文档库 最新最全的文档下载
当前位置:文档库 › 000排列组合复习题

000排列组合复习题

000排列组合复习题
000排列组合复习题

题型一、重复排列问题(即“谁选谁”问题)

应用乘法原理解题,关键在于分析理解题意。例如:

a 选

b 问题,则a 只能选择一

个b,而同一个b 却能被不同的a 选择(也就是b 可以被a 重复选)。则以a 为主分步考虑每 一个a 有几种选法,依次将每一个 a 选择b 的方法种数相乘即可。 例1:

(1 )? 5名工人要在3天中各自选择1天休息,不同方法的种数是( (2 )? 4名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动 队,不同报法的种

数(

34;43

(4) ?有4种不同溶液倒入 5只不同的量杯,如果溶液足够多,每只量杯只能倒入一种溶液,

有()种不同倒法。4

5

(5 )? 3封信进入三个不同的信箱,则进入A 信箱中的信件个数 X 的数学期望是(

题型二、染色问题

方法有两种:一是分步计数原理,逐块涂每块区域(一般到第三或第四块区域会因 为是否第一块同色而

分类。)这是染色问题常用的方法;方法二是分类计数原理,以需要颜 色的种数(最多几种颜色,最少几种颜色,划分出分类)进行分类,每一类中又需要分步。 例2:

(1)将一个四棱锥的每个顶点染上一种颜色,并使用同一条棱上的两端异色,如果只有 种颜色可供选择,求不同

的染色方法总数(

(2 )椭圆的长轴和短轴把椭圆分成 4块,现在用5种不同

的颜色给4块涂色,要求共边两

块颜色互异,每块只涂一色,则一共有多少不同的涂色方案(

)260

(3)将3种作物种植在如下图的 5块试验田里,每块种植一种作物且相邻的试验田不能种 植同一作物,不同的种

植方法共有(

)种

I I

42

题型三、排列、组合概念及排列数、组合数公式

重点在于正确理解排列组合的概念,二者有区别也有联系。区别在于排列有序,组和 无序;联系在于,组合

是排列的第一步。

再次理解排列的概念即为:在 n 个不同元素中先取

出m 个元素,然后按照一定的顺序排成一列(含有两步)故

其中 A : n(n 1)(n 2) n (m 1)

(n m)!

A —

列、组合专题复习

)3

5

)。若每个队只许一位学生参加,

有()种不同结果?

(3)?火车上有十名乘客,沿途有

5个车站,乘客下车的可能方式有( )种 5

10

)。420

n!

题型四、排列、组合应用问题

有限制条件的排列、组合应用问题常有以下方法可以求解,或可转化为以下几种模型 进行求解。

从集合1,2,3, 20中任选出3个不同的数,使这 3个数成等差数列,这样的等差数

例3: (1) 解不等式A 6A X

答案

3,4,567,8

(2) 求证:A m 1 A m mA :

(3) 优化设计第5页“经典例题”

中的例

1

(4)

规定 C :

x(x (x m 1)

m!

,其中x Z,m

是正整数,

合数c m ( m ,n 是正整数,且

m n )的一种推广。

①求 c 15

c 0

1,这是组

组合数的两个性质:c m c n

m

c m

m 1

C n

c mi 是否都能推广到 c>m(x R)的情

形,若能则给出证明,不能则说明理由; (略,报纸讲过)

已知组合数c m 是正整数,证明:当

乙m 是正整数时,c m Z

c m

m,有组合数c m 的定义知cx m x m 有定义知c m 0 0则

x(x Q (X m

Q 知

m!

(1)m ( x m 1)

( x 1)( x) m!

(x m 1) 0,即分子每个因数提取一 个1得

(1)m c m

xm

240

252

用0、1、2、3、4、5则六个数字可组成

(

用0、1、2、3、4、5则六个数字可组成( 用0、

1、2、3、4、5则六个数字可组成

(

有8张卡片分别标有数字

1、2、3、4、5、

要求3行中仅有中间行的两张卡片上的数字之和为

)个无重复数字且能被 5整除的五位数216 )个无重

复数字的五位偶数 312

)个无重复数字且能被 3整除的三位数40 6、7、8,

从中取出6张卡片排成3行2列,

5,则不同的排法共有()种1248

(6)

列可以有( )个?等比数列可以有(

)个? 180;?

7)甲、乙、丙、丁和戊 5 名学生进行劳动技术比赛,决出第 1 名到第 5 名的名次。甲、 乙两名参赛者去询问

成绩,回答者对甲说 “很遗憾, 你和乙都没有得到冠军” ,对乙说 “你当然不会是最差的” 。从回答分析, 5 人的名次排列可能有 ( )种不同情况? 54

2. 相邻问题捆绑法 此类问题关键在于相邻则捆绑,捆绑后看成一个元素于剩余元素一起排列,但排列完之 后一定

要松绑(即捆在一起的元素内部也要排列) 例 5:用 1、2、 3、4、5、6、7、8 组成没有重复数字的八位数,要求 相邻,5与 6相邻,而 7与 8不相邻,则这样的八位数有(

3. 不相邻问题插空法 根据题目的特点, 首先排完某些元素, 再用不相邻的元素

进行插空, 组合问题,往往能收到很好的效果 例 6:

(1)

种? A 5

3

60

去法? 2

6

1 63

以一个正方体的顶点为端点可连成(

)对异面直线? 3(C 84

6 6) 174

10 点,在其中取出 4 个不共面的点有 ( )中不同取法?

C 140 (4C 64

3 6) 141

以一个正方体的顶点为顶点的四面体有(

)个? C 8

4

6 6 58

1与 2相邻, 3与 4

)个 516 这样处理有关排列

马路上有 9 盏路灯,为了节约用电,可以关掉其中的三盏灯,要求关掉的路灯不能相

邻,且不在马路的两头,那么不同的关灯方案共有( )种?

C 53

10

有 9 个座位排成一排, 若 3 人坐在座位上,

每人左右都有空座位, 则不同的坐法有 ( )

2 位男生和

3 位女生共 5 位同学站成一排, 两

位女生相邻,则不同排法有( )种?

若男生甲不站在两端,

24

3 位女生中有且只有

集合 1,2, ,20 的四元子集中,

任何两个元素的差的绝对值都不为

1,这样的四元子

集的个数为( )个? C 1

4

7

2380

间接法(排除法) 间接法是求解排列组合问题的常用方法。带有限制条件的排列组合问题, 对象较

为复杂(正面情况较多) ,可用逆向思维,使用间接法求解。即先不考虑约束条件, 求出所有排列组合总数,然后减去不符合条件的排列 |、组合种数。

例 7: (1)

4. 用直接法考虑 6 人同时被邀请参加一项活动,必须有人去,去几人自行决定,共有(

)种不同的

四面体的顶点和各棱的中点共

C n 2 n 呼

7名高二学生和5名高一学生排成一排,要求高一学生从左到右的高矮顺序不变,不

隔板法

将n 个相同元素放置 m 个不同位置一般采用隔板法, 有两个模型:一是位置不可空有

c m ;种不同放法(将n 个相同元素分成 m 堆,每堆至少一个元素,则需要 m-1个板子。这 n 个元素之间产生 n-1个空当,在这n-1个空当中选 m-1个空当把板子插进去即可);二是位

置不可空有C mm 1种不同放法(将n 个相同元素分成 m 堆,需要m-1个板子,位置可空相

同的安排方法? C 2

某地有9所学校,现有先进教师名额11个,要求每所学校至少有一个名额,

不同位置。) (5) n 棱柱有(

)条对角线,有(

对角面? C ;c 1 (n 2n) n 2

3n;

5.有固定顺序问题留后法

在有固定顺序的n 个不同元素的排列中插入

m 个不同元素,则这 n+m 个元素的不同 排列数为A m m 。因为这n+m 个元素的排列需要占

n+m 个位置,先在这

n+m 个不同位置中

选出m 个位置把m 个元素排进去,剩下 n 个元素有固定顺序,按原有顺序将这 入余下的n 个位置即可。 例&

(1) n 个元素放

某班新年联欢会原定的 5个节目已经排成节目单,开演前又增加了两个新节目,如果 将这两个新节目插入原节目单中,那么不同的插法有(

)种? A 42

同的排法(

)种? A I 72

当于n 个元素和m-1个板子在排队。它们一共需要占 n+m-1个位置,则在这不同的 个位置中选 m-1

个位置把m-1个板子放进去,剩下 n 个位置放入n 个元素即可)。 介绍几个可转化为隔板法模型的题型。 例9:

(1) 高二年级要从3个班级抽取10人参加数学竞赛,每班至少

1人,一共有(

n+m-1

以下重点 )种不

共有()

种不同的分配方法?

C o

已知方程x y z

10,则这个方程的正整数解得个数有

( )个?这个方程的

非负整数解的个数有

2

C 12 (把 10看成10个1,放到x,y,z 三个

已知两个实数集A

a

1, a

2

,

,a

50

, B ,b 25 ,若从A 至U B 的映射f 使

得B 中的每个元素都有原像,且

f (aj

f (a 2)

f (a 50),则这样的映射有

置不可空)

12个相同的小球放入编号为1、2、3、4的盒子中,要求每个盒子中的小球数不小于其编号数,则不同的放法有()种?10

注意:一是:二是:例10: 将不同元素放入不同位置属于排列问题仍然有两个模型位置不可空,做法先分堆后分配

位置可空,做法应用乘法原理,属于“元素在选位置”

球,有()种不同放法?34; C4A3

(2)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有(

(3)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级上的人不区分位置,则不同的站法共有()种?737 336 ;或A; C;A;336

以下是排列组合问题中典型的几个题

1 ?甲、乙、丙、丁4人各写了1张贺卡,放在一起,再各取有多少种

不同取法?(分步乘法原理解题3311 2?一个有十级台阶的楼梯,每步可上一级或两级,

1张不是自己所写的贺卡,共9)

共有多少种上楼梯的方法?

C0 Q1 Q3 Q4 Q5

10 C9 C8 C7 C6 C5

3?如图将一个矩形分成24个全等的矩形,则从A沿矩形的边走到B的最短走法有多少种? (A、B分别为大矩形的对角线端点)C14,

5人只会排版,4人只会印刷,还有现从这11人中选出4人排版,4人印刷,有多少种不同的选法?

5.将标号为1、2、3、4、5、6的6张卡片放入3个不同的信封中。

中标号为1、2的卡片放入同一信封,则不同放法共有(

2人既会排版又会印刷。185

若每个信封放2张,其种?18 (2010高

二项式的考察重点放在二项展开式的特殊项的求解以及系数的相关问题。求解思路利用通项及赋值法。

以下给几个2010年各省高考题以做练习:

(1)4个不同小球随机放入3个不同的盒子,有()种不同放法?若每个盒子至少一个

)。 15

以下是二项式中几个比较典型的证明问题:

证明二、倒序求和法

注:此题在优化设计 16页能力提升第三小题。由此题引申改编为另一题(在报纸第一章水 平测试B 卷) 是否存在等差数列

a n ,使a 1C 0 a 2C 1 a s C 2

2. 3.(1

4.在(X 9

a

的展开式中x 3

的系数是 84,则a

x

6

展开式中,x 3

的系数等于(

x 2

)(x 1 6

-)的展开式中的常数项为(

x 冏)20

展开式中,系数为有理数的项共有(

)项.6

(2010高考)

5.求证:c n 2C 2

3C 3

nc n n2n1

证明一、利用公式kC : nC k

1

1

转化求和

a n 1C ;; n2n

对任意n N 都成

立?若存在, 求出数列

a n ;若不存在请说明理由。

6.若 n N ,

求证:

2^1 2n C ;n 22n

证明一、2

2n

(1 1)2n

C 2n C ;n

C 2n

C ;n n

C ;n

又 2

2n

(1 1)2n

C 2n

C ;n

C 2n

C<

2 C 2n C ;n

c2n 1 C

2n

且 C 2n

C ;n (r 0、1、2、 2n)

所以2

2n

2 C 2n C 2n

2nC 2n (当n 1 时取等)

2

2 n

所以—

2n

C 2n

高考排列组合常见题型及解题策略

可重复的排列求幂法 相邻问题捆绑法 相离问题插空法 元素分析法(位置分析法) 多排问题单排法 定序问题缩倍法(等几率法) 标号排位问题(不配对问题) 不同元素的分配问题(先分堆再分配) 相同元素的分配问题隔板法: 多面手问题(分类法---选定标准) 走楼梯问题(分类法与插空法相结合) 排数问题(注意数字“0”) 染色问题 “至多”“至少”问题用间接法或分类: 十三.几何中的排列组合问题: 排列组合常见题型及解题策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重 复,把不能重复的元素看作“客”,能重复的元素看作“店”, 则通过“住店法”可顺利解题,在这类问题使用住店处理的策 略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法?

【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有6 7种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、3 8 B 、8 3 C 、3 8A D 、 38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠 军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有3 8种 不同的结果。所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4 424A =种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有, 22223242C A A A =432 种 其中男生甲站两端的有1 2 2 2 2 23232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排 列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有2 6A 种,不同的排法 种数是52 563600A A =种 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答) 【解析】: 111 789A A A =504 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的

排列组合练习题及答案精选

排列组合习题精选 一、纯排列与组合问题: 1. 从9人中选派2人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B. 男同学3人,女同学5人 C.男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有() A.12个 B.13 个 C.14 个 D.15 个 答案:1、 2 2 72 3 、选 B. 设男生n 2 1 3 2 2 9 9 n 8 n3 。、mn m C 362、A 人,则有C C A 904 A A58 选 C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为() A.720 B.1440 C.2880 D.3600 答案:1. 2 4 3 2 5 2 4 3 2 5 AA 48(2)选BAAA1440 三、不相邻问题: 1. 要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法? 1

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

排列组合测试题(含答案)

一、选择题: 1. 将3个不同的小球放入 4个盒子中,则不同放法种数有 A . 81 B . 64 C . 12 D . 14 2. 5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 3 . a,b,c,d,e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法 总数是 A. 20 B . 16 C . 10 D . 6 4.现有男、女学生共 8人,从男生中选 2人,从女生中选1人分别参加数学、物理、化 学三科竞赛,共有 90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5 . 6 . .180 B . 90 C . 45 D . 360 6 . 由数字1、 2、3、4、5组成没有重复数字的五位数,其中小于 50000的偶数共有 A . 60个 B . 48 个 C . 36 个 D . 24个 7 . 3张不同的电影票全部分给 10个人,每人至多一张 ,则有不同分法的种数是 A . .1260 B . 120 C . 240 D . 720 & n N 且n 55,则乘积(55 n)(56 n)L (69 n )等于 A . 55 n A 69 n B . A 59 n C . A 55 n D . A 14 n 9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A . 120 B . 240 C . 280 D . 60 10 .不共面的四个定点到面 的距离都相等,这样的面 共有几个 15 . 4名男生,4名女生排成一排,女生不排两端,则有 ___________ 种不同排法? (8640 ) 17 .在1,2,3,…,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数, 这样的四位数有 ___________________ 个? ( 840) C . A 5 2 3 D . A>A 3 A 1 A 1 A 3 A 2 A 3 A 3 A . 3 B . 4 C . 6 11.设含有10个元素的集合的全部子集数为 的值为 20 15 16 A.- B . C .- 128 128 128 D . 7 S ,其中由3个元素组成的子集数为 T ,则T S 21 D . 128

排列组合高考专项练习题

例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,C(2,10)*2*P(2,2),因而本题为180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。 (二)每一步是向上还是向右,决定了不同的走法。 (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,∴本题答案为:=56。 2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合 例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有____ __种。 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换,共12种。 例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有_______ _。 (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。 (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法。 (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。 例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。

排列组合的21种例题

高考数学复习 解排列组合应用题的21种策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、4441284 3 3 C C C A 种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 7.名额分配问题隔板法: 例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

排列组合测试题(含答案)

排列组合 2016.11.16 一、选择题: 1. 将3个不同的小球放入4个盒子中,则不同放法种数有 A .81 B .64 C .12 D .14 2.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 A .33A B .334A C .523533A A A - D .23113 23233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是 A.20 B .16 C .10 D .6 4.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5. 6. A .180 B .90 C .45 D .360 6.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 A .60个 B .48个 C .36个 D . 24个 7.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是 A .1260 B .120 C .240 D .720 8.n N ∈且55n <,则乘积(55)(56) (69)n n n ---等于 A .5569n n A -- B .15 69n A - C .15 55n A - D .14 69n A - 9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A .120 B .240 C .280 D .60 10.不共面的四个定点到面α的距离都相等,这样的面α共有几个 A .3 B .4 C .6 D .7 11.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则T S 的值为 A. 20128 B .15128 C .16128 D .21128 15.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法. (8640 )

历年高考数学真题精选45 排列组合

历年高考数学真题精选(按考点分类) 专题45 排列组合(学生版) 一.选择题(共20小题) 1.(2009?全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种B.180种C.300种D.345种2.(2010?广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是() A.1205秒B.1200秒C.1195秒D.1190秒3.(2007?全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有() A.10种B.20种C.25种D.32种4.(2006?湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是() A.6B.12C.24D.18 5.(2009?陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为() A.432B.288C.216D.108 6.(2014?辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144B.120C.72D.24 7.(2012?浙江)若从1,2,3,?,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有() A.60种B.63种C.65种D.66种8.(2012?北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法 (2)如果女生必须全分开,可有多少种不同的排法 (3)如果两端都不能排女生,可有多少种不同的排法 (4)如果两端不能都排女生,可有多少种不同的排法 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种 (2)歌唱节目与舞蹈节目间隔排列的方法有多少种 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术

共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法 例7 7名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法 (2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必

须在后排,有多少种不同的排法 (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法 例8计算下列各题: (1) 2 15 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

(完整版)排列组合练习题___(含答案)

排列组合练习题 1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种 不同的选法。 2、8名同学争夺3项冠军,获得冠军的可能性有种。 3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安 排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。 4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天, 要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。 5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人) 得2本,其它每人一本,则共有种不同的奖法。 6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。 7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成 一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。 8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有 种陈列方法。 9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。 10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是 11、6名男生6名女生排成一排,要求男女相间的排法有种。 12、4名男生和3名女生排成一排,要求男女相间的排法有种。 13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有 种排法。 14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。

15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。 若4个空位中恰有3个空位连在一起,有种坐法。 16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5 不能排在一起,则不同的5位数共有个。 17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变, 那么不同的排法有种。 18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒, 乙不能跑第四棒,共有种参赛方案。 19、现有6名同学站成一排:甲不站排头也不站排尾有种不同的排法甲 不站排头,且乙不站排尾有种不同的排法 20、有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共 有种。 21、以正方体的顶点为顶点的四面体共有个。 22、由1、2、3、4、5、6组成没有重复数字的六位数,其中个位数字小于十位数字, 十位数字小于百位数字,则这样的数共有个。 23、A,B,C,D,E五人站一排,B必须站A右边,则不同的排法有种。 24、晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2 个节目 插入原节目单中,则不同的插法有种。 25、书架上放有6本书,现在要再插入3本书,保持原有书的相对顺序不变,则不 同的放法有种。 26、9个子高低不同的人排队照相,要求中间的最高,两旁依次从高到矮的排法共 有种。 27、书架上放有5本书(1~5册),现在要再插入3本书,保持原有的相对顺序不变, 有种放法。 28、12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调 整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 29、有五项工作,四个人来完成且每人至少做一项,共有种分配方法。

高考试题分类解析排列组合二项式定理

高考试题分类解析排列组 合二项式定理 Last revision date: 13 December 2020.

2005年全国高考试题分类解析(排列组合、二项式定理) 选择题 1. (全国卷Ⅱ)10()x 的展开式中64x y 项的系数是( ) (A) 840 (B) 840- (C) 210 (D) 210- 2.(全国卷Ⅲ)在(x?1)(x+1)8的展开式中x 5的系数是( ) (A )14 (B )14 (C )28 (D )28 3.(北京卷)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( ) (A )124414128C C C (B )124414128 C A A (C )12441412833C C C A ( D )12443141283C C C A 4.(北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( ) (A )144 4C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种 5.(福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游 览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙 两人不去巴黎游览,则不同的选择方案共有( ) A .300种 B .240种 C .144种 D .96种 6.(湖北卷)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给 4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那 么不同的分法种数是( ) A .168 B .96 C .72 D .144 7.(湖南卷)4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( ) A .48 B .36 C .24 D .18 8.(江苏卷)设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( ) ( A ) 10 ( B ) 40 ( C ) 50 ( D )80 9.(江苏卷)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 ( ) (A )96 (B )48 (C )24 (D )0 10.(江西卷)123)(x x +的展开式中,含x 的正整数次幂的项共有 ( )

排列组合专题复习与经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

(完整版)排列组合练习题3套(含答案)

排列练习 一、选择题 1、将3个不同的小球放入4个盒子中,则不同放法种数有() A、81 B、64 C、12 D、14 2、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于() A、 B、 C、 D、 3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数() A、64 B、60 C、24 D、256 4、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是() A、2160 B、120 C、240 D、720 5、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且合唱节目不能相邻,则不同排法的种数是() A、 B、 C、 D、 6、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() A、 B、 C、 D、 7、用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数有() A、24 B、36 C、46 D、60 8、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是() A、B、C、D、 二、填空题 1、(1)(4P 84+2P 8 5)÷(P 8 6-P 9 5)×0!=___________(2)若P 2n 3=10P n 3,则n=___________ 2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为 __________________________________________________________________ 3、4名男生,4名女生排成一排,女生不排两端,则有_________种不同排法 4、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成_________种不同币值。

历年高考排列组合试题及其答案

二项式定理历年高考试题荟萃(三) 一、填空题(本大题共 24 题, 共计102分) 1、(1+2x)5的展开式中x2的系数是________.(用数字作答) 2、的展开式中的第5项为常数项,那么正整数的值 是. 3、已知,则( 的值等于 . 4、(1+2x2)(1+)8的展开式中常数项为。(用数字作答) 5、展开式中含的整数次幂的项的系数之和为(用数字作答). 6、(1+2x2)(x-)8的展开式中常数项为。(用数字作答) 7、的二项展开式中常数项是(用数字作答). 8、 (x2+)6的展开式中常数项是.(用数字作答) 9、若的二项展开式中的系数为,则______(用数字作答). 10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等 于. 11、(x+)9展开式中x3的系数是.(用数字作答)

12、若展开式的各项系数之和为32,则n= ,其展开式中的常数项为。(用数字作答) 13、的展开式中的系数为.(用数字作答) 14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________. 15、(1+2x)3(1-x)4展开式中x2的系数为 . 16、的展开式中常数项为 ; 各项系数之和 为 .(用数字作答) 17、 (x)5的二项展开式中x2的系数是____________.(用数字作答)18、(1+x3)(x+)6展开式中的常数项为_____________. 19、若x>0,则(2+)(2-)-4(x-)=______________. 20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________. 21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= . 22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答) 23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

相关文档
相关文档 最新文档