文档库 最新最全的文档下载
当前位置:文档库 › 4.3金属的热容和顺磁磁化率

4.3金属的热容和顺磁磁化率

硬质合金的相对磁饱和强度

钨钢的相对磁饱和及影响因素 发布时间:2014-07-10 09:56 文章来源:未知作者:admin 点击数:次 钨钢的相对磁饱和及影响因素有: 1、钨钢之WC-CO硬质合金的磁化曲线(M-H曲线) WC-Co钨钢中含有铁磁质Co,因此,它具有铁磁质的磁性特性。 铁磁质的磁性,和它的固体结构状态有关。研究表明,在铁磁质存在着许多自发地饱和磁化的小区域,每个这样的小区域,相当于自发磁化的小永磁体,具有相当大的磁矩,这些小区域称为磁畴。磁畴的形成是由于电子间的“交换作用”,使相邻原子的电子自旋磁矩自发地排列整齐,或者说,与电子自旋运动等效的分子电流按一定方向排列整齐。在没有磁场作用时,尽管每个磁畴中的分子电流已排列整齐,但就各个磁畴来说,其分子电流的取向则是完全混乱的,相互抵销,铁磁质的总磁矩仍为零,因此,对外不表现磁性。当外加磁场(H)时,随着磁场强度逐渐增强,磁化强度增大,至所有磁畴都取外磁场方向,这时磁化达到饱和,称为饱和磁化强度(Ms),些时的磁场强度称为饱和磁场强度(Hs)。 WC-Co钨钢的磁导率(u)不是一个常数,随磁场强度的改变而改变,因此,钨钢的磁化强度(M)随磁场强度(H)的变化是一条曲线,称为磁化曲线(M-H曲线),如图4-22所示。当磁场强度(H)从零逐渐增大时,磁畴在磁场作用下,迅速沿外磁场方向排列,磁化强度(M)也逐渐增大,磁化强度越大,磁畴排列越整齐,磁化强度(M)也越大。当磁场强度(H)增大,磁化强度(M)已经饱和(最大)。此时的磁化强度(M)称为饱和磁化强度(Hs),此时的磁场强度(H)称为饱和磁场强度(Hs)。

由于WC-Co钨钢中含Co量不同,含C量不同(γ相中含W和C不同),添加过元素不同,杂质元素不同等,都构成一种特定的硬质合金,第一种特定的M-H磁化曲线。

常见材料导热系数

一、固体的导热系数 常用的固体导热系数见表 4-1 。在所有固体中,金属是最好的导热体。纯金属的导热系数一般随温度升高而降低。而金属的纯度对导热系数影响很大,如含碳为 1% 的普通碳钢的导热系数为45W/m · K ,不锈钢的导热系数仅为16 W/m · K 。表 4-1 常用固体材料的导热系数 固体温度,℃导热系数,λ W/m · K 铝300 230 镉18 94 铜100 377 熟铁18 61 铸铁53 48 铅100 33 镍100 57 银100 412 钢 (1%C) 18 45 船舶用金属30 113 青铜189 不锈钢20 16 石墨0 151 石棉板50 0.17

石棉0~100 0.15 混凝土0~100 1.28 耐火砖 1.04 ① 保温砖0~100 0.12~0.21 建筑砖20 0.69 绒毛毯0~100 0.047 棉毛30 0.050 玻璃30 1.09 云母50 0.43 硬橡皮0 0.15 锯屑20 0.052 软木30 0.043 玻璃毛-- 0.041 85% 氧化镁-- 0.070 二、液体的导热系数 液体分成金属液体和非液体两类,前者导热系数较高,后者较低。在非金属液体中,水的导热系数最大,除去水和甘油外,绝大多数液体的导热系数随温度升高而略有减小。一般来说,溶液的导热系数低于纯液体的导热系数。表 4-2 和图 4-6 列出了几种液体的导热系数值。

表 4-2 液体的导热系数 液体温度,℃导热系数,λ W/m · K 醋酸 50% 20 0.35 丙酮30 0.17 苯胺0~20 0.17 苯30 0.16 氯化钙盐水 30% 30 0.55 乙醇 80% 20 0.24 甘油 60% 20 0.38 甘油 40% 20 0.45 正庚烷30 0.14 水银28 8.36 硫酸 90% 30 0.36 硫酸 60% 30 0.43 水30 0.62 三、气体的导热系数 气体的导热系数随温度升高而增大。在通常的压力范围内,其导热系数随压力变化很小,只有在压力大于 196200kN/m 2 ,或压力小于 2.67 kN/m 2 (20mmHg) 时,导热系数才随压力的增加而加大。故工程计算中常可忽略压力对气体导热系数的影响。气体的导热系数很小,故对导热不利,但对保温有利。常见的几种气体的导热系数值见表 4-3 。

混合法测定金属的比热容

混合 物质比热容的测量属于量热学范围,由于量热实验的误差一般较大,所以要做好量热实验必须仔细分析产生各种误差的原因,并采取相应措施设法减小误差。 测定固体或液体的比热容,在温度变化不太大时常用混合量热法、冷却法、电流量热器法。本实验用混合法测定金属的比热容。 一、实验目的 1. 学习热学实验的基本知识,掌握用混合法测定金属的比热容的方法; 2. 学习一种修正系统散热的方法。 二、仪器及用具 量热器,水银温度计,物理天平,待测金属粒,停表,量筒,烧杯及电加热器等。 三、实验原理 1. 用热平衡原理侧比热容 在一个与环境没有热交换的孤立系统中,质量为m 的物体,当它的温度由最初平衡态 θi θ时,所吸收(或放出)的热量Q 为 ) (0θθ-=i mc Q (1) 式中mc 称为该物体的热容,c 称为物体的比热容,单位为J/(kg·K )。 用混合法测定固体比热容的原理是热平衡原理。把不同温度的物体混合在一起时,高温物体向低温物体传递热量,如果与外界没有任何热交换,则他们最终达到均匀、稳定的平衡温度,这时称系统达到了热平衡。高温物体放出的热量1Q 与低温物体吸收的热量2Q 相等,即 1Q =2Q (2) 本实验的高温部分由量热器内筒、搅拌器、水银温度计和热水等组成,而处于室温的金属粒为系统的低温部分。设量热器内筒和搅拌器(二者为同种材料制成)的质量为1m ,比热容为1c ;热水质量为2m ,比热容为2c ;水银温度计的质量为 3 m ,比热容为3 c ,它们的共同 温度为1θ。待测金属粒的质量为M ,比热容为c ,温度与室温0 θ相同。将适量金属粒倒入 量热器内筒中,经过搅拌后,系统达到热平衡时的温度为2 θ。假设系统与外界没有任何热 交换,则根据式(2)可知,实验系统的热平衡方程为 ) ())((022*******θθθθ-=-++Mc c m c m c m (3) 式中 3 3c m 为温度计的热容,其值用1.92V(J/K)表示,这里的V 表示温度计浸入水中部分的 体积,单位用3 cm 。于是,式(3)可写成 ) ())(92.1(02212211θθθθ-=-++Mc V c m c m

第15章磁介质的磁化参考答案

第15章 磁介质的磁化 参考答案 一、选择题 1(C),2(B),3(B),4(C),5(D) 二、填空题 (1). -8.88×10-6 ,抗 . (2). 铁磁质,顺磁质,抗磁质. (3). 2.50×10-4 A/m (4). 各磁畴的磁化方向的指向各不相同,杂乱无章. 全部磁畴的磁化方向的指向都转向外磁场方向. (5). 矫顽力大,剩磁也大;例如永久磁铁. (6). 矫顽力小,容易退磁. 三 计算题 1. 半径为R 、通有电流I 的一圆柱形长直导线,外面是一同轴的介质长圆管,管的内外半径分别为R 1和R 2,相对磁导率为μr .求: (1) 圆管上长为l 的纵截面内的磁通量值; (2) 介质圆管外距轴r 处的磁感强度大小. 解: (1) r I H π= 2 r I B r π=20μμ r l r I R R r d 2210?π=μμΦ120ln 2R R Il r ?π=μμ (2) r I B π=20μ ,与有无介质筒无关 2. 一根无限长的圆柱形导线,外面紧包一层相对磁导率为μr 的圆管形磁介质.导线半径为R 1,磁介质的外半径为R 2,导线内均匀通过电流I .求∶ (1) 磁感强度大小的分布(指导线内、介质内及介质以外空间). (2) 磁介质内、外表面的磁化面电流密度的大小. 解∶(1) 由电流分布的对称,磁场分布必对称.把安培环路定理用于和导线同心的各个圆周环路.在导线中 (0R 2) r I H π23=, r I B π=203μ.

大学物理(第四)课后习题及答案磁介质

大学物理(第四)课后习题及答案磁介质

————————————————————————————————作者:————————————————————————————————日期:

磁介质 题11.1:如图所示,一根长直同轴电缆,内、外导体间充满磁介质,磁介质的相对磁导率为)1(r r <μμ,导体的磁化率可以略去不计。电缆沿轴向有稳恒电流I 通过,内外导体上电流的方向相反。求(1)空间各区域内的磁感强度和磁化强度;(2)磁介质表面的磁化电流。 题11.2:在实验室,为了测试某种磁性材料的相对磁导率r μ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一螺绕环,设圆环的平均周长为0.01 m ,横截面积为24m 1005.0-?,线圈的匝数为200匝,当线圈通以0.01 A 的电流时测得穿过圆环横截面积的磁通为Wb 100.65-?,求此时该材料的相对磁导率r μ。 题11.3:一个截面为正方形的环形铁心,其磁导率为μ。若在此环形铁心上绕有N 匝线圈,线圈中的电流为I ,设环的平均半径为r ,求此铁心的磁化强度。 题11.4:如图所示的电磁铁有许多C 型的硅钢片重叠而成,铁心外绕有N 匝载流线圈,硅钢片的相对磁导率为r μ,铁心的截面积为S ,空隙的宽度为b ,C 型铁心的平均周长为l 4,求空隙中磁感强度的值。

题11.5:一铁心螺绕环由表面绝缘的导线在铁环上密绕1000匝而成,环的中心线mm 500=L ,横截面积23mm 100.1?=s 。若要在环内产生T 0.1=B 的磁感应强度,并由铁的H B -曲线查得此时铁的相对磁导率796r =μ。导线中需要多大的电流?若在铁环上开一间隙(mm 0.2=d ),则导线中的电流又需多大? 题11.1解:(1)取与电缆同轴的圆为积分路径,根据磁介质中的安培环路定理,有 ∑=f 2I r H π 对1R r <, 22 f r R I I ππ= ∑ 得 2 1 12R Ir H π= 忽略导体的磁化(即导体相对磁导率1r =μ)有 01=M 2 1012R Ir B πμ= 对12R r R >> I I =∑f 得 r I H π22= 填充的磁介质相对磁导率为r μ,有 r I M πμ2) 1(r 2-=;r I B πμμ2r 02= 对23R r R >> )() (2222 22 3f R r R R I I I --- =∑ππ 得 ) (2)(2 22 322 33R R r r R I H --=π 同样忽略导体得磁化,有 03=M ) (2) (2 22322303R R r r R I B --=πμ 对3R r > 0f =-=∑I I I 得 04=H 04=M 04=B (2) 由 r M I π2s ?=。磁介质内、外表面磁化电流的大小为 I R R M I )1(2)(r 112si -==μπ I R R M I )1(2)(r 212se -==μπ 对抗磁质(1

冷却法测金属比热容(P76) + 故障判断(P80)

在冷却法测金属比热容实验中,有公式?Q/?t =c1m 1?T1/?t,其中?Q/?t与?T1/?t 的含义是指: 答案1:热量损失;温度下降速率 答案2:热量损失;在温度T1时的温度下降速率 答案3:单位时间内的热量损失;温度下降速率 答案4:单位时间内的热量损失;在温度T1时的温度下降速率 正确答案为:4 如测量次数≥5次,总的不确定度为_____,如测量次数<5次,总的不确定度为_____,其中S x、Δx为_____不确定度。 答案1: 答案2: 答案3: 答案4: 正确答案为:4 在冷却法测金属比热容实验中,温度指示选择转换旋钮的“设定温度”档可用来设定 __________所需加热的温度,而当旋钮旋至“加热盘温度”档时,可用来_____________。答案1:加热盘;设定金属盘加热温度 答案2:加热盘;显示加热盘温度变化 答案3:金属盘;设定金属盘加热温度 答案4:金属盘;显示加热盘温度变化 正确答案为:2 在冷却法测金属比热容实验中,为了计算标准铜盘(或待测铝盘)在50℃的斜率,应采用下面哪一种方法: 答案1:在冷却曲线上任意选择两个点求斜率 答案2:在冷却曲线上在50℃附近选择两个点求斜率 答案3:在冷却曲线上在45℃—55℃之间选择两个点求斜率 答案4:在冷却曲线上在50℃处作曲线的切线,在切线上选择两个点求斜率 正确答案为:4

答案1:α1=α2;T10=T20 答案2:m1=m2;T10=T20 答案3:T10=T20;n1=n2 答案4:α1=α2;n1=n2 正确答案为:4 在冷却法测金属比热容实验中,有公式?Q/?t =c1m 1?T1/?t,其中?Q/?t与?T1/?t的含义是指: 答案1:热量损失;温度下降速率 答案2:热量损失;在温度T1时的温度下降速率 答案3:单位时间内的热量损失;温度下降速率 答案4:单位时间内的热量损失;在温度T1时的温度下降速率 正确答案为:4 在冷却法测金属比热容实验中,该实验仪器______用来测量室温,此时须把温度指示选择转换旋钮拔向__________________。 答案1:可以;“散热盘温度”档 答案2:可以;空档 答案3:不可以;空档 答案4:可以;“加热盘温度”档 正确答案为:1 在冷却法测金属比热容实验中,下列哪一项不属于本实验对金属样品的要求? 答案1:金属样品的直径应较大 答案2:金属样品的厚度应较小 答案3:金属样品的导热性能应较好 答案4:金属样品的表面状况应大致相同

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。

实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的

冷却法测量金属比热容

冷却法测量金属比热容 一 实验目的 1 掌握用冷却法测定金属的比热容,测量金属在室温至200℃温度时的比热容。 2 了解金属的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 二 实验原理 单位质量的物质,其温度升高或降低1K (1℃)所需的热量,叫做该物质的比热容,其值随温度而变化。根据牛顿冷却定律,用冷却法测定金属的比热容是量热学常用方法之一。若已知标准样品在不同温度的比热容,通过作冷却曲线可测量各种金属在不同温度时的比热容。本实验以铜为标准样品,测定铁、铝样品在100℃或200℃时的比热容。 冷却法测定金属的比热容测量仪装置 (实验装置由加热仪和测试仪组成。加热仪的加热装置可通过调节手轮自由升降。被测样品安放在有较大容量的防风圆筒即样品室内的底座上,测温热电偶放置于被测样品内的小孔中。当加热装置向下移动到底后,对被测样品进行加热;样品需要降温时则将加热装置移上。仪器内设有自动控制限温装置,防止因长期不切断加热电源而引起温度不断升高。) 将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却。其单位时间的热量损失(t Q ??/)与温度下降的速率成正比,于是得到 下述关系式: t M C t Q ??=??1 1 1θ (1)

式中1C 为该金属样品在温度1θ时的比热容,t ??1θ为金属样品在1θ的温度下降速率, 根据冷却定律有: m s a t Q ) (0111θθ-=?? (2) 式中1a 为热交换系数1S 为该样品外表面的面积,m 为常数,1θ为金属样品的温度, θ 为周围介质的温度。由式(1)和(2),可得 m s a t M C ) (01111 1 1θθθ-=?? (3) 同理对质量为2M ,比热容为2C 的另一种金属样品,可有同样的表达式: m s a t M C ) (02222 2 2θθθ-=?? (4) 由(3)和(4)式,可得: m m s a s a t M C t M C )()(1011102221 12 2 2θθθθθθ--=???? (5) 所以 m s a t M s a t M C C m ) (01112 2 ) (1 2 02221 1 θθθθθθ-??=-?? (6) 如果两样品的形状尺寸都相同,即2 1 s s =;两样品的表面状况也相同(如涂层、色 泽等),而周围介质(空气)的性质当然也不变,则有2 1a a =。于是当周围介质温度不 变(即室温0θ恒定而样品又处于相同温度θ θθ=-21 )时,上式可以简化为: 1 22 11 2 ??? ????? ?? ????=t M t M C C θθ (7) 如果已知标准金属样品的比热容1C 质量1M ;待测样品的质量2M 及两样品在温度θ时冷却速率之比,就可以求出待测的金属材料的比热容2C 。

磁学知识

电磁性能 矫顽力(coercive force)是指磁性材料在饱和磁化后,当外磁场退回到零时其磁感应强度B并不退到零,只有在原磁化场相反方向加上一定大小的磁场才能使磁感应强度退回到零,该磁场称为矫顽磁场,又称矫顽力。 饱和磁化强度(saturation magnetization)指磁性材料在外加磁场中被磁化时所能够达到的最大磁化强度叫做饱和磁化强度。饱和磁化强度是铁磁性物质的一个特性,是永磁性材料极为重要的磁参量。饱和磁化强度是铁磁性物质的一个特性。、铁磁性物质在外磁场作用下磁化,开始时,随着外磁场强度的逐渐增加,物质的磁化强度也不断增大;当外磁场增加到一定强度以后,物质的磁化强度便停止增加而保持在一个稳定的数值上,这时物质达到了饱和磁化状态。这个稳定的磁化强度数值就叫做这个物质的饱和磁化强度。不同种类的铁磁性物质,饱和磁化强度的数值也不同。 饱和磁化强度Ms是永磁性材料极为重要的磁参量。永磁材料均要求Ms越高越好。饱和磁化强度决定于组成材料的磁性原子数、原子磁矩和温度。在低温区,它遵循布洛赫(Bloch)定律。 磁性材料被磁化以后离开外磁场仍具有极性,这是剩磁(剩余磁化强度);若想消除剩磁就要施加一个反方向的外磁场,消除剩磁所需要的反向磁场强度是矫顽力;矫顽力越大材料越硬,高温能够减弱材料的磁性,所以“矫顽力越大耐温性就越好”。 剩余磁化强度是表示剩余磁性大小的物理量,一般用符号Jr表示。它的大小和方向与现代地磁场无关,而决定于形成时的环境及所经历的地质变动。几乎所有岩石都具有剩余磁化强度。在磁测工作中,需要测定剩余磁化强度的大小和方向,作为成果解释的依据。古地磁学就是通过岩石剩余磁化强度研究古地磁场,从而解决某些地质问题的一个学科。单位符号:A/m。 磁滞现象 编辑 磁滞现象简称磁滞。[1]磁性体的磁化存在着明显的不可逆性,当铁磁体被磁化到饱和状态后,若将磁场强度(H)由最大值逐渐减小时,其磁感应强度(符号为B)不是循原来的途径返回,而是沿着比原来的途径稍高的一段曲线而减小,当H=0时,B并不等于零,即磁性体中B的变化滞后于H的变化,这种现象称磁滞现象。[2] 磁性物质都具有保留其磁性的倾向,磁感应强度B的变化总是滞后于磁场强度H的变化的,这种现象就是磁滞现象。[2] 按磁滞回线的不同,磁性物质又可分为硬磁物质、软磁物质和矩磁物质三种。 磁滞现象,在铁磁性材料中是被广泛认知的。当外加磁场施加于铁磁性物质时,其原子的偶极子按照外加场自行排列。即使当外加场被撤离,部分排列仍保持。该材料被磁化,其磁性会继续保留。需要消磁时,施加相反方向的磁场。

金属比热容测定

热学实验论文 。混合法测定金属的比热容 物质比热容的测量属于量热学范围,由于量热实验的误差一般较大,所以要做好量热实验必须仔细分析产生各种误差的原因,并采取相应措施设法减小误差。 测定固体或液体的比热容,在温度变化不太大时常用混合量热法、冷却法、电流量热器法。本实验用混合法测定金属的比热容。 一、实验目的 1. 学习热学实验的基本知识,掌握用混合法测定金属的比热容的方法; 2. 学习一种修正系统散热的方法。 二、仪器及用具 量热器,水银温度计,物理天平,待测金属粒,停表,量筒,烧杯及电加热器等。 三、实验原理 1. 用热平衡原理侧比热容 在一个与环境没有热交换的孤立系统中,质量为m 的物体,当它的温度由最初平衡态0θ变化到新的平衡态i θ时,所吸收(或放出)的热量Q 为 )(0θθ-=i mc Q (1) 式中mc 称为该物体的热容,c 称为物体的比热容,单位为J/(kg·K )。 用混合法测定固体比热容的原理是热平衡原理。把不同温度的物体混合在一起时,高温物体向低温物体传递热量,如果与外界没有任何热交换,则他们最终达到均匀、稳定的平衡温度,这时称系统达到了热平衡。高温物体放出的热量1Q 与低温物体吸收的热量2Q 相等,即 1Q =2Q (2) 本实验的高温部分由量热器内筒、搅拌器、水银温度计和热水等组成,而处于室温的金属粒为系统的低温部分。设量热器内筒和搅拌器(二者为同种材料制成)的质量为1m ,比热容为1c ;热水质量为2m ,比热容为2c ;水银温度计的质量为3m ,比热容为3c ,它们的共同

温度为1θ。待测金属粒的质量为M ,比热容为c ,温度与室温0θ相同。将适量金属粒倒入量热器内筒中,经过搅拌后,系统达到热平衡时的温度为2θ。假设系统与外界没有任何热交换,则根据式(2)可知,实验系统的热平衡方程为 )())((022*******θθθθ-=-++Mc c m c m c m (3) 式中33c m 为温度计的热容,其值用1.92V(J/K)表示,这里的V 表示温度计浸入水中部分的 体积,单位用3cm 。于是,式(3)可写成 )())(92.1(02212211θθθθ-=-++Mc V c m c m 则金属粒的比热容c 为 )() )(92.1(02212211θθθθ--++=M V c m c m c (4) 式中M 、1m 、2m 均可由天平称衡;V 可用量筒采用排水法测出;1c 、2c 查书后附录二或由实验室给出,0θ为室温。若能知道1θ和2θ的值,便可计算出金属粒的比热容c 。下面通过修正系统散热误差的方法求出1θ和2θ的值。 2. 系统散热误差的修正(面积补偿法) 在热学实验中,系统不可能完全绝热,必然存在着散热现象,因此,必须对系统的散热进行修正。修正散热的方法之一就是对温度进行修正,其方法是通过作图用外推法求出实验系统的高温部分(量热器内筒、热水、搅拌器、水银温度计等)混合前的温度1θ以及混合后系统达到热平衡时的温度2θ。图2-25所示的是实验系统的温度随时间变化的曲线。图 中AB 段是未投入金属粒前系统的散热温度变化曲线; B 点对应的时刻为金属粒投入热水中的时刻。B C 段是金属粒投入量热器热水中以后,系统进行热交换过程的散热曲线;C D 段是系统内热交换达到热平衡后的散热温度变化曲线。在BC 段实际上同时进行着两个过程,一是由于系统向空气散热而导致热水温度下降,二是由于金属粒投入后的吸热效应而使热水温度下降。现在就来考虑在有热量损失的情况下,应用面积补偿法,求出由于投入金属粒而使水温降低的实际数值。其具体做法是:在曲线上过对应于室温0θ的点G 作垂直横轴的直线,然后延长AB 到 E ,延长DC 到 F ,使BE G 面积等于GFC 面积,这样在BEGFC 和BGC 这两条图线各自相应的过程中所损失的热量是相等的,因而可将原来的BGC 过程等

材料物理性能王振廷课后答案106页

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q( J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么 Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子 磁矩低的原因是什么 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

常用材料的导热系数表

材料的导热 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。 总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的时间也越多,效能也越差。 c. 对于导热材料,选用合适的导热率、厚度是对性能有很大关系的。选择导热率很高的材料,但是厚度很大,也是

实验题目 冷却法测金属的比热容

实验题目 冷却法测金属的比热容(416房间) 【目的要求】 1、掌握用冷却法测金属的比热容; 2、了解关于铜-康铜热电偶的定标知识。 【实验原理】 单位质量的物质,其温度升高1K(1C o )所需的热量叫做该物质的比热容,其值随温度而变化。将质量为M 1的金属样品加热后,放到较低温度的介质(例如:室温的空气)中,样品将会逐渐冷却。其单位时间的热量损失( t Q ??)与温度下降的速率成正比,于是得到下 述关系式: t M C t Q ??=??111θ (1) (1)式中C 1为该金属样品在温度1θ时的比热容, t ??1θ为金属样品在1θ时的温度下降速率。根据冷却定律有: m s a t Q )(0111θθ-=?? (2) (2)式中a 1为热交换系数,S 1为该样品外表面的面积,m 为常数,1θ为金属样品的温度,0θ为周围介质的温度。由式(1)和(2),可得: m s a t M C )(0111111θθθ-=?? (3) 同理,对质量为M 2,比热容为C 2的另一种金属样品,可有同样的表达式: m s a t M C )(0222222θθθ-=?? (4) 由上式(3)和(4),可得: m m s a s a t M C t M C )()(01110222111222θθθθθθ--=???? 所以: m m s a t M s a t M C C )()(01112202221112θθθθθθ-??-??= 如果两样品的形状尺寸都相同,即S 1=S 2;两样品的表面状况也相同(如涂层、色泽等),而周围介质(空气)的性质当然也不变,则有a 1=a 2。于是当周围介质温度不变(即室温0θ恒

常用材料的导热系数表

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。 总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的时间也越多,效能也越差。 c. 对于导热材料,选用合适的导热率、厚度是对性能有很大关系的。选择导热率很高的材料,但是厚度很大,也是 性能不够好的。最理想的选择是:导热率高、厚度薄,完美的接触压力保证最好的界面接触。 d、使用什么导热材料给客户,理论上来讲是很困难的一件事情。很难真正的通过一些简单的数据,来准确计算出选 用何种材料合适。更多的是靠测试和对比,还有经验。测试能达到产品要求的理想效果,就是最为合适的材料。 e、不专业的用户,会关注材料的导热率;专业的用户,会关注材料的热阻值。

大学物理(第四版)课后习题及答案 磁介质

题11.1:如图所示,一根长直同轴电缆,内、外导体间充满磁介质,磁介质的相对磁导率为)1(r r <μμ,导体的磁化率可以略去不计。电缆沿轴向有稳恒电流I 通过,内外导体上电流的方向相反。求(1)空间各区域内的磁感强度和磁化强度;(2)磁介质表面的磁化电流。 题11.2:在实验室,为了测试某种磁性材料的相对磁导率r μ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一螺绕环,设圆环的平均周长为0.01 m ,横截面积为24m 1005.0-?,线圈的匝数为200匝,当线圈通以0.01 A 的电流时测得穿过圆环横截面积的磁通为Wb 100.65-?,求此时该材料的相对磁导率r μ。 题11.3:一个截面为正方形的环形铁心,其磁导率为μ。若在此环形铁心上绕有N 匝线圈,线圈中的电流为I ,设环的平均半径为r ,求此铁心的磁化强度。 题11.4:如图所示的电磁铁有许多C 型的硅钢片重叠而成,铁心外绕有N 匝载流线圈,硅钢片的相对磁导率为r μ,铁心的截面积为S ,空隙的宽度为b ,C 型铁心的平均周长为l 4,求空隙中磁感强度的值。

题11.5:一铁心螺绕环由表面绝缘的导线在铁环上密绕1000匝而成,环的中心线mm 500=L ,横截面积23mm 100.1?=s 。若要在环内产生T 0.1=B 的磁感应强度,并由铁的H B -曲线查得此时铁的相对磁导率796r =μ。导线中需要多大的电流?若在铁环上开一间隙(mm 0.2=d ),则导线中的电流又需多大? 题11.1解:(1)取与电缆同轴的圆为积分路径,根据磁介质中的安培环路定理,有 ∑=f 2I r H π 对1R r <, 22f r R I I ππ=∑ 得 21 12R Ir H π= 忽略导体的磁化(即导体相对磁导率1r =μ)有 01=M 21012R Ir B πμ= 对12R r R >> I I =∑f 得 r I H π22= 填充的磁介质相对磁导率为r μ,有 r I M πμ2) 1(r 2-=;r I B πμμ2r 02= 对23R r R >> )() (2222223f R r R R I I I ---=∑ππ 得 )(2)(222322 33R R r r R I H --= π 同样忽略导体得磁化,有 03=M ) (2)(222322303R R r r R I B --=πμ 对3R r > 0f =-=∑I I I 得 04=H 04=M 04=B (2) 由 r M I π2s ?=。磁介质内、外表面磁化电流的大小为 I R R M I )1(2)(r 112si -==μπ I R R M I )1(2)(r 212se -==μπ 对抗磁质(1

金属比热容测量实验中误差的来源探讨和修正

金属比热容测量实验中误差的来源探讨和修正 Prepared on 24 November 2020

天津师范大学本科毕业论文(设计) 题目:金属比热容测量实验中误差的来源探讨和修正 学院:物理与电子信息学院 学生姓名:于永洋 学号:07506015 专业:物理学 年级:2007级 完成日期:2011年5月 指导教师:曹猛

测量金属比热容实验中误差的来源探讨和修正 于永洋 (天津师范大学物理与电子信息学院) 摘要:金属比热容的测量是大学物理中的一个经典实验,但由于在实验过程中受外界环境影响因素较大,造成测量结果往往有一定偏差。本研究分析了混合法测量金属比热容实验中可能产生实验误差的各种因素,对误差对结果的影响进行分析,并提出改进的实验方法用以减小误差的影响。 关键词:误差、比热容、混合法 Error to explore and fixed in metal specific heat capacity measurement YU YONGYANG (College of Physics and Electronic Information Science, Tianjin Normal University) Abstract:Specific Heat capacity measuring in metal is the classic college physics experiment.Certain deiation often measurement results because of the experimental process by external environment factors. This study analyzes various factors of the error by the cooling method and hybrid method.Analysing the influence of the error of the results and some improvements to the experimental method to lower the error influence. Keywords:error, specific heat capacity, hybrid method 目录 引言 (1) 一、研究背景 (1)

实验冷却法测定金属比热容

实验 冷却法测定金属比热容 专业___________________ 学号___________________ 姓名___________________ 一、预习要点 1. 了解冷却定律以及冷却法测量金属比热容的实验原理和计算方法; 2. 熟悉掌握金属比热容测量仪的使用方法及测量结构示意图; 3. 在课前写好预习报告,上课时务必将预习报告和原始数据表格一并带来,否则扣分。 二、实验内容 1. 用天平称出(铜、铁、铝)三种实验样品的质量,填入表1上方;三种实验样品可根据质量大小区分(Cu m >Fe m >Al m ); 2. 打开电源,注意调零数字电压表,并连接各仪器导线; 3. 测量铁和铝在100℃时的比热容: (1) 将铜样品套在容器内的热电偶上,调节支架上的旋钮,下降实验架,使电烙铁套于样品上,开启加热开关;用铜—康铜热电偶测量实验样品的温度,当电压表读数超过5.00mV 时,断开加热开关,上升加热支架;让样品继续安放在与外界基本隔绝的防风容器内自然冷却(容器必须盖上盖子); (2) 冷却过程中,观察比热容测量仪中的电压值,当电压表显示为4.37mV 时(此时样品温度为102 ℃),迅速按下时间指示下方的“起动/停止”按钮;一段时间后,当电压表显示为4.18mV 时(此时样品温度为98 ℃),再次迅速按下 “起动/停止”按钮;记录此时仪器上显示的时间,即为样品降温所需要的时间1t ?; (3) 重复以上步骤(1)、(2),再次测量铜样品的降温时间2t ?、3t ?,填入表1; (4) 重复以上步骤(1)、(2)、(3),测量铁和铝样品的降温时间1t ?、2t ?、3t ?,填入表1; 4. 测量金属的冷却规律: (1) 选取两种样品,重复第3点中第(1)步; (2) 冷却过程中,当电压表显示为4.37mV 时,迅速按下 “起动/停止”按钮;每隔5秒,记录电压表的读数V ,填入表2; 三、实验注意事项 1. 加热装置向下移动时,动作要慢,应注意要使被测样品垂直放置,以使加热装置能完全套入被测样品。 2. 样品冷却时,电压表的读数跳变会比较大(比如:4.39mV 直接跳到4.36mV ),要注意把握,记录数据时动作要敏捷,以免错过合适的测量点,以减少误差。 3. 降温测量时,间隔测量时间较短,应迅速、准确,以减小人为计时误差。 4. 加热后样品烫手,勿用手触摸以免烫伤手指,使用镊子夹取样品。

相关文档