文档库 最新最全的文档下载
当前位置:文档库 › 双馈风机离线仿真与实时仿真的对比分析

双馈风机离线仿真与实时仿真的对比分析

双馈风机离线仿真与实时仿真的对比分析
双馈风机离线仿真与实时仿真的对比分析

双馈变速风电机组模型的仿真分析

双馈变速风电机组模型的仿真分析 在常用的变速恒频风力机种类中,双馈异步电机的风力机有比较大的技术优势和市场空间。文章对使用双馈异步风力发电机的风力机组的输出性能做出研究与分析,并使用MATLAB进行仿真模拟。文章的主要工作包含以下两个部分:第一部分是在风速波动条件下,分别通过电压模式控制和无功功率模式控制,研究分析风电机组的输出特性变化。第二部分是在电网故障条件下,分别通过电压模式控制和无功功率模式控制,研究风电机组输出特性变化。 标签:风力发电;双馈风电机组;动态模型;MATLAB 引言 能源的发展对国民的经济有着非常重要的作用。常规能源主要以化石能源为主,在全球工业飞速发展的时代,产生极具经济效益的同时,化石性燃料使用的程度也达到了空前。化石性燃料的使用对大气造成了严重的污染,对人类的生存环境造成了重大的破坏;此外,化石性燃料隶属一次性能源,总有消耗完结的时候。经济生活中的国策,能源对人类的经济与社会的发展的限制和对资源环境的影响也越来越明显[1]。 虽然各种类新能源中以太阳能的储量最为丰富[2],但是利用太阳能直接进行光伏发电目前仍有一些不能解决的技术问题。所以风力对于我们来说是一个比较理想的替代能源。双馈变速恒频风力发电机目前作为风力发电系统中使用的主要机型,其中永磁直驱式变桨距和双馈异步式的变速恒频风电机组已经成为兆瓦级风电机组的主要技术形式[3]。对上述风力机组的入网运转调控措施的研究是风能发电系统能够广泛应用的基础。双馈风力发电机多采用双PWM变换器为转子提供励磁电流[4]。转子侧变换器控制策略主要有两大类,一类是基于矢量控制的间接功率控制[5-6],另一类是直接功率控制[7-8]。我们国家从“十五”时期已经对双馈异步发电机风电机组理想电网条件下的运转控制进行了比较为深入剖析[9]。实际工程中电网展示出不稳定特点,电压剧降则是一种非常遇见情况,研究这种故障下DFIG的行为、特性,提高风电机组对这种故障的适应能力,已成为目前国内外研究的热点。 1 双馈变速风电机组 1.1 双反馈变速风电机的整体设计 风力发电的种类非常多,按照其结构,控制原理,运行方式可以有不同的分类。根据转速性质进行划分,则可以分为恒速机组和变速机组两类。变速的风电机组又可以分为连续变速的风电机组和不连续的风电机组两种类型。根据发电机类型可以分为以同步发电机(包括以电激磁的同步机和以永磁体激磁的同步机)和以感应发电机(包括普通感应机,双馈感应机)。

(整理)双馈型风机与直驱型风机的比较分析.

双馈型风机与直驱型风机的比较分析 学号:姓名: 学院(系): 自动化学院 专业: 电气工程及其自动化 2013 年1 月 双馈型风机与直驱型风机的比较分析 1、引言

1.1风力发电的背景 风力发电是电力可持续发展的最佳战略选择。清洁、高效成为能源生产和 消费的主流,世界各国都在加快能源发展多样化的步伐。从20 世纪90 年代开始,世界能源电力市场发展最为迅速的已经不再是石油、煤和天然气,而是太阳能发电、风力发电等可再生能源。世界各地都在通过立法或不同的优惠政策积极激励、扶持发展风电技术,而中国是风能资源较丰富的国家,更需要开发利用风电技术。 技术创新使风电技术日益成熟。目前,在发达国家风电的年装机容量以35.7% 高速度增长。一个重要原因是各国积极以科学的发展观,采取技术创新,使风电技术日益成熟。目前单机容量500kW、600kW、750kW 的风电机组已达到批量商业化生产的水平,并成为当前世界风力发电的主力机型,兆瓦级的机组也已经开发出来,并投入生产试运行。同时,在风电机组叶片设计和制造过程中广泛采用了新技术和新材料,风电控制系统和保护系统广泛应用电子技术和计算机技术,有效地提高风力发电总体设计能力和水平,而且新材料和新技术对于增强风电设备的保护功能和控制功能也有重大作用。 风力发电将能迅速缓解我国能源急需和电力短缺的局面,近两年中国出现大 面积的缺电,风能发电对于缓解缺电具有非同寻常的意义。风电的诸多优势中,一个重要特点是风电上马快,不像火电、水电的建设需要按年来计算,风电在有风场数据的前提下其建设只需要以周、月来计算,即风场是可以在短时间内完成的。世界风电正在以33%甚至在部分国家以60%以上的增速发展,我国完全有可能以迅速发展风电的模式来解决我国燃眉之急的电力短缺。 1.2世界风电技术的发展 进入二十一世纪之后,随着现代电力电子技术的不断发展,新材料的涌现以及工艺的不断完善,世界风力发电技术又向前迈进了一大步,主要表现如下: (1)风力发电单机容量继续稳步上升。在风力发电领域内,“更大,更好” 在近些年中一直是所有风机研究、设计和制造商所信奉的原则之一。为了降低风力发电的成本,提高风电的市场竞争能力,随着现代风电技术的发展与日趋成熟,风力发电机组的技术沿着增大单机容量、减轻单位千瓦重量、提高转换效率的方向发展。 (2)变桨调节方式迅速取代失速功率调节方式。失速调节方式的主要缺陷 是:风力发电机组的性能受叶片失速性能的限制,额定风速较高,在风速超过额定值时发电功率有所下降。采用变桨调节方式能充分克服以上缺陷,故得到了迅速的应用。 (3)变速恒频方式迅速取代恒速恒频方式。变速恒频方式通过控制发电机 的转速,能使风力机的叶尖速比(tip speed ratio)接近最佳值,从而最大限度的利用风能,提高风力机的运行效率。 (4)无齿轮箱系统的市场份额迅速扩大。齿轮传动不仅降低了风电转换效 率和产生噪音,是造成机械故障的主要原因,而且为减少机械磨损需要润滑清洗等定期维护。采用无齿轮箱的直驱方式虽然提高了电机的设计成本,但却有效的提高了系统的效率以及运行可靠性。近几年直接驱动技术在风电领域得到了重视,这种风力发电机组采用多极发电机与叶轮直接连接进行驱动的方式,从而免去了齿轮箱这一传统部件,由于其具有很多技术方面的优点,特别是采用永磁发

双馈式风力发电机剖析

双馈式风力发电机 【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。 关键词:风能风力发电变速恒频双馈式发电机 一、风力发电 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

直驱和双馈的比较

“直驱 VS 双馈”风机技术流派大比对 随着国家新能源发展线路的明确,风电行业的发展正在被越来越多的人所关注和期待。在风电技术的选择方面,随着国内风机大型化趋势的升级,业内对于直驱与双馈技术孰优孰劣的讨论也更加激烈。今天我们就从发展历史、运维情况、发展趋势等方面来比对一下这两种技术的特点。发展历史 现在市场上有一种误解,即直驱技术是一种新兴的技术,而双馈技术是传统的技术。其实,从诞生时间看,双馈和直驱两种技术几乎是同时出现的,甚至直驱技术的出现要比双馈技术更早些。但是发展至今,双馈技术因其运行稳定的特性占据了大片的市场份额。双馈、直驱两种技术路线的本质区别在于双馈型是带“齿轮箱”的,而直驱型是不带“齿轮箱”的。现在全世界风电机组中,85%以上是带齿轮箱的机型。尤其在技术、稳定性及可靠性要求更高的海上机组中,无一例外的全部采用了技术成熟且可靠性好的带齿轮箱技术方案,包括2兆瓦、2.3兆瓦、3兆瓦、3.6兆瓦、5兆瓦等各级别机型,厂商包括Vestas,Siemens, Repower,华锐风电等全球所有主要海上风电机组生产厂商。目前为止,除金风科技的一台1.5兆瓦机组外,全世界范围内还没有更多的直驱机组下海。 从目前国内的情况来看,双馈变桨变速型风机的装机容量最大。代表厂家包括vestas,GE,GAMESA,华锐,东汽,国电联合动力、明阳、上海电气,北重等;直驱式变桨变速型风机也有一定装机容量,代表厂家包括如金风,湘电,上海万德等;此外还有一种失速型定桨定速风机,多数为小功率机型,目前在大功率机型上基本淘汰。 从市场份额来看,多数业内人士认为,带齿轮箱的风电技术将在今后相当长的时间内继续占据市场主流地位。而直驱技术的市场表现如何,还有待观察。部件差异 在发电机、变频器、齿轮箱等风机主要部件中,双馈和直驱机型都存在一定的差异。从发电机看:目前双馈机组采用双馈式异步发电机,而直驱机组多采用低速多极发电机,发电机的励磁方式分为永磁和电励磁两类。在励磁发动机方面全球领先的是德国的Enercon公司,其产品的全球市场占有率一直稳定在10%左右。永磁发电机的主要代表则是中国的金风和湘电两家公司。 直驱式发电机由于转数低,且磁极数很多,通常在90极以上,而且体积和重量相比双馈式机组也大很多,对其轴承等转动部件要求极高。另外,永磁材料在震动、冲击、高情况下容易发生失磁的现象;而且材料中含有铁,在海上强盐雾的情况下防腐问题难以解决;同时,由于永磁材料存在永久的强磁性,无法在现场条件下检修,所以一旦出现问题只有返回厂家才能维修,现场不具有可维护性,给运行带来了很大的隐患。而双馈式异步风电机则具有技术成熟可靠,成本低,重量轻、易维护等优点,目前国际前几大整机厂商均采用双馈式异步风电机就充分证明了这一技术的上述优点。 从变频器看:直驱机组采用的是全功率变频器,容量大,价格昂贵,并且变频器产生谐波大。双馈机组中仅有转差功率经过变频器,充分发挥了双馈发电机以小博大的优点,所以变频器容量小,价格低,并且机组的谐波小。 从齿轮箱看:直驱机组不采用齿轮箱,风轮直接带动发电机转子旋转。省去齿轮箱会减少齿轮箱的机械故障,但风轮与发电机直接连接会增加叶片的冲击载荷,并且将其直接传递到发电机上,增加了发电机出故障的可能性。双馈机组采用齿轮箱将风轮转速升高,提高了发电机的效率,而齿轮箱技术从上世纪90年代起已经发展的非常成熟,其故障率已经非常低。运维情况与故障维修 从低风速下的运行情况看,直驱式风机没有运行转速下限的限制,而双馈式风机存在着运行转速的下限,所以从原理上来讲直驱式风机的切入风速可以更低。但是,直驱式风机所使用的全功率变频器存在较高的功率损耗的问题,由于全功率变频器的容量是双馈风机中变频器的三倍左右,所以变频器的功率器件和冷却等设备所消耗功率也要大很多。同时,风电机

【doc】硬件在环仿真在汽车控制系统开发中的应用

硬件在环仿真在汽车控制系统开发中的应 用 ].\' 谢十.计算.研究' 硬件在环仿真在汽车控制系统开发中的应用 清华大学朱辉 北京轻型汽车有限公司面 北京理工大学程昌圻 6争 【Abstract]The}1ardware—in—the一1o0psimdationtechnicsmaybeadopindevdopmentofamamo~h~mtrol systemtotthesoftwareandha|doftheamtrolsystem.Thehardware—in—the—lov9simulationisalsoclassified andseveraXt)tpjapplicat[ortexamplesofthehm-dwat-e—in—the—l∞psimulation81"egivninthe..uofdevelopmtmt .ftheautomobilecontrolsystem. 【摘要】在汽车控制系统开发中.采用硬件在环仿真技术可以对控制系统软硬件进行测试.对硬件在环仿真进 行了分类,给出了汽车控制系统开发过程中硬件在环仿真几种典型应用实例. Topicwords:Simulation-Controlsystem .概述主题电等毳控制输入输出 汽车是一个高度复杂的系统,对该系统进行综 台控制已成为技术发展的必然趋势.采用动态仿真 和硬件在环仿真技术可提高重复设计的效率.纯软 件动态仿真是优化系统设计的最佳方案.设计者可 以通过改变控制系统参数来观察系统性能的变化. 模型实时执行实现了硬件在环仿真.通过将系统中

关键硬件与复杂的仿真模型集成,可进行各种测试和性能评估.纯软件的动态仿真和硬件在环仿真技术的结台是传统工程试验方法的重大发展. 硬件在环仿真是指被仿真环节中存在实物硬件 的实时动态仿真技术,与一般动态仿真的区别是: a.硬件在环仿真模型的时间标尺t相等,需 要采用实时仿真算法,而动态仿真则不用. b.硬件在环仿真对硬件系统性能要求高,需 要有信号输入,输出接口.而动态仿真则不用. 硬件在环仿真的主要类型是控制系统硬件在环 仿真,如发动机电子控制单元硬件在环仿真是以发动机为计算模型,电子控制单元为实物;防抱死电子控制单元硬件在环仿真是以防抱死系统中的液力执行机构为计算模型.电子控制单元为实物. 蚰年代初,发动机控制单元(简称ECU)基本上 采用8位微处理器.只能控制发动机空燃比,点火正时等发动机最基本的参数L1J.到9O年代.已开始使用多个32位微处理器进行动力和传动系统控制,控制器不仅要执行更加复杂的控制算法.而且要同时进行多个系统的综合控制.控制软件不仅要进行数据输入,输出测试,还要进行信息输入输出的测试及1998年第l2期 信号的类型和正时关系比较复杂,信号发生器的信号源不能满足要求.而在实际被控对象上进行测试存在费用高,时间长,条件不确定等因素.随着计算 机技术的发展,开始使用硬件在环仿真技术进行控制系统软硬件的开发和测试L4J.由于采用现代化软件工程方法.使ECU硬件在环仿真技术的应用渗透到ECU软件开发的各个阶段.ECU硬件在环仿

无刷双馈电机控制原理

无刷双馈电机控制原理 一、设备名称 1250KW无刷双馈电机低压变频控制系统 二、设备用途 本设备用于电机厂1250kw无刷双馈电机低压绕组测变频控制 三、现场技术条件及技术参数 1、环境条件 ·工作环境温度:0--40摄氏度 ·存储环境温度:-25-- 55摄氏度 ·相对湿度:<95%(无凝露) ·环境等级/ 有害化学物质:Class 3K3,符合标准 EN 60721-3-3 ·有机体 / 生物体影响因素:Class 3B1,符合标准 EN 60721-3-3 ·污染等级:2 (EN 61800-5-1) 2、电源 ·660 — 690 V 3 AC, ±10 % (-15 % < 1 min) ·不平衡度±5 % 3、无刷双馈同步电动机技术参数 3、1电机型号:TWS630-8 3、2额定功率:1250KW 3、3额定转速:743r/min 3、4满载效率:95、1% 3、5工频绕组额定电压:6kV 3、6工频绕组额定频率:50Hz 3、7工频绕组额定电流; 100A

3、8工频绕组功率因数:0、84 3、9变频绕组额定电压:690V 3、10变频绕组额定频率: 25Hz 3、11变频绕组额定电流; 528A 3、12变频绕组功率因数: 0、8 4.变频调速装置技术参数 4、1额定功率:450 kW 4、2额定输入电压: 690V 4、3额定输入电流:598 A 4、4额定输入频率:50 Hz 4、5额定输出电压:690 V 4、6额定输出电流:560 A 4、7额定输出频率:25 Hz 5、变频器供电变压器技术参数 5、1产品型号及名称_ZTSFG(H)-800-6__ 5、2额定容量___ _800______kVA 5、3高、低压额定电压___6___ / _0、69__ kV 5、4高压分接范围_____±2×2、5__ _% 5、5短路阻抗________6________% 5、6相数________3________ 5、7绕组数________3________ 5、8频率________50_______Hz 5、9使用条件 5、9、1海拔________1000_____m 5、9、2环境温度________-10~40__℃

双速电机控制电路图

双速电机控制电路图 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p =1。 ∴转速比=2/1=2 控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、 W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开, 防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM 2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入K M2线圈回路,也形成互锁控制。

直驱式和双馈式风力发电机组介绍

双馈式与直驱式风力发电机组介绍 1、双馈式发电机组 双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机,主要结构包括风轮、传动装置、发电机、变流器系统、控制系统等。双馈式风力发电机组系统将齿轮箱传输到发电机主轴的机械能转化为电能,通过发电机定子、转子传送给电网。发电机定子绕组直接与电网连接,转子绕组与频率、幅值、相位都可以按照要求进行调节的变流器相连。变流器控制电机在亚同步与超同步转速下都保持发电状态。在超同步发电时,通过定转子两个通道同时向电网馈送能量,这时变流器将直流侧能量馈送回电网。在亚同步发电时,通过定子向电网馈送能量、转子吸收能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈技术。 双馈风力发电变速恒频机组示意图 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率与相位与电网相同,并且可根据需要进行有功与无功的独立控制。变流器控制双馈异步风力发电机实现并网,减小并网冲击电流对电机与电网造成的不利影响。提供多

种通信接口,用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。提供实时监控功能,用户可以实时监控风机变流器运行状态。 变流器采用三相电压型交-直-交双向变流器技术。在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形,改善双馈异步发电机的运行状态与输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功与无功的解耦控制,就是目前双馈异步风力发电机组的一个代表方向。 2、直驱式发电机组 直驱式风力发电机组的风轮直接驱动发电机,主要由风轮、传动装置、发电机、变流器、控制系统等组成。为了提高低速发电机效率,直驱式风力发电机组采用大幅度增加极对数(一般极数提高到100左右)来提高风能利用率,采用全功率变流器实现风力发电机的调速。 直驱风力发电变速恒频机组示意图 直驱发电机按照励磁方式可分为电励磁与永磁两种。电励磁直驱

双馈风机基础知识学习

Introduction “变浆距风力机+双馈发电机”作为新型风力发电机组,是目前研究的热点,国内对双馈发电机的研究主要集中在单机建模、空载并网、柔性并网、并网后有功功率和无功功率的解耦控制、低电压穿越运行。风电场协调控制等方面。 双馈异步发电机其结构与绕线式异步电机类似,定子绕组接电网(或通过变压器接电网),交流励磁电源给转子绕组提供频率、相位、幅值都可调节的励磁电流,从而实现恒频输出。交流励磁电源只需供给转差功率,大大减少了容量的需求。由于发电机的定、转子均接交流电(双向馈电),双馈发电机由此得名,其本质上是具有同步发电机特性的交流励磁异步发电机,双馈风力发电系统中转子侧交直交变流单元功率仅需要25%一40%的风力机额定功率,大大降低了功率变流单元的造价;双馈异步风力发电机体积小,运输安装方便,发电机成本较低。但双馈发电机由于使用定转子两套绕组,增加了发电机的维护工作量,还降低了发电机的运行可靠性。转子绕组承受较高的dv /dt ,转子绝缘要求较高。对于有刷电机,当电网电压突然降低时,电流迅速升高,扭矩迅速增大,需经常更换发电机碳刷、滑环等易损耗部件。 1 变速恒频风力发电机组系统结构 1.1 风轮 风轮是吸收风能并将其转化成机械能的部件。风以一定速度和攻角作用在桨叶上,使桨叶产生旋转力矩而转动,将风能转变成机械能。自然界的风速不是恒定的,风力机获得的机械能是随风速的变化而不断变化。 由风力机的空气动力学特性可知,风力机输出机械功率的为P wt ,产生的气动转矩为T wt [1]。 231(,)2 wt p p C R v λβρπ= 230.5()wt wt T l p T v R C πρλ==Ω 其中,ρ为空气密度(kg/m 3),一般为1.25 kg/m 3;R 为风力机叶片的半径(m );v 为风速(m/s );l Ω为叶片旋转速度;C p 为风力机的功率系数,也称风能利用系数,是评价风力机效率的重要参数,C T 为风力机的转矩系数,由贝兹理论可知,一般C p =1/3 2/5,其理论极限值为0.593。它与风速、叶片转速、叶片直径、浆叶节距角均有关系,是叶尖速比λ和浆距角β的函数。 p T C C λ=

双馈风电机组与永磁直驱机组对比

双馈风电机组与永磁直驱机组对比 发表时间:2019-03-14T16:13:57.780Z 来源:《建筑模拟》2018年第34期作者:李兵[导读] 清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。 李兵 辽宁大唐国际新能源有限公司辽宁沈阳 110000 摘要:清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。 关键词:电力系统;风力机组;永磁直驱机 风力发电机组主要包括变频器、控制器、齿轮箱,发电机、主轴承、叶片等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括两种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但机组体积和重量都很大,1.5MW的用词直驱发电机机舱会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,在带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在额定转速下运行,目前流行的是双馈异步发电机,主要有1.25MW\1.5MW\2MW三种机型,异步发电机组的机组单价低,技术成熟,国产化高。 一、双馈风力发电系统 双馈风力发电机组的控制核心是通过变流器对双馈发电机转子电流(频率、幅值、相位)的控制,以达到与风电机组机械部分运行特性匹配、提高风能的利用效率及改善供电质量的目的。 1、双馈变速恒频型风力发电机组的风轮叶片桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能; 2、在低于额定风速时,他通过改变转速和叶片桨距角使风力发电机组在最佳叶尖速比下运行,输出最大的功率; 3、在高风速时通过改变叶片桨距角使风力发电机组功率输出稳定在额定功率。 双馈风力发电系统主要由叶片、增速齿轮箱、双馈发电机、双向变流器和控制器组成。双馈式风力发电机组将风轮吸收的机械能通过增速机构传递到发电机,发电机将机械能转化为电能,通过发电机定子、转子传送给电网。发电机定子绕组直接和电网连接,转子绕组和变频器相连。变频器控制电机在亚同步和超同步转速下都保持发电状态。在超同步发电时,通过定转子两个通道同时向电网馈送能量,双馈式风力发电机在亚同步和超同步转速下都可发电。故称双馈技术主要特点 发电机采用绕线式异步电机,定子直接与电网相连,转子侧通过变流器与电网相连。当双馈发电机的负载和转速变化时,通过调节馈入转子绕组的电流,不仅能保持定子输出的电压和频率不变,而且还能调节双馈发电机的功率因数。 1发电机转子侧变流器功率仅需要25%~30%的风机额定功率,大大降低了变流器的造价; 2发电机体积小、运输安装方便、成本低; 3可承受电压波动范围:额定电压±10%; 4网侧及直流侧滤波电感、电容功率相应缩小,电磁干扰也大大降低; 5可方便地实现无功功率控制。 主要缺点 1需要采用双向变频器,变速恒频控制回路多,控制技术复杂,维护成本高 2发电机需安装集电环和刷架系统,且须定期维护、检修或更换随着风电机组单机容量的增大,双馈型风电系统中齿轮箱的高速传动部件故障问题日益突出,于是没有齿轮箱而将主轴与低速多极同步发电机直接连接的直驱式布局应运而生;从中长期来看,直驱型和半直驱型传动系统将逐步在大型风电机组中占有更大比例,另外,在传动系统中采用集成化设计和紧凑型结构是未来大型风电机组的发展趋势。在大功率变流技术和高性能永磁材料日益发展完善的背景下,大型风电机组越来越多地采用pmsg(无功控制和低电压穿越能力),pmsg不从电网吸收无功功率,无需励磁绕组和直流电源,也不需要滑环碳刷,结构简单且技术可靠性高,对电网运行影响小。Pmsg与全功率变流器结合可以显著改善电能质量,减轻对低压电网的冲击,保障风电并网后的电网可靠性和安全性,与双馈型机组相比,全功率变流器更容易实现低电压穿越等功能,更容易满足电网对风电并网日益严格的要求。 二、直接驱动型风力发电系统 典型的永磁直驱型变速恒频风力发电系统,包括永磁同步发电机(pmsg)和全功率背靠背双pwm变流器,无齿轮箱。Pmsg通过全功率变流器直接与电网连接,通常极对数较多,低转速,大转矩,径向尺寸较大,轴向尺寸较小,呈圆环状;由于省去了齿轮箱,从而简化了传动链,提高了系统效率,降低了机械噪声,减小了维修量,提高了机组的寿命和运行可靠性;发电机通过变流器与电网隔离,因此其应对电网故障的能力更强,但是变流器容量较大,损耗较大,变流器的成本较高。

硬件在环仿真平台使用说明

RT-LAB使用说明 软件的打开:双击下图中红圈里的图标 所含工程:所有工程都在project explorer一栏中,工程有电流校正、电压校正、两电平、三电平(level3forsecondband同level3相同)

模型路径:去年对RT-LAB软件进行了一次升级,从10.4.3升级到了10.4.10,由于工作需要并没 有对所有模型进行迁移,现列出以前的Simulink模型路径,如下图所示,红色圆圈中两个文件夹分别为两个版本软件的路径。

模型介绍:双击可以打开工程里包含的Matlab模型 (1) 第一层模型包含两个模块:SM_***和SC_***(***表示省略具体名称) SM_***: 主要负责仿真运算,在编译完成后将结果送入仿真主机中 S C_***:主要负责显示,其相关数据会留在电脑中显示出来 注意!搭建新模型必须包含这两个模块 模型下方的两个模块: powergui为Simulink仿真必须包含的模块 ARTEMIS guide为半实物仿真必须包含的模块(该模块位于Simulink目录Library/Artemis下)使用时两个模块步长必须一致 (2)打开SM_***模块可以得到Simulink仿真模型,先说明两电平模型(工程level2所含模型)

下图中红色圆圈所示模块为功率主电路中的采样模块,包括电压采样和电流采样,其信号通过标签传输,如图所示Vabc采集三相相电压,Iabc采集三相相电流。 下图中红色圆圈所示模块主要实现变相功能,此处就是从三相电压电流中取出A相便于观察。

下图中OpCtrl OP5142EX1模块是输入输出模块,凡是需要连接外界半实物进行输入输出交互的,都必须包含该模块,图中菜单为右击属性菜单。 下图为模型中的模拟输出部分,主要由两部分组成。 下图中的OP5142EX1 AnalogOut模块为模拟输出模块,负责将模型中的模拟信号送到半实物硬件中。

双速电机接线图及控制原理分析

双速电机接线图及控制原理分析 一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。 下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析(双速电机接线图如下图)

1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 4、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的

双馈电机控制模型的建立与仿真

双馈电机控制模型的建立与仿真 发表时间:2014-12-16T11:35:18.890Z 来源:《价值工程》2014年第7月下旬供稿作者:金菁 [导读] 据风能特性,现将风速模型分解为以下两个部分:平均风速———周期大于10min,脉动风速———周期极短。Establishment and Simulation for the Control Model of Double Fed Motor 金菁JIN Jing曰刘青松LIU Qing-song(嘉兴学院,嘉兴314001)(Jiaxing University,Jiaxing 314001,China) 摘要院本文通过对风速的分解,建立了实际风速的综合模型,在风机动态特性分析的基础上,建立了双馈电机及控制系统的仿真模型。所建立的模型具有通用性,便于Matlab/Simulink 的仿真分析。 Abstract: This paper, which is based on the analysis of wind speed, established a comprehensive model of the actual wind speed. Andaccording to the analysis of dynamic characteristics of wind generators, the simulation model of the double fed motor and control system areset up. The model is so general that it is easy to analysis and simulation data in Matlab/Simulink. 关键词院双馈电机;风速;控制;建模Key words: double fed motor;wind speed;control;modeling中图分类号院TM303 文献标识码院A 文章编号院1006-4311(2014)21-0047-020 引言双馈电机是目前开发的新型交流电机,它兼有异步电机和同步电机的优点。与其相应的风力发电技术,是一种具有良好应用前景的风力发电技术。它可以优化风力发电机的运行条件,并使发电机组与电网之间实现良好的柔性连接。由此,可在提高风能利用率和转换效率的同时使发电机顺利实现并网操作[1]。 1 风速模型风能是一种洁净的可再生能源,然而能量密度较低,因此需较大的风轮获取能量。此外,风能随海拔、时间、地点的改变而改变。它的变化性和随机性更使其不易被利用。因此,为使得风力发电机组有稳定的功率输出,对风速的分析和预测以及建模是不可或缺的。 据风能特性,现将风速模型分解为以下两个部分:平均风速———周期大于10min,脉动风速———周期极短。最终作用在风力机上的模拟风速为上述两种风速之和。与两种风速相应的预测称为短时风速预测和中长期风速预测。 对短期风速的准确预测有助于减轻因风速波动产生的对电网不利的影响,还可优化电网调度部门的调度计划;对中长期风速的准确预测则有助于设计规划风电场规模,制订长远发展目标[2]。 对于变动频繁的短期风速,可利用其特性———随机性、时间相关性、空间相关性———拟定符合其波动情况的状态方程,经过一系列的算术变换得出符合实际的短时风速序列。其具体步骤大致如下:淤测得风电场数据并将其分解。 于对分解得到的不同成分建立不同预测模型。 盂将各个预测模型得到预测值叠加成最终结果。 榆将由盂得到的结果作为样本,与所测得的数据整合,得到新的样本。 虞再将所得样本分解成不同频率分量及其对应项。重复步骤于~盂。 愚综和步骤榆与虞得到短期风速预测模型。 相较于短时风速,中长期风速的变化缓慢,可将其分解为不同的分量。对应不同分量建立不同的有关于时间t的方程。综上所述,得到可用风速的综合模型:

直驱与双馈机组的对比分析

直驱风力发电机组与双馈风力发电机组对比分析 随着科学技术的进步,电力电子技术的成熟,大功率IGBT器件在风电领域的广泛应用,全功率变流器在风电并网方面的优势日渐凸显。直驱永磁风力发电机组克服了齿轮箱连接复杂、风险成本大、故障率高、维护量大的弊端。往日风电设备的领军企业如VESTAS、GE、SIEMENS等,制造双馈机组的世界大企业如今更是把直驱永磁技术作为未来风电的发展方向,全面进军直驱永磁风力发电机组的研发制造领域。 直驱永磁风力发电机在中国成长迅速,目前投运的所有机组平均可利用率已经超过98%。其独特的优势逐步显现,并获得了使用者的认可。受到风电投资商大力追捧。 简洁的结构、可靠的安全设计、较低的运行维护费用、高效的发电效率、优异的并网性能。体现了直驱永磁风力发电机的先进性。 一、结构简洁,可靠性高 直驱结构:叶轮—发电机—变流器—电网 双馈结构:叶轮—主轴—齿轮箱—连轴器—发电机(变流器—滑环—转子)—电网 1、直驱机组没有齿轮箱。双馈机组的齿轮箱是风电领域的高故障部件。风湍 流、阵风、严酷的气候变化对齿轮箱运行造成无法预料的冲击。 双馈风力发电机的主轴-齿轮箱-连轴器-发电机要求对中精确,否则会造成震动,轴承受到很大的测向力。电机1500转速,轴承的损坏几率大大增加。 2、直驱机组没有高速刹车。双馈的高速刹车在紧急停机情况下对发电机和齿轮 箱的冲击很大。风电机组失火与高速刹车有关。 3、电网故障(低电压穿越)对直驱机组没有冲击。而对双馈机组的齿轮箱、发 电机冲击非常大。 ●双馈机组在电网故障时:产生5倍的短路电流,发电机与齿轮箱之间存在 很大的反向扭矩,对齿轮箱造成很大的冲击。并影响发电机的绝缘。 ●电网故障时双馈机组轮毂转速升高,如果顺桨控制不及时,将造成毁灭性故 障。

双馈发电机的运行方式说明风机控制

双馈发电机的运行方式说明风机控制 1.双馈风力发电机的分类 双馈风力发电机按转子类型分为有刷和无刷两种,无刷发电机即为鼠笼型发电机。由于鼠笼型风力发电机励磁控制困难,无法最大限度的利用风能,所以目前很少应用。 2.双馈发电机的优点 1 .容易对转矩和速度进行控制; 2.能工作在恒频变速状态; 3 .驱动变流器的总额定功率可以降低,性价比大大提高; 4 .电机可以超同步和超容量运行 3.双馈发电机的变流器一般选用电机总容量的四分之一即可,这样可以很大程度的减少整机变流成本。和直驱风力发电机相比,双馈风力发电机增加了齿轮箱,在成本方面要考虑直驱发电机和它的全功率变流器的总成本和双馈风力发电机加齿轮箱的综合成本,除此之外,还要考虑他们的功率曲线以及维护成本。 4.控制机理 双馈发电机通过控制转子励磁,使定子的输出频率保持在工频。 大家知道,异步电动机运行时,电磁转矩和转向相同,即转差率>0.当作为电动机运行时,电磁转矩和转速方向相反,转差率<0. 发电机的功率随该负转差率绝对值的增大而提高。当双馈发电机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 当双馈发电机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时,转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应反电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率;当发电机的转速高于气隙旋转磁场的转速时,发电机处于超同步速运行,为了保证发电机发出的频率与电网频率一致,需要给转子绕组输入一个其旋转磁场方向与转子机械方向相反的励磁电流,此时变频器向发电机转子提供负相序励磁,以加大转差率,变频器从转子绕组吸收功率;当发电机的转速等于气隙旋转磁场的转速时,发电机处于同步速运行,变频器应向转子提供直流励磁,此时,转子的制动转矩与转子的机械转向相反,与转子感生电流产生的转矩同方向,定子和转子都向电网馈送电功率。 为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行;为了控制发电机转速和输出的功率因数,必须对发电机有功功率、无功功率进行解耦控制。这一过程是采用磁场定向的矢量变换控制技术,通过对用于励磁的PWM 变频器各分量电压、电流的调节来实现。 调节励磁电流的幅值、频率、相序,确保电发电机输出功率恒压。同时采用矢量换控制技术,实现发电机有功功率、无功功率的独立调节。调节有功功率可调节风力机转速,进而实现最大风能捕获追踪控制;调节无功功率可调节电网功率因数,提高风电机组及所并电网系统的动、静态动行稳定性。

相关文档
相关文档 最新文档