回线,负荷为1.5-4MW之间。

组员:

一、分析原始资料

该变电所向荆门市民供电,且是一座110/110/35kV终端变电所。设计的重点是对变电所电气主接线的拟订及配电装置的选择。荆门地区的全年平均气温为18℃,年最高气温45℃,年最低气温﹣5.℃,年日照时间1997-2100h,年平均降水量804-1067mm;每年7、8月为雷雨集中期。110kv的变电所应该考虑防雷等措施。待建110KV变电所从相距40km的荆门热电厂受电(系统为无限大功率电源)并采用架空线作为电能的传输及配送;型号为LGJ-300电抗值为0.395Ω/km,其他线路阻抗忽略不计。

从负荷特点及电压等级可知110/35/10kv为降压变电所且满足三绕组变压器的特点:高压侧为中压侧的近似3倍,中压侧为低压侧的近似3倍;110KV应该考虑其供电可靠性、扩建等问题;从经济远性选择三绕组变压器。35及10kv 属于一、二级负荷可靠性也有一定要求;35kv侧每回线负荷为4-6MW;10kv侧负荷1.5-4MW。负荷的功率因数0.8进行选择变压器;其运行功率因数不低于

0.92;不考虑网损。

二、主接方案的初步拟定

根据对原始资料的分析。此变电站有三个电压等级:110/35/10KV ,故可初选三相三绕组变压器,根据变电所与系统连接的系统可知,变电所有两条进线,为保证供电可靠性,可装设两台主变压器。110kV高压侧2进2出4回出线,可选择内桥型接线,单母线分段接线等。35kV和10kV侧分别为4回出线、8回出线,均可以采用单母分段接线,为保证设计出最优的接线方案,初步设计以下二种接线方案供最优方案的选择。

方案一(图2-1)高压侧:内桥接线;中压侧,低压侧:单母分段接线。

图2-1 方案一主接线图

方案二(图2-2)高压侧:单母分段接线;中压侧,低压侧:单母分段接线。

图2-2 方案二主接线图

三、主接线各方案的讨论比较

1.内桥形接线:

a)优点:高压断路器数量少,四个元件只需三台断路器。

b)缺点:变压器的切除和投入较复杂,需操作两台断路器并影响一回线路暂时停运;连接桥断路器检修时,两个回路需解列运行;出现断路器检修时,线路要在此期间停运。

c)适用范围:适用容量较小的变电所,变压器不常切换或线路较长、故障率较高情况。

2.单母线分段接线

(1)优点:

a)用断路器把母线分段后,对重要用户可从不同端引出两个回路,有两个电源供电;

b)当一段母线发生故障时,分段断路器能自动将故障切除,保证正常段母线不间断供电和不致使重要用户停电。

(2)缺点:

a)当一段母线或母线隔离开关故障或检修时,该段母线的回路都在检修期间内停电;

b)当出线为双回路时,常使架空线出现交叉跨越;

c)扩建时需向两个方向均衡扩建。

(3)适用范围:

a)35-63kV配电装置出线回路数为4-8回时;

b)110-220kV配电装置出线回路数为3-4回时。

主接线所选的二个初步方案,主接线中压、低压二次侧方案相同,只比较一次侧方案。

方案一的特点如下:当本所高压断路器数量少,节约断路器的成本投入;但不利于扩建、可靠性不高。

方案二的特点如下:今后扩建也方便;提高供电的可靠性在任意一段母线故障时可保证正常母线不间断供电。

四、主接线最终方案的确定

在对原始资料的分析和主接线两种方案的对比下;从经济性来看,由于方案二增加了隔离开关,占地面积较有所增加,从设备上来综合投资费用

和运行费增加增加。

从可靠性来看,方案一变压器的切除和投入较复杂,需操作两台断路器并影响一回线路暂时停运;连接桥断路器检修时,两个回路需解列运行;出现断路器检修时,线路要在此期间停运。方案二当一段母线发生故障时,分段断路器能自动将故障切除,保证正常段母线不间断供电和不致使重要用户停电。

从改变运行方式灵活性来看,在配电装置的综合投资,包括控制设备,电缆,母线及土建费用上,在运行灵活性上110KV侧单母分段接线接线比桥型线接线有很大的灵活性且方案二能适应系统中各种运行方式调度和潮流

变化需要,试验方便。综上所述最终选择方案二

五、主变压器容量的确定及无功补偿

5.1原始资料分析可知

1、待建110KV荆门变电站从相距40km的热电厂受电。

2、待建110KV荆门变电站年负荷增长率为5%,变电站总负荷考虑五年发展规划。

3、待建110KV荆门变电所各电压级负荷数据如下表:

5.2无功补偿电容器的型号选择及负荷计算 一、无功补偿

1).35kv 侧无功补偿容量分析

实际功率因数为0.8(37=θ°),补偿后功率因数为0.92(/θ=23°)可知无功补偿率c q ?=0.33则补偿容量C Q

C Q =Pc(tanarccos0.8-tanarccos0.92) =Pmax*c q ? =21*0.33=6.93Mvar

故选用:TBB35-8016/334CCW :额定电压:35,额定容量:8016kvar 台数的确定:n=C Q /q N

=6930/8016=1(台)

2).10kv 侧无功补偿容量分析

实际功率因数为0.8(37=θ°),补偿后功率因数为0.92(/θ=23°)可知无功补偿率c q ?=0.33则补偿容量C Q

C Q =Pc(tanarccos0.8-tanarccos0.92) =Pmax*c q ?

=24.5*0.33=8.085Mvar

故选用:TB 1036B -4200/100BL :额定电压:10,额定容量:4200kvar 台数的确定:n=C Q /q N

=8.085/4200=2(台)

二、变电所的负荷计算

为满足电力系统对无功的需要,需要在用户侧装设电容器,进行无功补偿,使用户的功率因数至少提高到0.92。

根据原始资料中的最大有功及调整后的功率因数,算出最大无功,可得出以下数据:{S ”=√(P 2+(Q-n q N

)2 ) COS Ф”=P/ S ” }

5.3待建110KV 荆门变电所总负荷的计算(无功补偿后)

35~

S =P 35+jQ 35 =5+4.5+6+5.5+j(1.84+1.66+2.21+2.03) =21+j7.74(tan Φ’’=0.36)

35~

S (1+5%)5=(21+j7.74)×1.28=26.88+j9.02

S 35=28.35 (MVA)

10~

S =P 10+jQ 10 =4*2+3.5*3+2+1.8+2.2+j(1.42*3+1.62*2+0.89+0.81+0.73) =24.5+j9.93(tan Φ’’=0.406)

10~

S (1+5%)5=(24.5+j9.93)×1.28=31.36+j12.71

S 10 =33.84 (MVA)

110~S =K 110[K 3535~S +K 1010~

S ](1+5%)5

=0.9 [0.9(21+j7.74)+0.9(24.5+j9.93)]*1.055

=47.17+j18.32

S 110=√(47.172 + 18.322) = 50.9 (MVA)

COS Φ= P 110 / S 110 =47.17/50.9= 0.927 满足功率因数提高到0.92 5.4变压器型号的确定

所有负荷均由两台电压为110KV/35KV/10KV 变压器供电,其中一台主变事

故停运后,另一台主变压器的容量应保证所有用户的60%全部负荷的供电。

用户的60%全部总容量: S N ≥0.6S 110 =30.54MVA 因此可选择SFSZ7-31500/110型三相三绕组有载调压变压器,接线组别:YN,yn0, d11。

由于15%S 110 = 15%×50.9 (MVA)=7.635(MVA)

15%S 110 = 15%×50.9 (MVA)=7.635(MVA) < S 35 = 28.35 (MVA),

因此主变110KV 、35KV 、10KV 三侧容量分别为100% / 100% / 100% 结论:荆门变电所三绕组变压器,由以上计算,查《发电厂电气部分》

六.短路电流的计算(最大工作方式)

6.1短路计算点的选择

方案二的短路计算的系统化简图如下(图6-1)所示 本设计选d1、d2和 d3分别为110kv 35kv 10kv 母上短路点计算且短路电流最大选择主接线上的设备

图6-1 主接线短路点选择简图

6.2网络的等值变换与简化

方案二的短路计算的系统化简阻抗图及各阻抗值,短路点均一样;如下图为系统阻抗图(图6-2)

图6-2 系统阻抗图

首先应用星-三角变换,将每台变压器的阻抗化简,其转化图如图6-3

图6-3 系统阻抗转化图

6.3 短路点的选择与各短路点的短路电流的计算

选d1,d2,d3为短路点进行计算。(近似计算法)

已知,由S B=100MV A, U A V=115kV,系统为无穷大功率电源。

所以

系统短路电抗S d*1 =∞

X d*1=0

线路电抗X L*1=1/2×X0×L×S b/U b2

=1/2×0.395×40×100/1152=0.0597总电抗X d* =0+0.0597=0.0597

又由所选的变压器参数阻抗电压:10.5%(高-中),18%(高-低),6.5%(中-低)算得

U K1%=1 / 2[U(1-2)% +U(1-3)% - U(2-3)%]=11%

U K2%=1 / 2[U(1-2)% +U(2-3)% - U(1-3)%]= -0.5%

U K3%=1 / 2{U(1-3)% +U(2-3)% - U(1-2)%}= 7%

主变容量为50MV A,

X= U K1% / 100×(S B/S N)= 0.349

标幺值:

*1

X= U K2% / 100×(S B/S N)= -0.016

*2

X= U K3 % /100×(S B/S N)=0.222

*3

简化后的阻抗图如图5-3:

图5-3 系统阻抗简化图

最终等效电抗标幺值:X

=0.0597

*

X=0.154

*1

X=0.098

*2

X=-2.136

*3

(1)当d1点短路(110KV)时:

X js*1=0.0597

I d1*= 1 / X js*1 = 1/0.0597= 16.75

==13/b b b U S I 100/(3×115)=0.502(kA) "I d 1=I ″d 1*×I b =16.75×0.502= 8.409(kA) I ∞="I d 1=8.409(kA)

i ch =2K ch ×"I d 1=21.4429(kA)

(110kv 及以上网络K ch 取1.8) S ∞=3U b 1×

I=3×115×8.409=1672.9706MV A 其中,X js*——计算电抗; I d1*——短路电流周期分量标幺值;

"I d ——起始次暂态电流; I ∞——t =∞时的稳态电流; i ch ——短路电流冲击值; S ∞——短路容量。 (2)当d 2短路(35KV )时有:

X js2*=0.226

"I d 2*=1/ X js2*=1/0.226=4.425 I b2=S b /3U b 2=100/(3×37)=1.56 (kA) "I d 2="I d2*×I b2 =4.425×1.56=6.9 (kA) I ∞="I d 2=6.9(kA )

i ch =2K ch ×"I d 2= 2.55?6.9=17.595(kA) S 2∞=3U b 2×I ∞=431.03 MV A

(3)当d 3点短路:

X js3*=0.286

"I d 3*=1/ X js3*=1/0.286=3.5

I b3=S b /3U b 3=100/(3×10.5)= 5.5(kA) "I d3="I d 3*×

I b =3.5×5.5=19.25(kA) I ∞ = "I d3=19.25 (kA)

i ch =2.55×"I d 3=2.55×19.25=49.088 (kA) S 3∞=3U b 3×I ∞=3×10.5×19.25=349.65 MV A

6.4各短路点计算参数

七.一次系统的电气设备选择

7.1断路器的选择

7.1.1断路器选择原则与技术条件1)电压: Ue≥ U

2)电流:Ie≥Igmax

10kV侧:

=

max

Ig

I

N 1.05Sn/(3Un)=1.05*31500/(3*110)=173.8A

35 kV侧:

=

max

Ig

I

N

)

cos

3

/(

max

?

g

U

P

=21/(3*35*0.92)=376.6A

10 kV侧:

=

max

Ig

I

N

)

cos

3

/(

max

?

g

U

P

=24.5/(3*10*0.92)= 1537.5A

3)开断电流: Ioc≥ioo

4)动稳定: imax≥ich 式中ch

i——三相短路电流冲击值;

max

i——断路器极限通过电流峰值。

5)热稳定:

22

dz t I t I t ∞

式中

2

I

∞——稳态三相短路电流;

dz

t——短路电流发热等值时间(又称假想时间);

t

I——断路器t秒热稳定电流。(根据《电力设备实用技术手册》选择设备

t 会给出)

其中''

0.05dz z t t β=+,由 β”=1.0和短路电流计算时间t ,

从《发电厂电气部分》中查找短路电流周期分量等值时间z t ,算出dz t 。 7.1.2 断路器型号的选择及校验

110KV 侧 选定为 LW25-126.各项技术数据如下表:

35kV 侧 选定为ZW30-40.5各项技术数据如下:

10kV 侧 选定为ZN12-12各项技术数据如下:

7.2 隔离开关的选择

110kV 侧 选定为GW 4-126D ,各项技术数据如下:

35kV 侧 选定设备为GW4-40.5D,

各项技术数据如下: 10kV 侧 选定设备为GN -12,

各项技术数据如下:

7.3 电流互感器的选择

选择如下电流互感器的型号及参数

电流互感器的校验

7.4 电压互感器的选择

7.5 避雷器的选择

110侧检验: (1)灭弧电压校验:

最高工作允许电压:5.12611015.115.1=?==N m U U kV 直接接地:2.1015.1268.0=?=>m d mh U C U kV ,满足要求。 (2)工频放电电压校验: 下限值: 2193

5.12630=?

=>xg gfx U k U kV

上限值: 2622192.12.1=?==gfx gfs U U kV <268kV 上、下限值均满足要求。 35kv 侧检验

(1)灭弧电压校验:

最高工作允许电压:25.403515.115.1=?==N m U U kV 直接接地:2.3225.408.0=?=>m d mh U C U kV ,满足要求。 (2)工频放电电压校验: 下限值: 72.693

25.4030=?

=>xg gfx U k U kV

上限值: 664.8372.692.12.1=?==gfx gfs U U kV <104kV 上、下限值均满足要求。

7.6 高压熔断器的选择

7.7母线与导线的选择与校验(荆门年平均温度18℃)

110kV 侧进线的校验

根据任务书已知110kV 侧架空线路采用LGJ-300。查表得LGJ-300型导线

参数如下表所示:(修正系数 K=

θθ

--al al Q Q =258018

80--=1.06 al θ

—导体长期发热

允许最高温度;0θ

—导体的额定环境温度;θ—导体的实际温度;Y I —在额定环境温度时导体的允许电流;热稳定系数C=87)

它在Qy=80℃,Q0=25℃时,Iy =753A 已知综合校正系数K0=1.06 K0 Iy =1.06×753=805.71A 所以Ig.max=188.69A< K0Iy 所以所选导线满足要求。

110kV 母线的选择及校验

110kV 进线最大持续工作电流Ig.max=173.8A

按T max =6000h/a ,查表,可得经济电流密度J=0.97A/2mm 则母线经济截面为:

S= I g.max /J=173.8/0.97=179.22mm

按最大持续工作电流选择,查设备手册选LGJ-185型钢芯铝绞线,其标称截 面为1852

mm ,+80℃长期允许载流量为510A 。

已知综合修正系数K=1.06实际环境温度18℃, 综合修正系数K=1.06 故K I y =540.6> I g.max =173.8A ,可满足长期发热要求 热稳定校验:S≥S min =

dz t C

I ∞

(mm 2) t dz 为主保护动作时间加断路器全分闸时间 取 t dz =3.45s

其中热稳定系数C=87,满足热稳定要求的最小截面为: S min =

dz t C I ∞=54.387

8409

=167.41(mm 2) 可见,前面所选导线截面S=185mm 2>S min =167.41mm 2,热稳定要求。 35kV 母线的选择及校验

1.按经济电流密度选择母线截面

35kV 最大持续工作电流I g.max =376.6A

按T max =6000h/a ,查表,可得经济电流密度J=0.97A/2mm 则母线经济截面为:

S= I g.max /J=376.6/0.97=388.242mm

按最大持续工作电流选择,查设备手册选LGJ-400型钢芯铝绞线,其标称截 面为4002

mm ,+80℃长期允许载流量为835A 。

因实际环境温度Q=18℃,综合修正系数K=1.06 故K I y =885.1> I g.max =388.24A ,可满足长期发热要求。 2.热稳定校验:S≥S min =

dz t C

I ∞

(2mm )

t dz 为短路电流等值时间,即t dz =3.4+0.05=3.45s

查《发电厂电气》,其中热稳定系数C=87,满足热稳定要求的最小截面为:

S min =dz t C

I ∞

= (6900/87

492.6(2mm )

可见,前面所选母线截面S=2?(80×8)= 1280 (2mm )≥S min =492.62mm 能满足短路热稳定要求。 35kV 进线的选择及校验

35kV 进线有两回,最大持续工作电流Ig.max=376.6/2=188.3A 按Tmax=6000h/a ,查表,可得经济电流密度J=0.97A/2

mm 则母线经济截面为:

S= Ig.max/J=188.3/0.97=194.12

mm

查《LGJ 钢芯名品绞线参数型号》选LGJ-240/35钢芯铝绞线, +80℃长期允许载流量为651A 。

实际环境温度18℃, 综合修正系数K=1.06 故KIy =690> Ig.max=376.6A ,可满足长期发热要求

热稳定校验:S ≥Smin=dz

t C I ∞

(mm2)

tdz 为主保护动作时间加断路器全分闸时间 取 tdz=3.45s

其中热稳定系数C=87,满足热稳定要求的最小截面为:

Smin=dz

t C

I ∞

= (6900/87/2

2

mm )

可见,前面所选导线截面S=300mm2>Smin=79.11 mm2,满足热稳定要求。 35kV 出线的选择及校验

35kV 进线有4回,最大持续工作电流Ig.max=376.6/4=94.15A 按Tmax=6000h/a ,查表,可得经济电流密度J=0.97A/2

mm 则母线经济截面为:

S= Ig.max/J=94.15/0.97=97.062

mm

110KV降压变电站电气一次部分初步设计

110KV降压变电站电气一次部分初步设计 一、变电站的作用 1.变电站在电力系统中的地位 电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机)、变换(变压器、整流器、逆变器)、输送和分配(电力传输线、配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。 2.电力系统供电要求 (1)保证可靠的持续供电:供电的中断将使生产停顿,生活混乱,甚至危及人身和设备的安全,形成十分严重的后果。停电给国民经济造成的损失远远超过电力系统本身的损失。因此,电力系统运行首先足可靠、持续供电的要求。 (2)保证良好的电能质量:电能质量包括电压质量,频率质量和波形质量这三个方面,电压质量和频率质量均以偏移是否超过给定的数来衡量,例如给定的允许电压偏移为额定电压的正负5%,给定的允许频率偏移为正负0.2—0.5%HZ 等,波形质量则以畸变率是否超过给定值来衡量。 (3)保证系统运行的经济性:电能生产的规模很大,消耗的一次能源在国民经济一次能源总消耗占的比重约为1/3 ,而且在电能变换,输送,分配时的损耗绝对值也相当可观。因此,降低每生产一度电能损耗的能源和降低变换,输送,分配时的损耗,又极其重要的意义。 二、变电站与系统互联的情况 1.待建变电站基本资料 (1)待建变电站位于城郊,站址四周地势平坦,站址附近有三级公路,交通方便。 (2)该变电站的电压等级为110KV,35KV,10KV三个电压等级。110KV是本变电站的电源电压,35KV,10KV是二次电压。 (3)该变电站通过双回110KV线路与100公里外的系统相连,系统容量为1250MVA,系统最小电抗(即系统的最大运行方式)为0.2(以系统容量为基准),系统最大电抗(即系统的最小运行方式)为0.3。

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经

变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19) 结束语 (25)

(完整版)BY市110kV降压变电所设计

发电厂电气部分课程设计 级专业班级 题目 姓名学号 指导教师

题目BY市110kV降压变电所设计 一、设计内容 设计一110kV降压变电所,该所位于BY市边缘,供给城市和近郊工业、农业及生活用电。 电压等级: 110kV:近期2回,远景发展2回; 10kV:近期13回,远景发展2回。 电力系统接线简图、负荷资料及所址条件见附件。 二、设计任务 1.变电所总体分析; 2.负荷分析计算与主变压器选择; 3.电气主接线设计; 4.短路电流计算及电气设备选择。 三、设计成品要求 1.课程设计说明书1份; 2.电气主接线图1张。 1 变电站总体分析 市变电站位于市边缘,供给城市和近郊工业、农业及生活用电,是新建地区变电所。变电站做为电力系统中起着重要的连接作用,是联系发电厂与负荷的重要环节。本课程设计主要是关于本变电站的一次设计,为了是变电站的一次设计能够很好的接入电力系统,使电力系统安全可靠的运行,下面对本变电站做初步分析的原始数据进行分析。1.变电站类型:110KV地方降压变电站 2.电压等级:110/10KV 3.线路回数:110KV:2回,备用2回; 10KV:13回,备用2回; 4.地理条件:平均海拔100m,地势平坦,交通方便,有充足水源,属轻地震区。年最高气温+42℃,年最低气温-18℃,年平均温度+16℃,最热月平均最高 温度+32℃。最大风速35m/s,主导风向西北,覆冰厚度10mm 。 5.负荷情况:主要是一、二级负荷,市内负荷主要为市区生活用电、棉纺厂、印染厂

等工业用电;郊区负荷主要为郊区变电站及其他工业用电。 6.系统情况:根据任务书中电力系统简图可以看到,本变电站位于两个电源中间,有 两个发电厂提供电能,进而经过该变电站降压后用于工业、农业等负荷用电,需要一定的可靠性。 2 负荷分析及主变压器的选择 2.1 负荷计算的目的: 计算负荷是供电设计计算的基本依据,计算负荷确定得是否正确合理,直接影响到电器和导线电缆的选择是否经济合理。如计算负荷确定过大,将使电器和导线选得过大,造成投资和有色金属的消耗浪费,如计算负荷确定过小又将使电器和导线电缆处子过早老化甚至烧毁,造成重大损失,由此可见正确确定计算负荷重要性。 2.2负荷分析 10KV 侧: 近期负荷:P 近=(2+2+1+1+2+3+2+1.5+1.5+1.5)MW=17.5MW 远期负荷: P 远=(3+3+1.5+1.5+3+4.5+3.5+2+2+2+2+2)=30MW ∑=n i Pi 1 =17.5MW+30MW=47.5MW 综合最大计算负荷计算公式: S js =Kt*1 cos n i i i P φ=∑ *(1+α%) (注:Kt:同时系数,取85%; α%:线损,取5%) S js 近=Kt*max 1 cos n i i i P ?=∑ 近 *(1+α%) =Kt*( 2211232 1.5 1.5 1.5 0.80.80.80.780.750.780.80.80.750.8 +++++++++ ) *(1+α%) =0.85*17.755*(1+0.05)=15.85MVA

110kv总降压变电站设计

目錄 摘要 (3) 概述 (4) 第一章電氣主接線 (6) 1.1110kv電氣主接線 (7) 1.235kv電氣主接線 (8) 1.310kv電氣主接線 (10) 1.4站用變接線 (12) 第二章負荷計算及變壓器選擇 (13) 2.1 負荷計算 (13) 2.2 主變台數、容量和型式的確定 (14) 2.3 站用變台數、容量和型式的確定 (16) 第三章最大持續工作電流及短路電流的計算 (17) 3.1 各回路最大持續工作電流 (17) 3.2 短路電流計算點的確定和短路電流計算結果 (18) 第四章主要電氣設備選擇 (19) 4.1 高壓斷路器的選擇 (21) 4.2 隔離開關的選擇 (22) 4.3 母線的選擇 (23) 4.4 絕緣子和穿牆套管的選擇 (24) 4.5 電流互感器的選擇 (24) 4.6電壓互感器的選擇 (26)

4.7各主要電氣設備選擇結果一覽表 (29) 附錄I 設計計算書 (30) 附錄II 電氣主接線圖 (37) 10kv配電裝置配電圖 (39) 致謝 (40) 參考文獻 (41)

摘要 本文首先根據任務書上所給系統與線路及所有負荷的參數,分析負荷發展趨勢。從負荷增長方面闡明了建站的必要性,然後通過對擬建變電站的概括以及出線方向來考慮,並通過對負荷資料的分析,安全,經濟及可靠性方面考慮,確定了110kV,35kV,10kV以及站用電的主接線,然後又通過負荷計算及供電範圍確定了主變壓器台數,容量及型號,同時也確定了站用變壓器的容量及型號,最後,根據最大持續工作電流及短路計算的計算結果,對高壓熔斷器,隔離開關,母線,絕緣子和穿牆套管,電壓互感器,電流互感器進行了選型,從而完成了110kV電氣一次部分的設計。 關鍵字:變電站變壓器接線

110kV变电所电气一次设计

第1章原始资料分析 1.变电站的地址和地理位置选择:建设一个变电站要考虑到地理环境、气象条件等因素,包括: ⑴年最高温度、最低温度。 ⑵冬季、夏季的风向以及最大风速。 ⑶该地区的污染情况。 2.确定变电站的建设规模设计⑴电压等级有两个:110kV 10kV。⑵主变压器用两台。⑶进出线情况:110kV有两回进线,10kV有18回出线。 3.设计110kV和10kV侧的电气主接线:通过比较各种接线方式的优缺点、适用范围,确定出最佳的接线方案。 ⑴110kV侧有两回进线,为电源进线,此时宜采用桥形接线,根据桥断路器的安装位置,可分为内桥和外桥接线两种,比较这两种接线的特点,适用范围,确定110kV侧的接线方式为内桥接线。 ⑵10kV侧有18回出线,可供选择的接线方式有: ①单母线分段接线。 ②双母线以及双母线分段。 ③带旁路母线的单母线和双母线接线。 比较这几种接线方式的优缺点,适用范围,确定出10KV侧的接线方式为单母线分段接线。 4.计算短路电流及主要设备选型。 ⑴主变压器的型号、容量、电压等级、冷却方式、结构、容量比和中性点接地方式的选择等。 ①主变的容量: 主变容量的确定应根据电力系统5-10年发展规划进行。当变电所装设两台 第0页共30 页

及以上主变时,每台容量的选择应按照其中任一台停运时,其余容量至少能保证所供一级负荷或为变电所全部负荷的60-80%。 ②接线方式: 我国110kV及以上电压,变压器三相绕组都采用“YN”联接;35kV采用“Y”联接,其中性点多通过消弧线圈接地。因此,普通双绕组一般选用YN,d11接线;三绕组变压器一般接成YN,y,d11或YN,yn,d11等形式。 5.绘制电气主接线图;总平面布置图;110kV和10kV的进出线间隔断面图等有关图纸。 6.简要设计主变压器继电保护的配置、整定计算 选择几个特殊的短路点:如110kV侧、10kV母线上。根据系统的短路容量进行整定计算。 7.防雷接地设计 防雷设计要考虑到年雷暴日,保护范围等因素。接地设计考虑到主要的电气设备能可靠的接地,免受雷电以及短路。 第1页共30 页

110KV变电站电气部分设计

110KV变电站电气部分设计 二〇〇九年八月 目录 设计任务书 (4) 第一部分主要设计技术原则 (5) 第一章主变容量、形式及台数的选择 (6) 第一节主变压器台数的选择 (6) 第二节主变压器容量的选择 (7) 第三节主变压器形式的选择 (8) 第二章电气主接线形式的选择 (10) 第一节主接线方式选择 (12) 第三章短路电流计算 (13) 第一节短路电流计算的目的和条件 (14) 第四章电气设备的选择 (15) 第一节导体和电气设备选择的一般条件 (15) 第二节断路器的选择 (18) 第三节隔离开关的选择 (19) 第四节高压熔断器的选择 (20) 第五节互感器的选择 (20) 第六节母线的选择 (24) 第七节限流电抗器的选择 (24) 第八节站用变压器的台数及容量的选择 (25) 第九节 10kV无功补偿的选择 (26) 第五章 10kV高压开关柜的选择 (26) 第二部分计算说明书 附录一主变压器容量的选择 (27) 附录二短路电流计算 (28) 附录三断路器的选择计算 (30) 附录四隔离开关选择计算 (32) 附录五电流互感器的选择 (34) 附录六电压互感器的选择 (35) 附录七母线的选择计算 (36) 附录八 10kV高压开关柜的选择 (37) (含10kV电气设备的选择) 第三部分相关图纸 一、变电站一次主结线图 (42) 二、10kV高压开关柜配置图 (43) 三、10kV线路控制、保护回路接线图 (44) 四、110kV接入系统路径比较图 (45) 第四部分 一、参考文献 (46)

二、心得体会 (47) 设计任务书 一、设计任务: ***钢厂搬迁昌北新区,一、二期工程总负荷为24.5兆瓦,三期工程总负荷为31兆瓦,四期工程总负荷为20兆瓦;一、二、三、四期工程总负荷为75.5兆瓦,实际用电负荷 34.66兆瓦,拟新建江西洪都钢厂变电所。本厂用电负荷设施均为Ⅰ类负荷。 第一部分主要设计技术原则 本次110kV变电站的设计,经过三年的专业课程学习,在已有专业知识的基础上,了解了当前我国变电站技术的发展现状及技术发展趋向,按照现代电力系统设计要求,确定设计一个110kV综合自动化变电站,采用微机监控技术及微机保护,一次设备选择增强自动化程度,减少设备运行维护工作量,突出无油化,免维护型设备,选用目前较为先进的一、二次设备。 将此变电站做为一个终端用户变电站考虑,二个电压等级,即110kV/10kV。 设计中依据《变电所总布置设计技术规程》、《交流高压断路器参数选用导则》、《交流高压断路器订货技术条件》、《交流电气装置的过电压保护和绝缘配合》、《火力发电厂、变电所二次接线设计技术规程》、《高压配电装置设计技术规程》、《110kV-330kV变电所计算机监控系统设计技术规程》及本专业各教材。 第一章主变容量、形式及台数的选择 主变压器是变电站(所)中的主要电气设备之一,它的主要作用是变换电压以利于功率的传输,电压经升压变压器升压后,可以减少线路损耗,提高了经济效益,达到远距离送电的目的。而降压变压器则将高电压降低为用户所需要的各级使用电压,以满足用户的需要。主变压器的容量、台数直接影响主接线的形式和配电装置的结构。因此,主变的选择除依据基础资料外,还取决于输送功率的大小,与系统的紧密程度,同时兼顾负荷性质等方面,综合分析,合理选择。 第一节主变压器台数的选择 由原始资料可知,我们本次设计的江西洪都钢厂厂用电变电站,主要是接受由220kV双港变110kV的功率和220KV盘龙山变供110kV的功率,通过主变向10kV线路输送。由于厂区主要为I类负荷,停电会对生产造成重大的影响。因此选择主变台数时,要确保供电的可靠性。 为了提高供电的可靠性,防止因一台主变故障或检修时影响整个变电站的供电,变电站中一般装设两台主变压器。互为备用,可以避免因主变故障或检修而造成对用户的停电,若变电站装设三台主变,虽然供电可靠性有所提高,但是投资较大,接线网络较复杂,增大了占地面积和配电设备及继电保护的复杂性,并带来维护和倒闸操作的许多复杂化,并且会造成短路容量过大。考虑到两台主变同时发生故障的几率较小,适合负荷的增长和扩建的需要,而当一台主变压器故障或检修时由另一台主变压器可带动全部负荷的70%,能保证正常供电,故可选择两台主变压器。 第二节主变压器容量的选择 主变压器容量一般按变电站建成后5--10年规划负荷选择,并适当考虑到远期10--20年的负荷发展,对于城郊变电站主变压器容量应与城市规划相结合,该变电站近期和远期负荷都已给定,所以,应接近期和远期总负荷来选择主变容量。根据变电站所带负荷的性质和电网的结构来确定主变压器的容量,对于有重要负荷的变电站应考虑当一台主变压器停用时,其余变压器容量在计及过负荷能力的允许时间内,应保证用户的一级和二级负荷,对一般性变电站当一台主变压器停用时,其余变压器容量应能保证全部负荷的70--80%。该变电站的主变压器是按全部负荷的70%来选择,因此装设两

110kV降压变电站电气部分初步设计

110k V降压变电站电气部分初步设计

前言 设计是教学过程中的一个重要环节,通过设计可以巩固各课程理论知识,了解变电所设计的基本方法,了解变电所电能分配等各种实际问题,培养独立分析和解决实际工程技术问题的能力,同时对电力工业的有关政策、方针、技术规程有一定的了解,在计算绘图、编号、设计说明书等方面得到训练,为今后从事供电技术工作奠定基础。

第一章:毕业设计任务 一、设计题目:110kV降压变电所电气部分初步设计 二、设计的原始资料 1、本变电所是按系统规划,为满足地方负荷的需要而建设的终端变电所。 2、该变电所的电压等级为110/35/10kV,进出线回路数为: 110kV:2 回 35kV:4 回(其中 1 回备用) 10kV:12 回(其中三回备用) 3、待设计变电所距离110kV系统变电所(可视为无限大容量系统)63.27km。 4、本地区有一总装机容量 12MW的35kV出线的火电厂一座,距待设计变电所 12km。 5、待设计变电站地理位置示意如下图: 6、气象条件:年最低温度:-5℃,年最高温度:+40℃,年最高日平均温度:+32℃,地震裂度 6 度以下。 7、负荷资料 (1)正常运行时由110kV系统变电所M向待设计变电所N供电。 (2)35kV侧负荷:

(a)35kV侧近期负荷如下表: (b)在近期工程完成后,随生产发展,预计远期新增负荷 6MW。 (3)10kV侧负荷 (a)近期负荷如下表: (b)远期预计尚有 5MW的新增负荷 注:(1)35kV及10kV负荷功率因数均取为cosΦ=0.85 (2)负荷同时率: 35kV: kt=0.9 10kV: kt=0.85 (3)年最大负荷利用小时均取为T maX=3500小时/年 (4)网损率取为A%=5%~8% (5)所用电计算负荷 50kW,cosΦ=0.87 三、设计任务 1、进行负荷分析及变电所主变压器容量、台数和型号的选择。 2、进行电气主接线的技术经济比较,确定主接线的最佳方案。 3、计算短路电流,列出短路电流计算结果。

110kV降压变电所电气部分的初步设计(doc 6页)

110kV降压变电所电气部分的初步设计(doc 6页)

2008级电气工程基础课程设计指导书 110kV降压变电所电气部分初步设计 一、设计目的 (1) 复习和巩固《电气工程基础》课程所学知识; (2) 培养分析问题和解决问题的能力; (3) 学习和掌握变电所电气部分设计的基本原理和设计方法。 二、设计内容及设计要求 1 设计内容 本次设计的是一个降压变电站,有三个电压等级(110kV/35kV/10kV)。本设计只做电气部分的初步设计,不作施工设计和土建设计。 (1) 主接线设计 分析原始资料,根据任务书的要求拟出各级电压母线的接线方式(可靠性、经济性和灵活性), (2) 主变压器选择 根据负荷选择主变压器的容量、型式、电压等级等,通过技术经济比较选择主接线最优方案; (3) 短路电流计算 根据所确定的主接线方案,选择适当的计算短路点计算短路电流,并列表表示出短路电流的计算结果; (4) 主要电气设备的选择:断路器、隔离开关、电流互感器、电压互感器、高 压熔断器、消弧线圈、避雷器等 (5) 编制设计成果 1)编制设计说明书 2)编制设计计算书 3)绘制变电所电气主接线图纸1张(A2图纸) 2 设计要求 设计按照国家标准要求和有关设计技术规程进行,要求对用户供电可靠、保证电能质量、接线简单清晰、操作方便、运行灵活、投资少、运行费用低,.并 且具有可扩建的方便性。要求如下: (1) 通过经济技术比较,确定电气主接线。 (2) 短路电流计算

(1) 变电站供电范围:110 kV 线路:最长100 km,最短50 km;35 kV 线路:最长70 km,最短20 km;10 kV 低压馈线:最长30km,最短10km (2) 未尽事宜按照设计常规假设。 四、要求 1.在资料一、二中任选一种情况作设计。 2.画图软件自选,手画也可。 4.主要参考资料 [1] 熊信银, 张步涵.电气工程基础.华中科技大学出版社,2005 [2] 何仰赞温增银,电力系统分析,华中科技大学出版社,2001 [3] 西北电力设计院东北电力设计院,电力工程设计手册,上海人民出版社,1972 [4] 电力工业部西北电力设计院,电力工程电气设备手册,中国电力出版社,1998 [5] 电力工业部西北电力设计院,电力工程电气设计手册,中国电力出版社,1998 [6] 陈跃.电力工程专业毕业设计指南.电力系统分册.中国水利水电出版 [7] 吴靓,谢珍贵.发电厂及变电所电气设备. 第一版.北京.中国水利水电出版社.2004 [8] 志溪.电气工程设计. 第一版.北京. 机械工业出版社.2002 [9] 张华.电类专业毕业设计指导.机械工业出版社 [10] 陈慈萱. 电气工程基础. 第一版.北京.中国电力出版社.2003

BY市110kv降压变电所设计--牛

BY市110kv降压变电所设计--牛

课程设计 电气工程及其自动化_专业班级 题目BY市110kV降压变电所设计 姓名 学号 指导教师 二О年月日

一.变电站概括 1.1变电站总体分析 BY市变电站位于市边缘,供给城市和近郊工业、农业及生活用电,是新建地区变电所。变电站做为电力系统中起着重要的连接作用,是联系发电厂与负荷的重要环节。本课程设计主要是关于本变电站的一次设计,为了是变电站的一次设计能够很好的接入电力系统,使电力系统安全可靠的运行,下面对本变电站做初步分析的原始数据进行分析。 1.变电站类型:110KV地方降压变电站 2.电压等级:110/10KV 3.线路回数:110KV:2回,备用2回;10KV:13回,备用2回; 4.地理条件:平均海拔100m,地势平坦,交通方便,有充足水源,属轻地震区。年最高气温+42℃,年最低气温-18℃,年平均温度+16℃,最热月平均最高温度+32℃。最大风速35m/s,主导风向西北,覆冰厚度。5.负荷情况:主要是一、二级负荷,市内负荷主要为市区生活用电、棉纺厂、印染厂等工业用电;郊区负荷主要为郊区变电站及其他工业用电。 6.系统情况:根据任务书中电力系统简图可以看到,本变电站位于两个电源中间,有两个发电厂提供电

能,进而经过该变电站降压后用于工业、农业等负荷用电,需要一定的可靠性。 1.2 负荷分析及主变压器的选择 负荷计算的目的: 计算负荷是供电设计计算的基本依据,计算负荷确定得是否正确合理,直接影响到电器和导线电缆的选择是否经济合理。如计算负荷确定过大,将使电器和导线选得过大,造成投资和有色金属的消耗浪费,如计算负荷确定过小又将使电器和导线电缆处子过早老化甚至烧毁,造成重大损失,由此可见正确确定计算负荷重要性。 负荷分析 10KV 侧: 近期负荷:P 近=(2+2+1+1+2+3+2+1.5+1.5+1.5)MW=17.5MW 远期负荷: P 远=(3+3+1.5+1.5+3+4.5+3.5+2+2+2+2+2)=30MW ∑=n i Pi 1=17.5MW+30MW=47.5MW 综合最大计算负荷计算公式: S js =Kt*1 cos n i i i P φ =∑*(1+α%) (注:Kt:同时系数,取85%; %:线损,取5%) S js 近=Kt*max 1cos n i i i P ? =∑近 *(1+α%)

110KV降压变电所电气一二次课程设计报告

信息工程学院 综合课程设计报告书 题目:110KV 降压变电所电气一、二次设计 专业:电气工程及其自动化 班级:___________________ 学号:____________ 学生姓名:______________ 指导教师:__________ 声明:本作品用以交差之用无实

际理论意义不确保准确性与实践性 2012 年10 月10 日 、八 前言 变电站是电力系统的一个重要组成部分,由电器设备及配电网络按一定的接线方式所构成,他从电力系统取得电能,通过其变换、分配、输送与保护等功能,它直接影响整个电力系统的安全与经济运行然后将电能安全、可靠、经济的输送到每一个用电设备的场所。 110KV 变电站属于高压网络,电气主接线是发电厂变电所的主要环节,电气主接线直关系着全厂电气设备的选择、是变电站电气部分投资大小的决定性因素。 首先,根据主接线的经济可靠、运行灵活的要求选择各个电压等级的接线方式来选择。根据主变容量选择适合的变压器,主变压器的台数、容量及形式的选择是很重要,它对发电厂和变电站的技术经济影响大。 本变电所的初步设计包括了:(1 )总体方案的确定(2)短路电流的计算(3 )高低压配电系统设计与系统接线方案选择(4 )继电保护的选择与整定(5)防雷与接地保护等内容。

最后,本设计根据典型的110kV 发电厂和变电所电气主接线图,根据厂、所继 电保护、自动装置、励磁装置、同期装置及测量表计的要求各电压等级的额定电压和最大持续工作电流进行设备选择,而后进行校验

第1章短路电流的计算 1 .1 短路的基本知识 所谓短路,就是供电系统中一相或多相载流导体接地或相互接触并产生超出规定值的大电流。 短路电流的大小也是比较主接线方案,分析运行方式时必须考虑的因素。系统短路时还会出现电压降低,靠近短路点处尤为严重,这将直接危害用户供电的安全性及可靠

110kV变电站电气部分设计毕业论文设计

110kV变电站电气部分设计 第一篇:毕业设计说明书 第一章变电站总体分析 第一节变电站的基本知识 一.变电站的定义 变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用,是进行电压变换以及电能接受和分配的场所。 二.变电站的分类 1、根据变电站的性质可分为升压和降压变电站 (1)升压变电站是将发电厂发出的电能进行升压处理,便于大功率和 远距离输送。 (2)降压变电站是对电力系统的高电压进行降压处理,以便电气设备的使用。 2、变电所根据变电站在系统中的地位,可分为枢纽变电站、区域变电站和用户变电站 (1)枢纽变电所。位于电力系统的枢纽点,连接电力系统高压和中压的几个部分,汇集多个电源,电压为330~500KV的变电所,称为枢纽变电所。全所停电后,将引起系统解列,甚至出现瘫痪。 (2)中间变电所。高压侧以交换潮流为主,起系统交换功率的作用,或使长距离输电线路分段,一般汇集2~3个电源,电压为220~330KV,同时又降压供当地用电,这样的变电所起中间环节的作用,所以叫中间变电所。全所停电后,将引起区域电网解列。 (3)地区变电所。高压侧一般为110~220KV,向地区用户供电为主的变电所,这是一个地区或城市的主要变电所。全所停电后,仅使该地区中供电停电。 (4)终端变电所。在输电线路的终端,接近负荷点,高压侧电压为110KV,经降压后直接向用户供电的变电所,即为终端变电所。全所停电后,只是用户受

到损失。 第二节所设计变电站的总体分析 变电站电气一次部分的设计主要包含:负荷的分析计算、变压器的选型、主接线的设计、无功补偿、短路电流的计算、电气设备的选型和校验、母线的选择和校验等有关知识。因此,变电站的总体分析也应该从这几个方面着手。 1、由待设计变电站的建设性质和规模可知,所设计变电站主要是为了满足某铁矿生产生活的发展需要,是一个110/10kv降压变电站,也是一个地区性变电站,并且只有两个电压等级,因此,主变压器可选用双绕组型的。 2、由原始资料电力系统接线简图可知有来自同一个电力系统的双电源供电。 3、由原始资料负荷资料可知110kv侧线路共三回,两用一备,有穿越功率,穿越功率经过110kv母线配电装置传出。10kv侧线路共15回,13用2备,负荷较大,无功补偿应选在10kv侧,一二级负荷所占比例较大,对供电可靠性要求较高。因此110kv,10kv侧母线可考虑对供电可靠性较高的单母线分段和双母线接线两种接线形式。 4、由原始资料所设计变电站的地理位置示意图和该地地形、地质、水文、气象等条件可知,所设计变电站应选址在负荷中心且地势较平坦的山谷中,根据变电站的出线方向来设计配电装置的布置,还应考虑到变电站的防震防雷防雪等,根据110kv变电站的设计手册可知所选电气设备应优先考虑室外型。。

110kV降压变电所电气一次系统设计毕业论文

毕业设计(论文) 110kV降压变电所电气一次系统设计 系别电力工程系 专业班级电气08K5班 学生姓名严丽 指导教师胡永强 二〇一二年六月

摘要 随着经济的发展和人民生活水平的提高,对供电质量的要求也日益提高。国家提出了加快城网和农网建设及改造、拉动内需的发展计划,城网110kV变电站的建设迅猛发展。如何设计城网110kV变电站,是成网建设、改造中需要研究和解决的一个重要课题。 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂与用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所的中间环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 本次设计建设一座110kV降压变电站。首先,根据主接线的经济可靠、运行灵活的要求选择各个电压等级的接线方式,在技术方面和经济方面进行比较。选取灵活的最优接线方式。 其次进行短路电流计算,根据各短路点计算出各点短路稳态电流和短路冲击电流,从三项短路计算中得到当短路发生在各电压等级的工作母线时,其短路稳态电流和冲击电流的值。 最后,根据各电压等级的额定电压和最大持续工作电流进行设备选择,然后进行校验。关键词:变电站;电气主接线;短路电流;设备选择;校验 I

1 原始数据 1、变电站类型:110kV降压变电所 2、电压等级:110/10kV 3、负荷情况: 最大25MW,最小16MW,T max = 5000小时,cosφ= 0.85 负荷性质:工业生产用电 4、出线情况:(1) 110kV侧:2回(架空线)LGJ—185/28km;(2) 10kV侧:12回(电缆)。 5、系统情况:(1) 系统经双回线给钢厂供电; (2) 系统110kV母线短路电流标幺值为33(SB=100MV A) 6、环境条件:(1)最高温度40℃,最低温度-25℃,年平均温度20℃; (2)土壤电阻率ρ<400 欧米; (3)当地雷暴日40日/年。

110KV降压变电所电气部分设计

目录 第一章课程设计任务书 第二章负荷分析 第三章变压器的选择 第四章无功补偿装置的选择 第五章电气主接线的选择与方案比较第六章各级电气配置的选择 第七章短路电流计算结果及目的 第八章继电保护规划及整定

第一部分.设计说明书 第一章:毕业设计任务书 一、设计题目 110KV降压变电站部分的设计 二、所址概况 1、地理位置及地理条件的简述 变电所位于某城市,地势平坦,交通便利,空气污染轻微,区平 均海拔200米,最高气温40℃,最低气温-18℃,年平均气温14℃, 最热月平均最高气温30℃,土壤温度25℃。 三、系统情况如下图 注:括号内为最小1、主变压

四、负荷情况: 五、设计任务 1、负荷分析及主变压器的选择。 2、电气主接线的设计。 3、变压器的运行方式以及中性点的接地方式。 4、无功补偿装置的形式及容量确定。 5、短路电流计算(包括三相、两相、单相短路) 6、各级电压配电装置设计。 7、各种电气设备选择。 8、继电保护规划。 9、主变压器的继电保护整定计算。 六、设计目的

总体目标 培养学生综合运用所学各科知识,独立分析各解决实际工程问题的能力。 第二章:负荷分析 一、负荷分类及定义 1、一级负荷:中断供电将造成人身伤亡或重大设计损坏,且难以挽回, 带来极大的政治、经济损失者属于一级负荷。一级负荷要求有两个独 立电源供电。 2、二级负荷:中断供电将造成设计局部破坏或生产流程紊乱,且较长时 间才能修复或大量产品报废,重要产品大量减产,属于二级负荷。二 级负荷应由两回线供电。但当两回线路有困难时(如边远地区),允许 有一回专用架空线路供电。 3、三级负荷:不属于一级和二级的一般电力负荷。三级负荷对供电无特 殊要求,允许较长时间停电,可用单回线路供电。 二、本设计中的负荷分析 市镇变1、2:市镇变担负着对所辖区的电力供应,若中断供电将会带来大面积停电,所以应属于一级负荷。 煤矿变:煤矿变负责向煤矿供电,煤矿大部分是井下作业,例如:煤矿工人从矿井中的进出等等,若煤矿变一旦停电就可能造成人身死亡,所以应属一级负荷。

110KV降压变电所一次系统设计文献综述

变电所一次系统设计探究 摘要:随着工业时代的发展,电力已成为人类历史发展的主要动力资源,要科学合理的驾驭电力必须从电力工程的设计原则和方法上理解和掌握其精髓,提高电力系统的安全可靠性和运行效率。从而达到降低生产成本提高经济效益的目的。变电所是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。目前,国内110kv及以下中低压变电所,主接线为了安全,可靠起见多选单母线接线。另外,合理的选择各种一次设备也能够提高变电所的安全系数及其经济性。 关键词:变电所/安全/可靠/经济

1 我国电能与变电站现状 电能是发展国民经济的基础,是一种无形的、不能大量存储的二次能源,同时也是现代社会中最重要也是最方便的能源[3]。电能的发、变、送、配电和用电,几乎是在同一时间完成的,须相互协调与平衡[2]。变电和配电是为了电能的传输和合理的分配,在电力系统中占很重要的地位,其都是由电力变压器来完成的,因此变电所在供电系统中的作用是不言而语的。 变电所是联系发电厂和用户的中间环节,起着变换和分配电能的作用[2]。因此,变电所的作用显得尤为重要。首先要满足的就是变电所的设计规范。安全可靠地发、供电是对电力系统运行的首要要求[10]。 (1)变电所的设计要认真执行国家的有关技术经济政策,符合安全可靠、技术先进和经济合理的要求。 (2)变电所的设计应根据工程的5~10年发展规划进行,做到远、近期结合,以近期为主,正确处理近期建设与远期发展的关系,适当考虑扩建的可能。 (3)变电缩的设计,必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,结合国情合理的确定设计方案。 (4)变电所的设计,必须坚持节约用地的原则。其次,变电所所址的选择,应根据要求,综合考

110kV变电所电气二次部分初步设计

110kV变电所电气二次部分初步设计 一、课题的来源、目的意义(包括应用前景)、国内外现状及水平 课题的来源:随着经济的发展和人民生活水平的提高,对供电质量的要求日益提高。国家提出了加快城网和农网建设及改造,拉动内需的发展计划,城网和农网110kV变电所的建设迅猛发展。在城市人口集中、高楼大厦林立、用地十分紧张的情况下,城市的高低压线路走廊受到限制,给城市高低压网络的发展和变电所建设带来一定困难。农村自身的特点也给农网和变电所建设带来一定困难。如何设计城网和农网110kV变电所,是城网和农网建设、改造中需要研究和解决的一个重要课题。 本毕业设计为邵阳学院二○○三级电气工程及自动化专业毕业设计,设计题目为:110kV变电站(电气二次部分)设计。此设计任务旨在体现自己对本专业各科知识的掌握程度,培养自己对本专业各科知识进行综合运用的能力,同时检验本专业学习四年以来的学习结果,是毕业前的一次综合性训练,是对在大学几年所学知识的全面检查。通过本次毕业设计,既有助于提高自己综合运用知识的能力,同时也有助于以后在工作岗位能很快的适应工作环境。 目的意义:110kV变电所是电力配送的重要环节,也是电网建设的关键环节。变电所设计质量的好坏,直接关系到电力系统的安全、稳定、灵活和经济运行,为满足城镇负荷日益增长的需要,提高对用户供电的可靠性和电能质量。随着国民经济的发展,工农业生产的增长需要,迫切要求增长供电容量,拟新建110kV变电所。变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。随着变电所综合自动化技术的不断发展与进步,变电站综合自动化系统取代或更新传统的变电所二次系统,继而实现“无人值班”变电所已成为电力系统新的发展方向和趋势。

110KV降压变电站电器部分设计(含图纸版)

目录 1 前言 (1) 1.1 本文研究背景 (1) 1.2 国外研究现状 (1) 1.2.1高压电气设备发展现状 (1) 1.2.2变电所一次设备主接线方式的现状 (1) 1.2.3变电站综合自动化二次回路现状 (2) 1.2.4 变电站综合自动化的发展现状 (2) 1.3 研究目的和意义 (2) 2 110KV变电所初步设计说明书 (3) 2.1主变压器选择 (3) 2.1.1变压器绕组与调压方式的选择 (3) 2.1.2变压器相数的选择 (3) 2.1.3变压器容量和台数的选择 (3) 2.1.4变压器的冷却方式 (4) 2.2 电器主接线选择 (4) 2.2.1主接线设计原则 (4) 2.2.2主接线方式选择 (5) 2.3 短路电流计算 (6) 2.3.1短路电流计算的目的 (7) 2.3.3短路电流计算的步骤 (8) 2.3.4短路类型及其计算方法 (8) 2.4.主变压器的选择 (9) 2.4.1电气的选择原理 (9) 2.4.2 高压断路器的选择和校验 (9) 2.4.3 隔离开关选择 (10) 2.4.4母线的选择 (10) 2.4.5 电压互感器选择 (11) 2.4.6 电流互感器的选择 (12) 2.5配置全所的继电保护 (12) 2.5.1 110kv侧进出线及母线的继电保护 (13) 2.5.2 35kV侧进出线及母线的继电保护 (14) 2.5.3 10kV侧出线的继电保护 (15) 2.5.4 变压器的继电保护 (15) 2.6 变电站自动化 (15) 2.6.1变电站自动化的基本概念 (15) 2.6.2变电站综合自动化系统应能实现的功能 (16) 3 110KV变电所初步设计计算书 (17) 3.1短路电流计算 (17) 3.2断路器的选择 (18) 3.2.1 110kV侧断路器的选择 (18)

110kv-10kv变电所电气设计(工程、毕业设计参考)要点

110kv/10kv变电所电气设计 摘要:本文首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了110kV电气一次部分的设计 一.变电所的地位和作用 变电所是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施,它通过其变压器将各级电压的电网联系起来。 变电所的主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经变压器后,变为220伏的生活用电,或变为380伏的工业用电。 本次设计的变电所属110kV、10kv负荷型变电所,主要满足该地区工业和居民用电。二.变电所主变的选择 主要考虑变压器的台数,容量;变压器的型式等。 (1)负荷分析 机械厂和加工厂:他们的生产过程与电联系不是非常紧密,若中止供电,不会带来太 大的损失,所以应属于二级负荷。 纺织厂1、2:若中断纺织厂的电力供应,就会引起跳线,打结,从而使产品不合格,所以应属于二级负荷。 药棉厂:药棉厂的生产过程伴随着许多化学反应过程,一旦电力供应中止了就会造成产品报废,造成极大的经济损失,所以应属于一级负荷。 10KV侧负荷大小 S10KV=0.85[(1.5×2+1.2×2+1×2+2.5×2)/0.8] ×(1+5%) =11.6025 MVA 在考虑15%的负荷发展余地,则有 S10KV=11.6025×(1+15%)=13.343 MVA (2)变压器的容量和台数的选择 根据变电站的实际情况,应根据以下的原则进行选择 1)主变得容量一般按变电站建成后5~10年的规划负荷选择 2)根据电压网络的结构和变电站所带的负荷的性质来确定主变的容量,对于有重要用户的变电站应考虑当一台主变停运时其余变压器在计及过负荷能力后的允许时间内,应

完整word版110kv变电所电气一次部分设计81893

1.变电所类型:地方降压变电所 2.电压等级:110/35/10kv 3.负荷情况: (1)变电所用电率:2%; (2)10KV侧负荷:最大15MW,最小10MW,年最大利用小时数5000小时,COSφ=0.85,其中70%负荷为一、二类负荷; (3)35KV侧负荷:最大36MW,最小30MW,年最大利用小时数5000小时,COSφ=0.85,其中70%负荷为一、二类负荷。 4.出线回路: (1)35KV系统:出线6回; (2)10KV系统:出线10回。 5.系统情况: (1)110KV系统:出线2回; **=0.92X行方式X下=0.86,最小运总容量(2)系统1500MW,最大运行方式下SS (SB=1000MVA)。 6.环境条件: (1)当地年最高温度39度,年最低温度-22,最热月平均温度28度; (2)当地海拔高度850米,年雷暴日数为15日; 欧·米。电气主接线方案:<400土壤电阻率:ρ(3)采用110KV侧为桥型接线方式,35KV 侧为双母线接线方式,10KV侧为单母线分段接线方式,具体方案详见后。 短路电流计算 首先将整个系统化简为最大运行方式和最小运行方式的正序网络图,具体见后。导体和电器的选择与设计 本变电站海拔高度850M,可不校验海拔高度位于III类气象区,最高温度39度,年最低温度-22度,温度校验可忽略。详细见后。 防雷计算 对于本变电站的直击雷过电压保护采用避雷针,即在变电站四个角分别架设4 支等高的避雷针,经过计算,可保护全变电站,详细见后。. 接地网设计 本设计中采用以水平接地体为主,带垂直接地体的人工接地体,全所铺设长条形均压带,每条均压带间隔6M,埋深0.8M,详细见后。 方案一:内桥接线; 方案二:双母线带旁路接线。 a.内桥接线(如图3.1) 优点: (1)高压断路器数量少,四个回路只需三台断路器; (2)通过加装正常断开运行的跨条,当出线断路器检修时,不影响对任何一回线路的供电; (3)在跨条上加装两组隔离开关后,可以轮流停电检修任何一组隔离开关而不影响对负荷的供电。 缺点: (1)变压器的切除和投入较复杂,需动作两台断路器,影响一回线路的暂时停运; (2)不利于扩建。

相关文档
相关文档 最新文档