文档库 最新最全的文档下载
当前位置:文档库 › 波谱学在有机化合物结构解析中的应用

波谱学在有机化合物结构解析中的应用

波谱学在有机化合物结构解析中的应用
波谱学在有机化合物结构解析中的应用

波谱学在有机化合物结构解析中的应用

在研究有机化合物的过程中,往往要对未知物的结构加以测定,或要对所合成的目的物进行验证结构。其经典的方法有降解法和综合法。但是经典的研究方法花费时间长,消耗样品多,操作手续繁。近代物理方法有多种,有机化学中应用最广泛的波谱方法是质谱、紫外和可见光谱,红外光谱,以及核磁共振谱,一般简称“四谱”。

质谱法是分离和记录离子化的原子或分子的方法,它的原理是以某种方式使有机分子电离、碎裂,然后按离子的质荷比大小把生成的各种离子分离,检测他们的强度,并将其排列成谱。

质谱法按其研究对象可分为同位素质谱、无机质谱和有机质谱三个主要分支。质谱法是有机化合物结构分析的最重要的方法之一,它能够准确地测定有机化合物的分子量,提供分子式和其他结构信息;它的测定灵敏度远高于其他结构分析法,如红外吸收光谱、核磁共振谱等。

20世纪50年代实现的气相色谱与质谱的在线联系用以及随之逐步发展起来的高效液相色谱-质谱联用技术使复杂有机混合物的快速分离和定型鉴定得以实现。从此,质谱应用范围大大扩展,在天然产物的研究以及环境污染物分析方面起到了重要作用。近20年来,质谱各种“软电离”技术的发展成功地实现了蛋白质、核酸、多糖、多肽等生物大分子准确分子量测定以及多肽和蛋白质中氨基酸序列的测定。质谱技术因具有检测精确度高、分析速度快、所需样品和试剂少的优点,已成为蛋白质结构研究中最重要的分析工具之一。生物MS技术主要用于解决两个分析问题:一是精确测定生物大分子,如蛋白质、核苷酸和糖类等的分

子质量,并提供分子结构信息;二是对存在于生命复杂体系中的微量或痕量小分子生物活性物质进行定性或定量分析。它在蛋白质结构的快速鉴定、序列分析、蛋白质定量分析、翻译后加工(修饰)及蛋白质相互作用等方面已有较为广泛的应用。

PMF的测定

蛋白质结构特殊,相对分子质量大,MS测定多肽和蛋白质序列是根据MS碎片离子推导的,序列信息碎片主要是通过酰胺键断裂形成。将蛋白质绘制成肽谱是一种重要的序列测定方法。PMF 测定是指将未知蛋白质以特定的蛋白酶酶解为多肽片段后,用MS测得各个肽片段的精确分子质量,将所得的肽质量数据与标准数据库相比对,即有可能检索到相应的蛋白质,同时可获得诸如一级结构等多方面的信息。在PMF鉴定蛋白质中,目前最常用的方法是,采用2-DE技术将酶切得到的肽段进行分离,再利用MALDI-TOF-MS进行分析。MALDI-TOF-MS对被测物质量误差范围有较高的要求,故MALDI-TOF-MS仪采用了离子反射器和延迟提取技术,并通过内标校正,质量误差范围可达,目前样品制备、PMF分析、数据库搜索这一过程已实现自动化,实现了蛋白质的快速鉴定和高通量筛选。

肽序列的测定

由于PMF方法只有在MALDI-TOF-MS分析得到4个以上肽段的质量且数据库中存在这种蛋白质的信息时才能正确鉴定,因此不能用于鉴定不符合上述条件的蛋白,此时需要对肽段的序列信息,即肽序列标签(PST,为蛋白质序列中的5~6个氨基酸残基片段,具有很高的特异性)进行测定。肽序列测定方法是利用肽

段裂解技术将肽段沿肽链断裂, 形成长度仅相差一个氨基酸的一系列肽片段(肽段分子的离子),对这些碎片离子系列综合分析,即可推断出肽段的氨基酸序列。较之传统的Edman降解末端测序技术,MS具有灵敏度高、速度快及不受末端封闭的限制的特点。目前,广泛使用的肽段裂解技术包括CID和源后衰变(PSD)两种。用串联MS分析多肽序列时,复杂的肽混合物无需分离即可通过CID直接测定肽段的氨基酸序列。原理为从一级MS产生的肽段中选择母离子,在第二级MS中,进一步与惰性气体碰撞形成N端碎片离子系列(B系列)和C端碎片离子系列(Y 系列)。孙懿等利用串联MS鉴定了与鼻咽癌中高表达的p53蛋白聚集和失活相关的22个差异表达蛋白质,为阐明鼻咽癌病理机制提供了依据。

近年来有人采用PSD-MALDI-MS技术测得肽序列。Ehmann等则利用MALDI-MS在血液中寻找与胰腺癌有关的生物标记物,并对其中最具代表性的3种标记物进行肽序列分析,其诊断敏感性可达100%,诊断特异性为98%,为胰腺

癌的早期诊断提供了技术支持。但以上两种肽段裂解技术尚存在一些缺陷:在肽键断裂时对某低能量的肽键有偏好,如脯氨酸残基的氨基端和天冬氨酸残基的羧基端;且在串联MS图谱上,难以区分Ile和Leu以及Gln和Lys。故对于未知的肽段,目前MS测序技术还不可能取代Edman降解末端测序技术。但FT-ICR-MS 特有的ECD可解决这些问题,故其在肽序列标签的测定方面有广阔的应用前景。

2.2蛋白质翻译后修饰的确定和鉴别

翻译后修饰(post-translational modifications),如磷酸化、糖基化等,是调控蛋白质活性和功能的重要方式,也是蛋白质结构研究的重要内容,因此确定和鉴别蛋白质的翻译后修饰具有重要意义。由于磷酸化肽段带负电荷,而MALDI-TOF-MS

常用检测模式为正离子模式,其离子化效率低,大量非磷酸化肽段的信号抑制了磷酸化肽段的信号,且其PMF中缺少标志性离子,因此直接采用MALDI-TOF-MS 检测磷酸化修饰位点比较困难。通常是采用MALDI-TOF-MS与碱性磷酸酶的去磷酸化作用相结合的方法来鉴定磷酸化肽段。由于肽上的一个磷酸基团丢失,分子质量数便减少了80,通过分析磷酸酶作用前后肽谱的差异,即可确定磷酸化肽段及磷酸化位点的数目。MALDI-TOF还可通过PSD进行翻译后修饰的分析研究。PSD是利用亚稳离子在飞行管中裂解时释放能量,使得反射飞行MS模式下离子反射能量聚集,亚稳离子飞行时间缩短,质荷比降低,导致MS谱图发生改变,从而检测出磷酸化位点。通常,丝氨酸和苏氨酸磷酸化肽段会丢失磷酸(分子质量数减少98),而酪氨酸磷酸化肽段会丢失磷酸基团(分子质量数减少80)。

TQ-MS的前体离子扫描(precursor ion scan)技术和中性丢失扫描(neutral loss scan) 模式也是磷酸化修饰分析研究较常用的手段。

前体离子扫描技术利用丝氨酸、苏氨酸和酪氨酸磷酸化肽段经CID后丢失磷酸基团,并在阴离子扫描模式下检测,从而鉴定出混合肽中的磷酸化肽段。由于现代生物MS技术对于小分子检测有较高的灵敏度和准确度,所以可采用前体离子扫描检测磷酸化肽段的特征性标识。而鉴定出磷酸化肽段后,将MS转为阳离子扫描模式,可再进行肽段的序列分析。

前体离子扫描的另一种方式是直接进行阳离子扫描。酪氨酸磷酸化肽段因具有特征性亚胺离子(immonium,m/z:216.04),故可以在正离子模式下对其进行母离子扫描检测。为了同时检测丝氨酸和苏氨酸磷酸化肽段,Steen等基于磷酸化氨基酸的β消除反应设计了一种化学修饰方法,即在磷酸化肽段脱磷酸基团和发

生β消除反应后,加入合成的巯基季铵,进行加成反应;然后在低能量的CID下,产生特异性小分子碎片(m/z:122.06),使这2种磷酸化氨基酸在正离子检测模式下产生特征的碎片离子而用于母离子扫描实验。正离子模式下母离子扫描的最大优点是可直接对磷酸化肽段进行磷酸化位点和序列分析。

中性丢失扫描模式可快速选择被修饰片段,然后根据特征丢失确定修饰类型。该技术是目前最有效的对蛋白质翻译后修饰进行识别与鉴定的最有效手段,其优点是可完全在阳离子模式下操作,而不会有前体离子扫描可能出现的阴离子模式下灵敏度下降的问题,且也可有效用于离子阱质量分析器中。

FT-ICR-MS所具有的断裂模式ECD使蛋白或多肽主链在断裂时可保留修饰基团,也就产生了携带修饰基团的肽序列标签,便于修饰基团和位点的确定。ECD 在蛋白质翻译后的修饰研究中必将成为最有力的分析手段。Sze等在对β-casein 蛋白(分子质量为24000)的研究中,通过等离子体ECD找到了β-2casein结构中全部磷酸化位点。

2.3蛋白质高级结构的测定

对蛋白质高级结构的测定常采用近紫外圆二色谱法(CD)、荧光光谱法以及核磁共振技术,但是这些研究手段只能检测蛋白质溶液状态下的平均构象,而不能监测蛋白质的折叠过渡中间态。蛋白质构象中折叠的不同导致蛋白质分子中的氨其氢(H)与氘(D)放射性核素交换的速率和程度不同,H/D交换技术即是利用H/D 交换速率和程度来推测蛋白质高级结构及非共价复合物的作用位点,是一种灵敏

的探测蛋白质结构和动力学性质的方法。ESI-MS作为一个测量放射性核素变化的工具,能准确、灵敏、快速地检测H/D交换前后样品的质量变化,从而推测出可能的结构信息;且具有样品用量少、适合分析大分子蛋白质等特点, ESI-MS与

H/D交换技术联用,已成为蛋白质三维结构研究中必不可少的分析手段。

离子迁移谱(IMS)是一种气相环境下的电泳技术,它是根据被分析物的分子质量、电荷和碰撞截面(即大小和形状)来分离和辨别被分析物。目前将该技术与ESI、MALDI及MS技术联用于蛋白质和多肽分析研究,已取得相当大的成功,成为蛋白质结构研究中最强有力的工具。

利用IMS对多肽异构体混合物的构象研究结果表明,IMS具有分辨结构上仅存在微小差别的异构体的能力,这是普通的MS技术所不具备的。因

此,ESI-IMS-MS联用技术在大分子结构及构象分析中具有非常突出的优势。

与ESI相比,DESI是在常压下操作的,且离子源相对简单,使得DESI更易与IMS相匹配。Myung等将DESI与IMS-TOF联用于细胞色素C和胞壁质酶蛋白的检测,结果显示,DESI与ESI所得到的MS谱图非常相似,且DESI离子化过程更温和,更易于得到蛋白质结构的准确信息。由此可见,将DESI与IMS联用具有更大的优势。

【参考文献】

1、王晓娜,许丽娜,彭金咏,刘克辛等. 现代生物质谱技术在生物大分子分析研究中的应用. 中国现代应用药学杂志,2008,25(2):105-108.

2、雷红灵,吴永尧等.蛋白质组学研究策略及质谱技术的应用.湖北民族学院学

报,2007,25(3):346-348.

3、邹丽敏,李博,刘文英等.生物质谱技术的发展及在蛋白质结构研究中的应

用.2008,32(2):49-55.

4、曹冬,张养军,钱小红等。基于生物质谱的蛋白质组学绝对定量方法研究进展.质朴学

报,2008,29(3):185-189.

5、王岚,刘骁勇综述;张华宁,高虹审校.生物质谱技术在蛋白质组学研究中的应

用.2007,18(1):166-168.

6、乐萍,雷颉,熊建铭. 蛋白质测定方法比较与研究进展.江西化工,2007,6(2):51-52.

7、刘科辉,钱小红.串联质谱肽段断裂新技术--电子转移解离及其在蛋白质组学中的应用.质谱学报,2008,29(2):115-118.

8、李伟.iTRAQ多重化学标记串联质谱技术在比较蛋白质组学中的应用.生物化

学,2006,26(5):453-456

9、仇晓燕,崔勐,刘志强,刘淑莹. 蛋白质中二硫键的定位及其质谱分析.化学进

展,2008,20(6):976-981.

10、王芳,柳翱,张海悦,李东风.电喷雾电离质谱及其在多糖和蛋白质中的应用. 长春工业大学学报(自然科学版).2007,28(4):444-447.

11、孟辉,洪文学,宋佳霖,王立强.基于可视化图形特征融合的蛋白质组学质谱数据分析.燕山大学学报,2008,32(5):451-456.

《有机化合物的结构特点》教案

第二节有机化合物的结构特点 教学目标: 1.知识与技能:掌握有机化合物的结构特点 2.过程与方法:通过练习掌握有机化合物的结构。 3.情感态度和价值观:在学习过程中培养归纳能力和自学能力。教学重点:有机化合物的结构特点 教学难点:有机化合物的结构特点法 教学过程: 第一课时 一.有机物中碳原子的成键特点与简单有机分子的空间构型

第二课时 [思考回忆]同系物、同分异构体的定义?(学生思考回答,老师板书) [板书] 二、有机化合物的同分异构现象、同分异构体的含义 同分异构体现象:化合物具有相同的分子式,但具有不同的结构现象,叫做同分异构体现象。 同分异构体:分子式相同, 结构不同的化合物互称为同分异构体。 (同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质互称为同系物。) [知识导航1] 引导学生再从同系物和同分异构体的定义出发小结上述2答案,从中得出对“同分异构”的理解: (1)“同分”——相同分子式(2)“异构”——结构不同 分子中原子的排列顺序或结合方式不同、性质不同。 (“异构”可以是象上述②与③是碳链异构,也可以是像⑥与⑦是官能团异构)“同系物”的理解:(1)结构相似———一定是属于同一类物质; (2)分子组成上相差一个或若干个CH2原子团——分子式不同[学生自主学习,完成《自我检测1》] 《自我检测1》 下列五种有机物中,互为同分异构体;互为同一

物质; 互为同系物。 ① ② ③ ④ CH 2=CH -CH 3 ⑤ CH 2=CH -CH=CH 2 [知识导航2] (1)由①和②是同分异构体,得出“异构”还可以是位置异构; (2)②和③互为同一物质,巩固烯烃的命名法; (3)由①和④是同系物,但与⑤不算同系物,深化对“同系物”概念中“结构相似”的含义理解。(不仅要含官能团相同,且官能团的数目也要相同。) (4)归纳有机物中同分异构体的类型;由此揭示出,有机物的同分异构现象产生的本质原因是什么?(同分异现象是由于组成有机化合物分子中的原子具有不同的结合顺序和结合方式产生的,这也是有机化合物数量庞大的原因之一。除此之外的其他同分异构现象,如顺反异构、对映异构将分别在后续章节中介绍。) [板书] 二、同分异构体的类型和判断方法 1.同分异构体的类型: a.碳链异构:指碳原子的连接次序不同引起的异构 b.官能团异构:官能团不同引起的异构 CH 3-CH -CH=CH 2 ︱ CH 3 CH 3︱ CH 3-C=CH -CH 3 CH 3-CH=C ︱ CH 3 CH 3 ︱

有机化合物结构的表示方法

有机化合物结构的表示方法(拓展应用) 一.学习目标 学会用结构式、结构简式和键线式来表示常见有机化合物的结构 二.重点难点 结构简式表示有机化合物的结构 三.知识梳理 【练习】写出下列有机物的电子式 乙烷、乙烯、乙炔、乙醇、乙酸、乙醛 1. 结构式的书写 (1)结构式定义 (2)书写注意点 【练习】写出下列有机物的结构式 乙烷、乙烯、乙炔、乙醇、乙酸、乙醛 2.结构简式书写: (1)定义 (2)书写注意点 ①表示原子间形成单键的“—”可以省略 ②“C=C”和“C≡C”中的“=”和“≡”不能省略。但醛基、羰基、羧基可以简写为“-CHO”、“-CO-”、“-COOH” ③不能用碳干结构表示,碳原子连接的氢原子个数要正确,官能团不能略写,要注意官能团中各原子的结合顺序不能随意颠倒。 【练习】写出下列有机物的结构简式 乙烷、乙烯、乙炔、乙醇、乙酸、乙醛 3.键线式: 定义:将碳、氢元素符号省略,只表示分子中键的连接情况,每个拐点或终点均表示有一个碳原子,称为键线式。每个交点、端点代表一个碳原子,每一条线段代表一个共价键,每个碳原子有四条线段,用四减去线段数既是氢原子个数。 【练习】写出下列有机物的键线式 丙烷、丙烯、丙炔、丙醇、丙酸、丙醛

CH 3CH 2CH 2CH 3CH 3CHCH 2CH 3 3 CH 3CH CHCH 3 注意事项: (1)一般表示3个以上碳原子的有机物;弄清碳原子的杂化方式 (2)只忽略C-H 键,其余的化学键不能忽略; (3)必须表示出C=C 、C ≡C 键等官能团; (4)碳氢原子不标注,其余原子必须标注(含羟基、醛基和羧基中氢原子)。 (5)计算分子式时不能忘记顶端的碳原子。 【小结】有机化合物结构的表示方法 电子式 结构式 结构简式 键线式 【过关训练】 C C C C H H H H _________________________、___________________________ C C C C Br H Br H H _______________________、___________________________ C C C C H H H H H H H H ____________________________、___________________________ 3.有机化合物的结构简式可进一步简化,如: 略 去碳 氢 元素短线替换 省略短线 双键叁键保留

最经典总结-有机化合物结构与性质

有机化合物结构与性质 考点一官能团的结构与性质 Z 真题感悟hen ti gan wu (课前) 1.(2018·全国Ⅲ·9)苯乙烯是重要的化工原料。下列有关苯乙烯的说法错误的是(C) A.与液溴混合后加入铁粉可发生取代反应 B.能使酸性高锰酸钾溶液褪色 C.与氯化氢反应可以生成氯代苯乙烯 D.在催化剂存在下可以制得聚苯乙烯 [解析]C错:与氯化氢的反应是发生在碳碳双键上的加成反应,产物是氯代苯乙烷。A对:“铁粉”“液溴”是苯乙烯()在苯环上发生溴代反应的条件。B对:含有碳碳双键,能使酸性高锰酸钾溶液褪色。D对: 含有碳碳双键,能发生加聚反应生成聚苯乙烯。 2.(2018·北京·10)一种芳纶纤维的拉伸强度比钢丝还高,广泛用作防护材料。其结构片段如下图。

下列关于该高分子的说法正确的是(B) A.完全水解产物的单个分子中,苯环上的氢原子具有不同的化学环境 B.完全水解产物的单个分子中,含有官能团—COOH或—NH2 C.氢键对该高分子的性能没有影响 D.结构简式为 [解析]B对:该高分子完全水解生成和,分别含有官能团—COOH、—NH2。A错:水解生成的单个分子是对称结构,苯环上的氢原子具有相同的化学环境。C错:氢键对高分子的性能有影响。D错:该高分子化合物的结构简 式为。 3.(2017·江苏)萜类化合物广泛存在于动植物体内,关于下列萜类化合物的说法正确的是(C) A.a和b都属于芳香族化合物 B.a和c分子中所有碳原子均处于同一平面上 C.a、b和c均能使酸性KMnO4溶液褪色 D.b和c均能与新制的Cu(OH)2反应生成红色沉淀 [解析]a中没有苯环,不属于芳香族化合物,A项错误;a、c中所有碳原子不可能共平面,B项错误;a中的碳碳双键、b中的羟基以及与苯环相连的甲基、c中的醛基均可以被酸性KMnO4溶液氧化,C项正确;与新制Cu(OH)2反应的官能团为醛基,只有c可以与新制Cu(OH)2反应,而b不能,D项错误。

有机物波普分析习题及解析

第一章质谱习题 1、有机质谱图的表示方法有哪些是否谱图中质量数最大的峰就是分子离子峰,为什么 2、以单聚焦质谱仪为例,说明质谱仪的组成,各主要部件的作用及原理。 3、有机质谱的分析原理及其能提供的信息是什么 4、有机化合物在离子源中有可能形成哪些类型的离子从这些离子的质谱峰中可以得到一些什么信息 5、同位素峰的特点是什么如何在谱图中识别同位素峰 6、谱图解析的一般原则是什么 7.初步推断某一酯类(M=116)的结构可能为A或B或C,质谱图上m/z 87、m/z 59、m/z 57、m/z29处均有离子峰,试问该化合物的结构为何 (A)(B) (C) 8.下列化合物哪些能发生McLafferty重排 9.下列化合物哪些能发生RDA重排 10.某化合物的紫外光谱:262nm(15);红外光谱:3330~2500cm-1间有强宽吸收,1715 cm-1处有强宽吸收;核磁共振氢谱:δ处为单质子单峰,δ处为四质子宽单峰,δ处为三质子单峰,质谱如

图所示。参照同位素峰强比及元素分析结果,分子式为C5H8O3,试推测其结构式。 部分习题参考答案 1、表示方法有质谱图和质谱表格。质量分析器出来的离子流经过计算机处理,给出质谱图和质谱数据,纵坐标为离子流的相对强度(相对丰度),通常最强的峰称为基峰,其强度定为100%,其余的峰以基峰为基础确定其相对强度;横坐标为质荷比,一条直线代表一个峰。也可以质谱表格的形式给出质谱数据。 最大的质荷比很可能是分子离子峰。但是分子离子如果不稳定,在质谱上就不出现分子离子峰。根据氮规则和分子离子峰与邻近峰的质量差是否合理来判断。 2、质谱仪的组成:进样系统,离子源,质量分析器,检测器,数据处理系统和真空系统。 进样系统:在不破坏真空度的情况下,使样品进入离子源。气体可通过储气器进入离子源;易挥发的液体,

有机化合物的波谱分析

第七章 有机化合物的波谱分析 (一) 概述 研究或鉴定一个有机化合物的结构,需对该化合物进行结构表征。其基本程序如下: 分离提纯→物理常数测定→元素分析→确定分子式→确定其可能的构造式(结构表征)。(参见P11-12) (1) 结构表征的方法 传统方法:(化学法) ①元素定性、定量分析及相对分子质量测定分子式; ②官能团试验及衍生物制备分子中所含官能团及部分结构片断; ③将部分结构片断拼凑完整结构; ④查阅文献,对照标准样,验证分析结果。 特点:需要较多试样(半微量分析,用样量为10-100mg ),大量的时间(吗啡碱,1805- 1952年),熟练的实验技巧,高超的智慧和坚韧不拔的精神。 缺点:①分子有时重排,导致错误结论; ②* C 及-C =C -的构型确定困难。 波谱法: ①质谱(最好用元素分析仪验证)分子式; ②各种谱图(UV 、IR 、NMR 、MS )官能团及部分结构片断; ③拼凑完整结构; ④标准谱图确认。 特点:样品用量少(<30mg ),不损坏样品(质谱除外),分析速度快,对*C 及-C =C -的 构型确定比较方便。 光谱法已成为有机结构分析的常规方法。但是化学方法仍不可少,它与光谱法相辅相成,相互补充,互为佐证。 (2) 波谱过程 波谱过程可表示为: 有机分子+电磁波 光谱 分子运动:平动、振动、转动、核外电子运动等 量子化的 每个分子中只能存在一定数量的转? ? (能量变化不 连续) 动、振动、电子跃迁能级

电子跃迁电磁波波长越短,频率越快,能量越高。 200nm400nm 800nm 红外光 微波、 电视波 200-800nm:引起电子运动能级跃迁,得到紫外及可见光谱; 2.5-15μm:引起分子振、转能级跃迁,得到红外光谱; 60-600MHz:核在外加磁场中取向能级跃迁,得到核磁共振谱。 (3) 不饱和度(U) 不饱和度亦称为分子中的环加双键数、缺氢指数、 双键等价值等。其定义为:当一个化合物衍变为相应的烃后,与其同碳的饱和开链烃比较,每缺少2个氢为1个不饱和度。 所以:一个双键的不饱和度为1,一个叁键的不饱和度为2,一个环的不饱和度为1,一个苯环的不饱和度为4。例如: U=2 CH2=CH-COOH CH2=CH-CN U=3 CCH3 O U=5U=2 O-P-O- 3 O U=9 U的计算: -O--CH- -N- -CH2--X-H -S-相当于 、;相当于;相当于。 实际上,O、S并不影响化合物的不饱和度。 例:C8H14U=2 C7H8 U=4

高二化学《有机化合物的结构特点》知识点归纳总结 例题解析

有机化合物的结构特点 【学习目标】 1.通过有机物中碳原子的成键特点,了解有机物存在异构现象是有机物种类繁多的原因之一; 2.掌握同分异构现象的含义,能判断简单有机物的同分异构体,初步学会同分异构体的书写。 【要点梳理】 要点一、有机化合物中碳原子的成键特点 1.碳元素位于第二周期ⅣA族,碳原子的最外层有4个电子,很难得到或失去电子,通常以共用电子对的形式与其他原子形成共价键,达到最外层8个电子的稳定结构。 说明:根据成键两原子间共用电子的对数,可将共价键分为单键、双键和三键。即成键两原子间共用一对电子的共价键称为单键,共用两对电子的共价键称为双键,共用三对电子的共价键称为三键。 2.由于碳原子的成键特点,在有机物分子中,碳原子总是形成4个共价键,每个碳原子不仅能与氢原子或其他原子(如氧、氯、氮、硫等)形成4个共价键,而且碳原子之间可以形成单键(C—C)、双键(C=C)、三键(C≡C)。多个碳原子可以相互结合成长短不一的碳链,碳链也可以带有支链,还可以结合成碳环,碳链与碳环也可以相互结合,因此,含有原子种类相同,每种原子数目也相同的分子,其原子可能具有多种不同的结合方式,形成具有不同结构的分子。 说明: (1)在有机物分子中,碳原子仅以单键与其他原子形成4个共价键,这样的碳原子称为饱和碳原子,当碳原子以双键或三键与其他原子成键时,这样的碳原子称为不饱和碳原子。 (2)同种元素的原子间形成的共价键称为非极性键,不同种元素的原子间形成的共价键称为极性键。共价键的极性强弱与两个成键原子所属元素的电负性差值大小有关,电负性差值越大,键的极性就越强。 种类实例含义应用范围 化学式CH4C2H2 (甲烷) (乙炔) 用元素符号表示物质分子组成的式 子。可反映出一个分子中原子的种类 和数目 多用于研究分子晶体 最简式(实验式) 乙烷最简式为CH3, C6H12O6的最简式为 CH2O ①表示物质组成的各元素原子最简 整数比的式子②由最简式可求最简 式量 ①有共同组成的物质②离 子化合物、原子晶体常用它 表示组成 电子式用小黑点等记号代替电子,表示原子 最外层电子成键情况的式子多用于表示离子型、共价型的物质 结构式①具有化学式所能表示的意义,能反 映物质的结构②表示分子中原子的 结合或排列顺序的式子,但不表示空 间构型①多用于研究有机物的性质②能反映有机物的结构,有机反应常用结构式表示 结构简式(示性式) CH3—CH3 (乙烷) 结构式的简便写法,着重突出结构特 点(官能团) 同“结构式”① 球棍模型小球表示原子,短棍表示价键用于表示分子的空间结构 (立体形状) 比例模型用不同体积的小球表示不同原子的 大小用于表示分子中各原子的相对大小和结合顺序

有机化合物的结构特点

第二节有机化合物的结构特点一、同系物、同分异构体、同位素、同素异形体、同种物质的比较

二、怎样才能正确书写同分异构体?准确判断出同分异构体的数目的方法有哪些? 1.同分异构体的书写方法 (1)降碳对称法(适用于碳链异构) 下面以C7H16为例写出它的同分异构体: ①将分子写成直链形式:CH3CH2CH2CH2CH2CH2CH3 ②从直链上去掉一个—CH3,依次连在剩余碳链中心对称线的一侧的各个碳原子上,得到多种带有甲基的,主链比原主链少一个碳原子的异构体。 。根据碳链中心对称,将—CH3连在对称轴的右侧就会与左侧连接方式重复。另外甲基不能连在链端链上,否则就会与第一种连接方式重复。 ③再从主链上去掉一个碳,可形成一个—CH2CH3或两个—CH3来取代有5个碳原子的主链上的氢。当取代基为—CH2CH3时,由对称关系只能接在中间的碳原子上,即 。当取代基为两个甲基时,在主链上先定一个甲基,按照对、邻、间的位置依次移动另外一个甲基,注意不要重复。 (2)取代法(适用于醇、卤代烃异构) 先碳链异构后位置异构 如书写分子式为C5H12O的醇的同分异构体,如图(图中数字即为—OH接入后的位置,即这样的醇合计为8种): (3)插入法(适用于烯烃、炔烃、酯等) 先根据给定的碳原子数,写出具有此碳原子数的烷烃的同分异构体的碳链骨架,再根据碳链的对称性,将官能团插入碳链中,最后用氢原子补足碳的四个价键。 如书写分子式为C5H10O的酮(插入)的同分异构体,如图: 。 2.同分异构体数目的判断方法 (1)基元法 如丁基有4种同分异构体,则丁醇有4种同分异构体。 (2)替代法 如二氯苯C6H4Cl2有3种同分异构体,四氯苯也有3种同分异构体(将H替代Cl);CH4的一氯代物只有一种同分异构体,新戊烷C(CH3)4的一氯代物也只有一种同分异构体。 (3)对称法(又称等效氢法) 等效氢法的判断可按下列三点进行:

高中化学 有机化合物的结构特点教案新人教版

第二节有机化合物的结构特点(教学设计) 第一课时 一.有机物中碳原子的成键特点与简单有机分子的空间构型 教学内容教 学 环 节 教学活动 设计意图 教师活动学生活动 ——引 入 有机物种类繁多,有很多有机物的分子 组成相同,但性质却有很大差异,为什 么? 结构决定性质, 结构不同,性质 不同。 明确研究有机 物的思路:组成 —结构—性质。 有机分子的结构是三维 的设 置 情 景 多媒体播放化学史话:有机化合物的三 维结构。思考:为什么范特霍夫和勒贝 尔提出的立体化学理论能解决困扰19世 纪化学家的难题? 思考、回答激发学生兴趣, 同时让学生认 识到人们对事 物的认识是逐 渐深入的。 有机物中碳原子的成键 特点交 流 与 讨 论 指导学生搭建甲烷、乙烯、乙炔、苯等 有机物的球棍模型并进行交流与讨论。 讨论:碳原子最 外层中子数是 多少?怎样才 能达到8电子 稳定结构?碳 原子的成键方 式有哪些?碳 原子的价键总 数是多少?什 么叫单键、双 键、叁键?什么 叫不饱和碳原 子? 通过观察讨论, 让学生在探究 中认识有机物 中碳原子的成 键特点。 有机物中碳原子的成键 特点归 纳 板 书 有机物中碳原子的成键特征:1、碳原子 含有4个价电子,易跟多种原子形成共 价键。 2、易形成单键、双键、叁键、碳链、碳 环等多种复杂结构单元。 3、碳原子价键总数为4。 不饱和碳原子:是指连接双键、叁键或 在苯环上的碳原子(所连原子的数目少 于4)。 师生共同小结。通过归纳,帮助 学生理清思路。

简单有机分 子的空间结 构及 碳原子的成键方式与分子空间构型的关系观 察 与 思 考 观察甲烷、乙烯、乙炔、苯等有机物的 球棍模型,思考碳原子的成键方式与分 子的空间构型、键角有什么关系? 分别用一个甲基取代以上模型中的一个 氢原子,甲基中的碳原子与原结构有什 么关系? 分组、动手搭建 球棍模型。填 P19表2-1并思 考:碳原子的成 键方式与键角、 分子的空间构 型间有什么关 系? 从二维到三维, 切身体会有机 分子的立体结 构。归纳碳原子 成键方式与空 间构型的关系。 碳原子的成键方式与分子空间构型 的关系归 纳 分 析 —C——C= 四面体型平面型 =C= —C≡ 直线型直线型平面型 默记理清思路 分子空间构 型迁 移 应 用 观察以下有机物结构: CH3 CH2CH3 (1) C = C H H (2) H--C≡C--CH2CH3 (3) —C≡C—CH=CF2、 思考:(1)最 多有几个碳原 子共面?(2) 最多有几个碳 原子共线?(3) 有几个不饱和 碳原子? 应用巩固 杂化轨道与有机化合物空间形状观 看 动 画 轨道播放杂化的动画过程,碳原子成键 过程及分子的空间构型。 观看、思考 激发兴趣,帮助 学生自学,有助 于认识立体异 构。 碳原子的成键特征与有机分子的空间构型整 理 与 归 纳 1、有机物中常见的共价键:C-C、C=C、 C≡C、C-H、C-O、C-X、C=O、C≡N、 C-N、苯环 2、碳原子价键总数为4(单键、双键和 叁键的价键数分别为1、2和3)。 3、双键中有一个键较易断裂,叁键中有 两个键较易断裂。 4、不饱和碳原子是指连接双键、叁键或 在苯环上的碳原子(所连原子的数 目少于4)。 5、分子的空间构型: (1)四面体:CH4、CH3CI、CCI4 (2)平面型:CH2=CH2、苯 (3)直线型:CH≡CH 师生共同整理 归纳 整理归纳 学业评价迁 移 应 展示幻灯片:课堂练习 学生练习巩固

有机化合物波谱解析教案

《有机化合物波谱解析》教案 一、前言 《有机化合物波谱解析》是应用四种谱学方法(紫外光谱、红外光谱、核磁共振波谱和质谱)研究和鉴定有机化合物结构相关知识的一门课程。 本课程要求学生掌握四种谱学的基本操作技能,应用提供的信息与化合物结构的对应关系进行相应的结构解析和信号归属。熟悉化合物结构解析的一般方法和程序。了解光谱学发展的最新动态和技术。 理论课授课36学时。 教材选用常建华主编《有机化合物波谱分析》(第三版),科学2011年出版教学目的 1.掌握四种谱学的基本操作技能,应用提供的信息与化合物结构的对应关系进行相应的结构解析和信号归属。 2.熟悉化合物结构解析的一般方法和程序。 3.了解光谱学发展的最新动态和技术。 三、教学重点和难点 1.教学重点 (1).红外、紫外光谱的解析方法。 (2).质谱的解析方法。 (3).1H-NMR、13C-NMR的解析方法。 2.教学难点 (1).四种谱学的原理和规律。 (2).四种光谱学的综合解析。 四、教学方法与手段 1.教学方法 能采用启发式,谈话式、讨论式等一些先进教学方法。并能采取灵活多样的方式教学,注重创新能力培养。全部课程实现了多媒体教学。 2.教学手段 采用多媒体、幻灯、实物投影、分子模型模拟等辅助教学手段。 五、教学容与要求 第一章紫外光谱(第1-2节)课时安排:2学时 [基本容] 介绍课程性质,阐述波谱分析课程,了解其功能和作用,介绍波谱中各种技术在有机化合物监测分析中的角色,充分阐述多谱技术的联合应用的功能和价值。 [基本要求] 熟悉:波谱技术在有机化合物结构检测与分析,尤其是立体结构鉴定中的主要应用。 了解:常规化学检测技术的特点,波谱技术的优缺点。

《有机化合物波谱解析》教学大纲

《有机化合物波谱解析》教学大纲 适用专业: 化学工程与工艺专业精细化工方向、药用高分子材料方向;药物制剂专业、药物制剂专业天然药物制剂方向; 药学专业、药学专业医院药学方向;制药工程专业。

一、课程性质、目的和任务 有机化合物波谱解析是化学工程与工艺专业精细化工方向、化学工程与工艺专业药用高分子材料方向、药物制剂专业、药物制剂专业天然药物制剂方向;药学专业、药学专业医院药学方向;制药工程专业的必修课和限选课。根据其培养目标和要求,本课程将在学生学习有机化学、分析化学、物理化学等课程的基础上系统讲授紫外光谱(UV)、红外光谱(IR)、核磁共振光谱(NMR)和质谱(MS)这四大光谱的基本原理、特征、规律,以及图谱解析技术,并且介绍这四大光谱解析技术的综合运用。波谱分析法由于其快速、灵敏、准确、重现在有机药物结构分析和鉴定研究中起着重要的作用,已成为新药研究和药物结构分析和鉴定常用的分析工具和重要的分析方法,是上述专业及及方向的学生必须掌握的基本技能。其主要任务就是在学习波谱解析的基本概念、基本理论和基本技能及各类化合物波谱特征的基础上,培养学生识谱、解谱的能力,最终达到确定化合物的结构的目的。 教材:姚新生.有机化合物波谱分析.中国医药科技出版社,2004 习题:以本教研室陈熔、吕华冲老师编写的《波谱解析习题集》为主,教科书里的习题为辅,在讲授完每章内容后布置习题。 二、课程基本要求 1、本课程应结合目前有机化合物和天然药物结构研究的方法和发展趋势使学生意识到:(1)UV、IR、NMR、MS是目前研究有机化合物和天然化物结构不可缺少的主要工具和方法。 (2)掌握有机化合物重要官能团的光谱特征和规律是解析图谱、推测结构的基础。 2、讲授UV、IR、NMR、MS的基本原理、知识和理论;介绍它们的测定方法、图谱的特征以及基本有机化合物重要官能团在四大光谱中的特征及规律;介绍综合解析图谱的一般方法和技巧,要求学生通过学习做到: (1)掌握UV、IR、NMR、MS的基本原理、知识,了解它们的测定方法; (2)熟悉基本有机化合物重要官能团在UV、IR、NMR、MS光谱中的特征及规律; (3)能够根据有机化合物的结构式,初步推测它们的波谱学主要特征(UV、IR、NMR、MS); (4)掌握图谱解析的一般程序和方法; (5)了解标准图谱的应用。

高二化学《有机化合物的结构特点》习题训练(含答案解析)

有机化合物的结构特点 一、选择题 1.3-甲基戊烷的一氯取代产物的同分异构体有(不考虑立体异构)( ) A .3种 B .4种 C .5种 D .6种 2.已知化合物B 3N 3H 6(无机苯)与C 6H 6的分子结构相似||,如下图: 则无机苯的二氯取代物B 3N 3H 4Cl 2的同分异构体数目为( ) A .2种 B .3种 C .4种 D .5种 3.有机物Q 的分子式为C 5H 10O 3||,一定条件下Q 遇NaHCO 3、Na 均能产生气体||,且生成气体体积比(同温同压)为1∶1||,则Q 的结构最多有( ) A .12种 B .10种 C .8种 D .7种 4.能说明苯分子的平面正六边形结构中||,碳碳键不是单、双键交替相连的事实是( ) A .苯的一氯取代产物无同分异构体 B .苯的邻位二氯取代产物只有1种 C .苯的间位二氯取代产物只有1种 D .苯的对位二氯取代产物只有1种 5.四联苯的一氯代物有( ) A .3种 B-4种 C .5种 D||,6种 6.下列说法中不正确的是( ) A .相对分子质量相同||,组成元素的百分含量相同的不同有机物一定是同分异构体关系 B .碳原子数相同、结构不同的烷烃一定是互为同分异构体关系 C .两有机物互为同系物||,则它们也是互为同分异构体关系 D .碳原子数≤10的烷烃||,其一氯代物没有同分异构体的烷烃有4种 7.下列化学用语使用正确的是( ) A .氢氧化钠的电子式: B .羰基硫(COS )的结构式:O = C =S C .质量数为37的氯原子:17 37Cl D .乙烯的结构简式:CH 2CH 2 8.邻甲基苯甲酸()有多种同分异构体||,其中属于酯类||,且分子结构中有甲基和苯环的异构体有( ) A .3种 B .4种 C .5种 D .6种 9.用相对分子质量为43的烷基取代甲苯苯环上的一个氢原子所得的芳香族产物数目为( ) A .3种 B .4种 C .5种 D .6种 10.化学式为C 5H 7Cl 的有机物||,其结构不可能是( ) A .只含一个双键的直链有机物 B .含有两个双键的直链有机物 C .含有一个双键的环状有机物 D .含有一个三键的直链有机物 11.1 mol 某烃在氧气中充分燃烧||,需要消耗氧气179.2 L(标准状况下)||。它在光照的条件下与氯气反应能生成3种不同的一氯取代物||。该烃的结构简式是( ) A . B .CH 3CH 2CH 2CH 2CH 3 C . D . 二、非选择题 1.2019年||,国家药品监督××局发布通告暂停使用和销售含苯丙醇胺的药品制剂||。苯丙醇胺(英文缩写PPA)结构简式如下: CH 3CH 2CHCH 3CH 3

有机化合物的结构特点

《有机化合物的结构特点》课后练习 1.(双选)以下有关碳原子的成键特点的说法正确的是() A.在有机化合物中,碳原子一般以四个共用电子对与另外的原子形成四个共价键 B.在有机化合物中,碳元素只显-4价 C.在烃中,碳原子之间只形成链状 D.碳原子既可形成有机化合物,也可形成无机物 【解析】在有机化合物中,碳元素不一定只显-4价,如在CH3Cl中,碳显-2价,B项错误;在烃中碳原子之间也可以形成环状,如环已烷,C项错误。 【答案】AD 2.下列结构式从成键情况看不合理的是() 【解析】根据几种原子的成键特点分析:碳原子和硅原子形成4个共价键,氢原子形成1个共价键,氧原子形成2个共价键,氮原子形成3个共价键,D中C、Si成键不合理。 【答案】 D 3.下列各组物质中属于同分异构体的是()

【解析】因为苯分子中不存在单双键交替的结构,而是一种特殊的化学键,因此A 项中两种结构简式表示的是同一种物质。B项也是同种物质。C项中两种结构可认为是CH4分子中的两个氢原子被—CH3取代,甲烷的二取代物只有一种结构,故C项中两种结构表示同一种物质。D项中两物质分子式相同,但碳架结构不同,互为同分异构体。 【答案】 D 4.下列说法中正确的是() A.相对分子质量相同,组成元素也相同的化合物一定是同分异构体 B.凡是分子组成相差一个或若干个CH2原子团的物质,彼此一定是同系物 C.两种物质的组成元素相同,各元素的质量分数也相同,则两者一定是同分异构体D.分子式相同的不同有机物一定互为同分异构体 【解析】A项,分子式不一定相同,如C10H8与C9H20,A错;互为同系物必须满足两个条件:①结构相似,②在分子组成上相差一个或若干个CH2原子团,两者缺一不可,B 错;对于C项则仅是最简式相同,分子式不一定相同;D中明确了物质的分子式相同,却又是不同的化合物,则必然是同分异构体,满足同分异构体的条件,故D正确。 【答案】 D 5.下列式子是某学生书写的C5H12的同分异构体的结构简式()

有机物结构特点(解析)

第一章:认识有机化合物——考点二有机物的结构特点、同系物、同分异构体 知识点一:有机化合物中碳原子的成键特点 1.碳元素位于第二周期ⅣA族,碳原子的最外层有4个电子,很难得到或失去电子,通常以共用电子对的形式与其他原子形成共价键,达到最外层8个电子的稳定结构。 2.由于碳原子的成键特点,在有机物分子中,碳原子总是形成4个共价键,每个碳原子不仅能与氢原子或其他原子(如氧、氯、氮、硫等)形成4个共价键,而且碳原子之间可以形成单键(C—C)、双键(C =C)、三键(C≡C)。多个碳原子可以相互结合成长短不一的碳链,碳链也可以带有支链,还可以结合成碳环,碳链与碳环也可以相互结合,因此,含有原子种类相同,每种原子数目也相同的分子,其原子可能具有多种不同的结合方式,形成具有不同结构的分子。 要点解释:在有机物分子中,碳原子仅以单键与其他原子形成4个共价键,这样的碳原子称为饱和碳原子,当碳原子以双键或三键与其他原子成键时,这样的碳原子称为不饱和碳原子。 种类实例含义应用范围 化学式CH4、C2H2 (甲烷)(乙 炔)用元素符号表示物质分子组成的式子。可反 映出一个分子中原子的种类和数目 多用于研究分子晶体 最简式(实验式)C6H12O6的 最简式为 CH2O ①表示物质组成的各元素原子最简整数比的 式子②由最简式可求最简式量 ①有共同组成的物质 ②离子化合物、原子晶体常用 它表示组成 电子式用小黑点等记号代替电子,表示原子最外层 电子成键情况的式子多用于表示离子型、共价型的物质 结构式①具有化学式所能表示的意义,能反映物质 的结构②表示分子中原子的结合或排列顺序 的式子,但不表示空间构型①多用于研究有机物的性质 ②能反映有机物的结构,有机反应常用结构式表示

有机化合物波谱解析

第一章 紫外光谱 一、简答 1.丙酮的羰基有几种类型的价电子。试绘出其能级图,并说明能产生何种电子跃迁?各种跃迁可在何区域波长处产生吸收? 2.指出下述各对化合物中,哪一个化合物能吸收波长较长的光线(只考虑π→π*跃迁)。 (2) (1) 及 NHR 3 CH CH OCH 3 CH 及CH 3 CH CH 2 3.与化合物(A )的电子光谱相比,解释化合物(B )与(C )的电子光谱发生变化的原因(在乙醇中)。 (C)(B) (A) 入max =420 εmax =18600 入max =438 εmax =22000 入max =475 εmax =320003 N N N NO HC 32(CH )2 N N N NO H C 32(CH )2 2 32(CH )(CH )23N N N NO 4.苯胺在λmax 处的εmax 为1430,现欲制备一苯胺水溶液,使其透光率为30%(1cm 比色池),试问制备100ml 该溶液需取多少克苯胺? 二、分析比较 1.指出下列两个化合物在近紫外区中的区别: CH CH 3 2 (A)(B) 2.某酮类化合物,当溶于极性溶剂中(如乙醇中)时,溶剂对n →π* 跃迁及π→π* 跃迁有何影响?用能级图表示。 3.试述对二烷基苯甲酸在下面一些溶剂中的紫外光谱的区别: λ乙醚 max =277nm εmax =20600 λEtOH max =307nm εmax =19000 N R R COOH

λHCl max =307nm εmax =970 三、试回答下列各问题 1.某酮类化合物λhexane max =305nm ,其 λEtOH max =307nm,试问,该吸收是由n→π*跃迁还是π→π* 跃 迁引起的? 2. 1,1二苯乙烯(A )在环己烷中的UV 光谱与蒽(B )的UV 光谱有相当大的区别。在浓硫酸中这两个化合物UV 光谱非常相似,见表1-5,而在稀硫酸中又与环己烷中的UV 光谱相同,试问在浓硫酸中这两个化合物发生了什么变化? 表1-1 化合物(A )和(B )在不同溶剂中的λma 四.计算下述化合物的λmax : 1. 计算下列化合物的λmax : 2.计算全反式西红柿烯(结构如下)的λmax 及εmax : 3.计算一叶萩碱在乙醇中的λmax : N O O 4.计算下列化合物的λmax :

有机化合物的结构与性质

有机化合物的结构与性质 有机化学能充分体现出“结构决定性质,性质反映结构”的规律。有机化合物的结构与碳原子的成键方式有关。碳原子最外层4个电子,得失电子都不容易,主要以共价键与其它原子结合。依据共用电子对数可将碳原子形成的共价键分为单键、双键、三键这三类;依据共用电子对是否有偏向可分为极性键和非极性键;依据原子轨道重叠成键的方式又分为σ键、π键,有的还存在大π键。碳原子成键方式的多样性决定有机化合物大多存在同分异构现象,常见的同分异构有碳骨架异构、官能团位置异构、官能团类别异构。官能团决定有机化合物的化学特性,官能团的相互影响会使有机化合物具有某些特性。 【重点难点】 重点:不同类有机物中碳原子不同的成键方式和同分异构体。 难点:有机物的结构与碳原子成键方式的关系及如何书写有机物的同分异构体。 【知识讲解】 烃分子中有,烃的衍生物中有-x、-OH、 等不同的官能团,这些官能团决定了有机化合物具有各 自典型的性质。学习有机化合物,必须明确“结构决定性质,性质反映结构”。有机化合物的结构是以分子中碳原子结合成的碳骨架为基础的,故首先要研究碳原子的结合方式——成键情况。 一、碳原子的成键方式 上节已把有机物分为链状有机化合物和环状有机化合物,这就是根据碳骨架的形状来分的,烃中又有烷烃、烯烃和炔烃,这是根据碳原子形成不同的碳碳键来分的。 1、单键、双键和三键 碳原子最外层4个电子,要形成最外层8个电子的稳定结构,每个碳原子需共用4对电子。若每个碳原子分别与4个碳原子各形成一对共用电子,形成的该共价键为单键。若两个碳原 子间共用两对电子的共价键称为双键,用表示。若两个碳原子间共用三对电子的共价键称为三键,用表示。下面介绍几种常见有机物的成键情况。 (1)中碳原子成键情况和空间构型 的电子式为,结构式为,空间构型为正四面体,键角为109.5°(或109°28′)。 C原子的轨道表示式为,参与成键时,形成杂化轨道。中分子中C原子形成sp3杂化轨道:,形成了四个完全相同的杂化轨道,分别与H原

高中化学 第一章 认识有机化合物 重难点一 常见有机化合物的结构(含解析)新人教版选修5

重难点一 常见有机化合物的结构 【要点解读】 【重难点点睛】有机物中的原子共平面问题可以直接联想甲烷的正四面体结构、乙烯的平面型 结构、乙炔的直线型结构和苯的平面型结构,对有机物进行肢解,分部分析,另外要重点掌握碳碳单键可旋转、双键和三键不可旋转。 【重难点指数】★★★ 【重难点考向一】 有机物的结构表示方式 【例1】能清楚地反映甲烷分子里碳、氢原子的大小和相对空间位置的是( ) A .结构式 B .电子式 C .球棍模型 D .分子式 【答案】C 【解析】甲烷的比例模型更能够反映其真实存在状况,球棍模型是利用短线代替其共价键,也 可以真实表示原子所在位置和原子的相对大小,分子式、结构式、电子式不能表示出C 原子和H 原子的相对大小,不能反映其空间构型,故选C 。

【重难点点睛】考查有机物的结构表示方式,球棍模型是用球表示原子,用小棍表示化学键,用于表现结构;比例模型是按分子中各原子所占体积比例制作的,也可以真实表示其结构,分子式、电子式、结构式不能表示出C原子和H原子的相对大小。 【重难点考向二】共平面判断 【例2】某烃结构简式如下:,有关其结构说法正确的是( ) A.所有原子可能在同一平面上 B.所有原子可能在同一条直线上 C.所有碳原子可能在同一平面上 D.所有碳原子可能在同一直线上 【答案】C 【名师点睛】考查学生有机物的基本结构知识,在常见的有机化合物中甲烷是正四面体结构,乙烯和苯是平面型结构,乙炔是直线型结构,其它有机物可在此基础上进行判断。 【重难点考向三】甲烷的结构特征 【例3】甲烷分子是以碳原子为中心的正四面体结构,而不是正方形的平面结构,理由是( ) A.CH3Cl只有一种结构 B.CH2Cl2只有一种结构 C.CHCl3只有一种结构 D.CCl4只有一种结构 【答案】B 【解析】A.无论甲烷分子是以碳原子为中心的正四面体结构,还是平面正方形结构,CH3Cl都不存在同分异构体,故A错误;B.甲烷是正方形的平面结构,而CH2Cl2有两种结构:相邻或者对角线上的氢被Cl取代,而实际上,其二氯取代物只有一种结构,因此只有正四面体结构才符合,故B正确;C.无论甲烷分子是以碳原子为中心的正四面体结构,还是平面正方形结构,CHCl3都不存在同分异构体,故C错误;D.无论甲烷分子是以碳原子为中心的正四面体结构,还是平面正方形结构,CCl4都只有一种结构,故D错误;故选B。 【名师点睛】考查常见有机化合物的结构,如果甲烷是正方形的平面结构,而CH2Cl2有两种结

有机化合物的结构

有机化合物的结构 专题二有机物的结构与分类 第一单元有机化合物的结构 【教学目标】有机物中碳原子的成键特点 2 .有机物分子的空间构型与碳原子成键方式的关系有机物结构的表示方法:结构式 结构简式 键线式同分异构现象同分异构体的种类及确定方法【教学重点】有机物分子的空间构型与碳原子成键方式的关系 【教学难点】同分异构现象 【教学方法】自主探究法、分析法等 【教学课时】2课时 【教学过程】 第一课时 【问】你认为造成有机化合物性质差异的主要原因有哪些? 形成元素种类不同 有机物性质不同 元素结合方式不同 一有机物中碳原子的成键特点

C ——形成四根共价建 H ——形成一根共价建 O ——形成两根共价建 N ——形成三根共价建 思考:你认为下面两种图示表示的是一种物质还是 两种物质?为什么? 这两种图示表示的其实是同一种物质,它其实是一个空 间四面体,在这个结构中单键可以旋转。根据所学内容,完成下表 有机物甲烷乙烯乙炔苯 分子式 结构式 分子构型 碳碳键成键特点 其中单键可以旋转,双键和三键不能旋转 【问】有机物的分子构型和碳碳键的成键方式有什么关系呢?(结合课件讲述) 饱和碳原子——sp3杂化四面体型 双键碳原子——sp2杂化平面型 叁键碳原子——sp杂化直线型 苯环中碳原子——sp2 平面型

例:例1:以下物质中最多能有几个碳原子共面?最多有几个碳原子能在一条直线上? CH3-CH=CH-C≡C-CF3 例2 该分子中,处于同一平面的原子最多有几个? 二有机物结构的表示方法 1 结构式——完整的表示出有机物分子中每个原子的成键情况。 2 结构简式——结构式的缩减形式 书写规则: (1)结构式中表示单键的“——”可以省略,例如乙烷的结构简式为:CH3CH3 (2)“C=C”和“C≡C”中的“=”和“≡”不能省略。例如乙烯的结构简式不能写为:CH2CH2,但是醛基、羧基则可简写为—CHO和—COOH (3)准确表示分子中原子的成键情况。如乙醇的结构简式可写成CH3CH2OH或C2H5OH而不能写成OHCH2CH 键线式——只要求表示出碳碳键以及与碳原子相连的基团,图示中的一个拐点和终点均表示一个碳原子。 【完成教材P23问题解决】 【过渡】你知道为什么有机物的种类会有这么多吗?其实这与有机物中存在同分异构现象有关,同分异构现象我们在高一的时候已经学过,你还记得吗?

有机化合物波谱解析复习资料指导

有机化合物波谱解析 复习指导 广东药学院 天然药物化学教研室 200 5年 5 月

目录 第一章紫外光谱… … … … …… … … … … …… 2~4 第二章红外光谱… … … … … … …… ………… 5~11 第三章核磁共振… … … … … … … …… … ……… 12~34 第四章质谱… … … … …… … … … … … … …35~41 第五章综合解析… … … …… … … … … … … …… 42~70

第一章紫外光谱 一、名词解释 1、助色团 2、发色团 3、红移 4、蓝移 5、增色作用 6、减色作用 7、吸收带 二、选择题 1、不是助色团的是: A、-OH B、-Cl C、-SH D、CH3CH2- 2、所需电子能量最小的电子跃迁是: A、σ→σ* B、n →σ* C、π→π* D、n →π* 3、下列说法正确的是: A、饱和烃类在远紫外区有吸收 B、UV吸收无加和性 C、π→π*跃迁的吸收强度比n →σ*跃迁要强10-100倍 D、共轭双键数目越多,吸收峰越向蓝移 4、紫外光谱的峰强用εmax表示,当εmax=5000~10000时,表示峰带: A、很强吸收 B、强吸收 C、中强吸收 D、弱吸收 5、近紫外区的波长为: A、4-200nm B、200-300nm C、200-400nm D、300-400nm 6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm 的吸收带是: A、R带 B、B带 C、K带 D、E1带 7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了: A、吸收峰的强度 B、吸收峰的数目 C、吸收峰的位置 D、吸收峰的形状 8、紫外光谱是带状光谱的原因是由于: A、紫外光能量大 B、波长短 C、电子能级差大 D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因 9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大: A、水 B、乙醇 C、甲醇 D、正己烷 10、下列化合物中,在近紫外区(200~400nm)无吸收的是:

有机化合物结构的表示方法(学案)

有机化合物结构的表示方法(学案) 沛县湖西中学 李世敏 课标要求 学会用结构式、结构简式和键线式来表示常见有机化合物的结构。 学习纲要 1. 结构式的书写 (1)结构式定义 (2)书写注意点 2.结构简式书写: (1)定义 (2)书写注意点 不能用碳干结构表示,碳原子连接的氢原子个数要正确,官能团不能略写,要注意官能团中各原子的结合顺序不能随意颠倒。 3.键线式: 定义:将碳、氢元素符号省略,只表示分子中键的连接情况,每个拐点或终点均表示有一个碳原子,称为键线式。每个交点、端点代表一个碳原子,每一条线段 代表一个共价键,每个碳原子有四条线段,用四减去线段数既是氢原子个数。 注意事项: (1)一般表示3个以上碳原子的有机物; (2)只忽略C-H 键,其余的化学键不能忽略; (3)必须表示出C=C 、C ≡C 键等官能团; (4)碳氢原子不标注,其余原子必须标注(含羟基、醛基和羧基中氢原子)。 (5)计算分子式时不能忘记顶端的碳原子。 拓展应用: 有机化合物结构的表示方法 电子式 结构式 结构简式 键线式 【基础训练】 1略去 碳 氢 元素符号 短线替换 共用电子对 省略短线 双键叁键保留

CH 3CH 2CH 2CH 3CH 3CHCH 2CH 3 3 CH 3CH CHCH 3 2C C C C H H H H 、 C C C C H Br H Br H H H 、 C C C C H H H H H H H 、 3.有机化合物的结构简式可进一步简化,如: 请写出下列有机物分子的分子式: ⑴ ; ⑵ ; ⑶Cl ;⑷ ;

(5) O O ;(6) O OH。 有机化合物的结构 沛县湖西中学李世敏 课标要求 1.了解有机化合物中碳原子的三种成键方式及其空间取向; 2.掌握甲烷、乙烯、乙炔分子的组成和空间构型; 3.理解杂化轨道理论是怎样解释有机化合物的空间形状的。 学习纲要 1.有机物中碳原子的成键特点 (1)在有机物中,碳原子有个价电子,碳呈价。 (2)碳原子既可与其它原子形成共价键,碳原子之间也可相互成键,既可以形成键,也可以形成键或键。(成键方式多) 【说明】①有机物常见共价键:C-C、C=C、C≡C、C-H、C-O、C=O、C-X、C≡N、C-N、苯环。 ②在有机物分子中,仅以单键方式成键的碳原子称为饱和碳原子;连接在双键、叁键或在苯环上的碳原子(所连原子的数目少于4)称为不饱和碳原子。 ③C—C单键可以旋转而C=C(或三键)不能旋转。 (3)多个碳原子可以相互结合成长短不一的碳链和碳环,碳链和碳环还可以相互结合。 [练习]写出甲烷和乙烯的分子式、电子式、结构式结和构简式。 甲烷的化学式: 甲烷的电子式: 甲烷的结构式: [小结] 甲烷是立体结构, C原子和四个氢原子不处于同一平面,正四面体。 乙烯的分子式: 乙烯的电子式:

相关文档
相关文档 最新文档