文档库 最新最全的文档下载
当前位置:文档库 › 某厂CFB锅炉的运行经验介绍

某厂CFB锅炉的运行经验介绍

某厂CFB锅炉的运行经验介绍
某厂CFB锅炉的运行经验介绍

节能2010年第1期一76一ENERGYCONSERVATION(总第330期)

某厂CFB锅炉的运行经验介绍

王树字

(桐乡泰爱斯热电有限公司,浙江桐乡314500)

摘要:介绍某公司75t/h循环流化床锅炉运行、检修中积累的经验。阐述锅炉在运行中床温应控制在

880~960。C,防止受热管壁高温腐蚀和磨损;加强一次风量及料层压差控制;防止返料温度超过

1000℃。在检修中全面检查和维修。以保证启动时各部位温度上升均匀。

关键词:CFB锅炉;运行;经验;探讨

中图分类号:TK229.6+6文献标识码:A文章编号:1004—7948(2010)01—0076-02

引言

某热电公司2007年进行技改扩建,根据环保要求的实际情况,安装了l台循环流化床锅炉(CFB锅炉),由于没有CFB锅炉的实际运行经验,所以在生产运行中管理人员和运行检修人员完全是靠说明书和相关资料在逐步积累经验,在两年的运行及检修中逐渐掌握了循环流化床锅炉的运行特性。

1锅炉基本概况

该锅炉为75t/h次高温、次高压循环流化床锅炉,由无锡华光锅炉股份有限公司制造。该炉型采用了循环流化床燃烧方式,煤种适应性好,设计煤种为烟煤,收到基低位热值a。。。=17585—23500kJ/kg,设计效率为85%~90%,燃用含硫较高的燃料时。可通过向炉内添加石灰石进行脱硫,当硫含量为l%时,设计脱硫率90%,能显著降低二氧化硫的排放。该锅炉结构简单紧凑,与传统的煤粉炉炉型相似,锅炉本体由燃烧设备、给煤装置、床下点火装置、分离和返料装置、水冷系统、过热器、省煤器、空气预热器、钢架、平台扶梯、炉墙等组成。

2运行中的参数调节

(1)床温的控制。

循环流化床密相区内布置的受热面或炉膛出口处的受热面,由于受到处于流化状态下物料的冲刷,故浇注料就有可能剥落,金属表面就会有一定的磨损。所以运行参数的调节就显得尤为重要了。

床温的高低直接影响烟气的温度和受热面的温度,床温升高,烟气的温度和受热面的温度升高。从表面看,床温的变化对飞灰的磨损性能影响不大,但温度的变化势必会影响受热面管壁的温度变化,受热面温度的变化将在很大程度上影响到管材的机械强度。当床温高时,受热面的壁温也随之升高,此时管材的金属热应力增加,加之高温腐蚀的影响,磨损加剧,长时间高温运行,磨损的加剧程度将大大加大。另外由于热电厂煤种不稳定的缘故,原煤的焦渣特性及灰渣的变形温度f,及软化t,温度,各不相同,稍不留心极易产生结焦现象,带来相当大的安全事故。所以,运行中床温的控制一定要加强,不宜过高,更不允许长期的高温运行。该厂床温的控制范围约为880—9600C。

正常生产过程中绝对不允许超负荷和超汽温、汽压运行,否则会对金属管子材质、结构造成不良影响而导致磨损加剧,甚至大面积结焦被迫停炉。

(2)一次风量及料层差压的控制。

在运行中除了严格要求床温外,对沸下、沸中温度的左、右偏差也要加强控制,主要是控制一次风量及料层差压。风量过大则沸中温度高于沸j二温度,左右偏差增大,同时也造成了运行中的能耗加大;风鼍过小则流化不好,易结焦。控制最好时左、右温度偏差1—2。C,基本上偏差都在5。c以内。由于循环流化床锅炉燃料颗粒较大,为了有效防止受热面的磨损,运行中负压不能控制得过大,微负压即可。

(3)返料量的调整。

根据循环流化床锅炉燃烧及传热的特点,循环物料量对CFB锅炉的燃烧起着举足轻再的作用,因为返料灰实际上也是一种热载体,它将密相区的热量带到稀相区,使整个炉膛内温度场分布均匀,达到较高的传热效果,所以通过调整返料量可以控

万方数据

2010年第1期(总第330期)

节能

ENERGYCONSERVATIoN

制料层温度和炉膛差压,并能进一步调节负荷。

如果料层太厚,炉膛差压太小,炉膛上部物料浓度亦随之降低,致使密相区更密,稀相区更稀,不利于炉膛上部的传热。根据该厂运行经验,物料循环正常时,当炉膛上部压差在800~1000Pa时调节负荷的能力最强,当炉膛压差大大超过1200Pa,锅炉运行时的负荷调节就比较困难了,一般说来就是表明物料循环不大正常。当返料温度有可能超过10000C以上,返料器就存在结焦危险,这时应马上调整风量,必要时在返料器下部紧急放灰,减少返料量(为了保证安全,机组运行时不主张采用)。

综上,CFB锅炉运行时的监控重点应注意以下几个方面:一是料床温度,它直接影响CFB锅炉的安全经济性和环境效果;二是一次风量,它是决定物料是否流化的根本因素,也是影响床温的主要因素;三是料层阻力(料层差压),它可以间接反映物料浓度,当然料层阻力也受风压的影响,所以在流化试验时要做好相应的记录;四是保证返料风量正常,既保证物料循环系统正常也保证设备完好,避免风帽的非正常磨损;五是严密监视分离器温度以及返料温度。也一定存在这种现象,另外一次风风门电动装置发生零点漂移,内部无法严密关闭,导致风量不均衡。

此次检修要求检修班组对水冷风室、密相区、水平烟道、旋风分离器、返料箱的浇注料全面检查,磨损严重的部位请专业厂家进行修补;床料放空后组织运行人员对风帽彻底清理,同时铲除沉积的大颗粒状物体,以保证流化及返料的正常;机械班配合热工班对所有风门、挡板进行校验,防止开度显示不准确,影响风量的配比;全面清理尾部受热面的积灰,并检查修正防磨盖板,不符合要求的重新固定或者更换,确保受热面的防磨效果;严格床料的筛分,必须在10mm以下,而且要控制床料添加高度500mm左右;每次启动前必须做流化试验,不合格绝不点火启动,如果床料有水分还要进行干燥,防止添加时沉积在下面干燥后堵塞风帽。

实践证明,虽然检修工作繁琐了,但启动时各部位温度上升均匀,用油量较少,锅炉在运行中很稳定。平时的检修工作鼍也很少,各项运行参数偏差非常小,有效控制了受热面的磨损。近2年在历次检修中抽查,除了少部分浇注料有磨损剥落外,未出现任何的严重磨损或爆管现象的发生。

3冷渣机的使用5节能产品的应用

该公司的冷渣机采用的是振动冷渣机,由于对其使用不是很重视,在运行中吃了很大的苦头:燃煤颗粒过大,导致冷渣机堵塞;运行时冷却水量不足,导致管排过热变形,出渣不畅;管排漏水,导致堵塞,被迫停炉等等。后来重新更换了管排,并根据用水量在管路上增加了管道泵,有效防止了冷却水量不足情况的发生;同时将破碎机的齿板全部更换为耐磨钢材质。经过改造后,不但冷渣机运行良好,而且出渣温度也在50℃以下,不但有效保证了出渣的安全性,也回收了大量的热能。

4检修中的细致工作

循环流化床锅炉运行的优劣,除操作水平外,历次检修中的细致工作可以说是安全经济运行的保障。

在运行中发现,锅炉运行时间久了沸中、沸下温度左右不均衡,返料风量及一次风量左右不均衡;锅炉停运检修时,对有问题的各部位进行了详细检查,发现两侧返料器内有部分脱落的浇注料,同时返料风帽有不同程度的堵塞,显然一次风风帽

运行的安全、稳定、经济也得益于节能产品的应用。在设计之初和设计院沟通设备选型时就注意到了这个问题,经过公司领导和项目部人员的多次考察、论证,决定投入巨资让所有大功率设备都采用变频器。采用变频以后风机运行平稳、操作方便、可靠,运行人员对风量、风压控制得心应手,省去了手操器运行久了不灵敏的弊端。尤其是在夜间低负荷时,作用尤为突出供热量决定了锅炉的负荷,夜间供热量下降将不可避免地导致锅炉负荷降低,如果是单纯煤粉炉运行,势必要日开夜停,对锅炉的“健康”不利;而且每次的启、停耗费了大量的燃油。应用变频的循环流化床锅炉的最低负荷降到了40t/h以下,不但满足了生产的要求,而且风量、风压、床温等运行调节很稳定,重要的是节电可以达到50%左右,这是该公司另外几台煤粉炉所不能比拟的。

作者简介:王树宇(1975一),男,黑龙江人,大学,工程师,从事热电厂煤粉锅炉、循环流化床锅炉及附属脱硫设施的运行、检修管理和技改等工作。

收稿日期:2009—07—31;修回日期:2009—1l一30

万方数据

锅炉效率计算

单位时间内锅炉有效利用热量占锅炉输入热量的百分比,或相应于每千克燃料(固体和液体燃料),或每标准立方米(气体燃料)所对应的输入热量中有效利用热量所占百分比为锅炉热效率,是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理水平。锅炉的热效率的测定和计算通常有以下两种方法: 1.正平衡法 用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。正平衡热效率的计算公式可用下式表示: 热效率=有效利用热量/燃料所能放出的全部热量*100% =锅炉蒸发量*(蒸汽焓-给水焓)/燃料消耗量*燃料低位发热量*100% 式中锅炉蒸发量——实际测定,kg/h; 蒸汽焓——由表焓熵图查得,kJ/kg; 给水焓——由焓熵图查得,kJ/kg; 燃料消耗量——实际测出,kg/h; 燃料低位发热量——实际测出,kJ/kg。 上述热效率公式没有考虑蒸汽湿度、排污量及耗汽量的影响,适用于小型蒸汽锅炉热效率的粗略计算。 从上述热效率计算公式可以看出,正平衡试验只能求出锅炉的热效率,而不能得出各项热损失。因此,通过正平衡试验只能了解锅炉的蒸发量大小和热效率的高低,不能找出原因,无法提出改进的措施。 2.反平衡法 通过测定和计算锅炉各项热量损失,以求得热效率的方法叫反平衡法,又叫间接测量法。此法有利于对锅炉进行全面的分析,找出影响热效率的各种因素,提出提高热效率的途径。反平衡热效率可用下列公式计算。 热效率=100%-各项热损失的百分比之和 =100%-q2-q3-q4-q5-q6 式中q2——排烟热损失,%; q3——气体未完全燃烧热损失,%; q4——固体未完全燃烧热损失,%; q5——散热损失,%; q6——灰渣物理热损失,%。 大多时候采用反平衡计算,找出影响热效率的主因,予以解决。

流化床锅炉运行规程

前言 本标准是按国家技术监督局《标准化工作导则标准编写的基本规定》的要求,依照中华人民共和国电力行业标准《锅炉运行规程》,结合运行操作、维护、管理经验,经技术人员在广泛征求意见,并充分讨论后对原《流化床锅炉运行规程》进行修订。本规程修订后改名为《锅炉运行规程 XD-240/9.8-M1》,属唐山三友热电公司的技术标准。 1. 范围 本规程适用于锅炉及主要辅助设备的启动、运行、维护、事故分析与处理、锅炉各 项试验等。 2. 引用标准 唐山信德锅炉有限公司提供XD-240/9.8-M1技术规范。 借鉴其它同类电厂锅炉运行规程 电力工业锅炉压力容器监察规程 电力建设施工及验收技术规范 锅炉运行导则 电站锅炉性能试验规程 电力工业技术管理法规 安全工作规程(热力和机械部分) 3. 各级有关人员均应严格执行本规程 1)下列人员应熟悉本规程:副总工程师、运行部正、副部长,运行部锅炉运行专业技术人员。 2)下列人员应熟悉本规程的有关部分:检修副总工程师、运行部电气、汽机运行专业技术人员,各安全生产部室正、副部长与专业技术人员。 3)下列人员应熟知并能正确执行本规程,并按期参加考试合格:正、副值长,全体锅炉运行人员。 4)下列人员应了解本规程的有关部分:热控、汽机、电气、化学、锅炉等有关人员。 5)随着生产技术的发展,设备完善化及改造,本规程应定期修改补充,对本规程的修改补充意见,统一经运行部锅炉专业提出书面报告,经安全生产部审核,报总工程 师批准后生效。 4. 本规程由运行部提出并归口。 本规程由运行部负责起草。 本规程的解释权属于运行部。 本规程自2010年10月1日起实施,同时原颁发的《流化床锅炉运行规程》作废。 目录 第一章设备及燃料的简要性 (4) 1.1 锅炉设备概述 (4) 1.2 设备和燃料及汽水标准 (4) 第二章锅炉联锁及保护 (8) 2.1 引风机联锁保护 (8) 2.2 一次风机联锁保护 (9)

浅谈300MW机组的锅炉优化运行

浅谈300MW机组的锅炉优化运行 摘要:影响锅炉机组效率的因素中,排烟热损失和机械未完全燃烧热损失是最 主要的部分,而排烟温度、排烟量往往决定着排烟热损失的多少,也就是说,排 烟温度每提高10℃,会相应增加0.6~1%的排烟热损失。而影响排烟量的主导因 素则是过剩空气系数及燃料所含水分的多少。 关键词:300MW机组;锅炉优化运行; 随着我国经济的快速发展, 工业生产和人民生活都需要大量的电力供应。我国 目前的电力供应以燃煤形式的火力发电为主。虽然火力发电已经经过了几十年的 法制,取得了很大成效,但是与国外先进水平相比,仍是相对落后,火电厂设备的运行 效率还是较低。燃煤锅炉作为火力发电厂中最为重要的设备之一, 仍然面临着许 多值得改进的地方。 一、火电厂锅炉的类型 从燃烧方式来看, 国内现行的300MW级亚临界参数锅炉主要有三种技术形式:第一种是四角切圆燃烧方式, 第二种是对冲燃烧方式, 第二种是W 型火焰燃烧方式。四角燃烧锅炉多数采用摆动式燃烧器调节再热汽温, 也可采用烟气挡板和其他调 温方式。而对外燃烧锅炉采用旋流式燃烧器,多数采用烟气挡板调节寻热汽温。从 循环方式来看, 主要有四种形式:自然循环; 控制循环;复合循环或低倍率循环方式;纯直流方式。四角燃烧锅炉的循环方式趋于多样化,上述四种形式都占相当数量。 而对冲燃烧锅炉,多数采用自然循环方式。从受热面系统布置来看, 对于采用摆动 式燃烧器调温的锅炉, 除了水平烟道和尾部烟道的贴墙管道热器外, 烟道中的主受 热面系统布置大致上形成了两种形式:一种是过热器和再热器都采用辐射+对流 式的系统:另一种是过热器采用辐射+对流式的系统,再热器采用对流式系统。为 了减少启动过程中的热量和工质损失, 目前母管制锅炉启动时常采用被启动锅炉 本身产生的蒸汽暖管。因为启动前,从锅炉出门到汽轮机前的主蒸汽管道是冷的、 有时可能还有少量积水。同时, 由于管道较长,管子与阀门、法关等附件厚度相差 较大, 突然将压力、温度较高的蒸汽送人,会引起管道和附件产生较大的热应力,大 量蒸汽凝结成水,在管道内发生水冲击,致使设备损坏,因而应当预先暖管。这种用 少量蒸汽对管道进行预热和疏水的操作称为暖管。从锻炉炉型结构看,有倒U 型布置、塔型布置、W型火焰炉则布置。从工作参数看,目前发展的主要是亚临界和超临界参数机组。目前我厂采用的HG-1025/17.5-YM28锅炉,锅炉型式是亚临界中间 一次再热自然循环汽包炉。 二、300MW机组的锅炉优化运行 1.烟气参数的监测和控制。目前,锅炉运行参数的信息与控制偏重于蒸汽系统,而对烟气系统的控制缺乏信息与手段。烟气系统如能控制好,蒸汽系统基本 上不会产生太多的问题。炉膛出口烟气温度( FEGT) 是反映炉膛燃烧、能量平衡和 热量交换的一个重要过程参数。FEGT的控制对提高锅炉运行的安全性、可靠性、经济性,降低污染物排放及延长锅炉使用寿命有着重要的作用和影响。如果FEGT 偏离了设计值,可能产生如下问题。炉膛结焦、结渣,使得过热器和再热器部位 的腐蚀加快,缩短重要部件寿命,增加维修费用。可能出现超温,造成过热器、 再热器管的超温爆管或金属蠕变、失效。造成过热蒸汽或再热蒸汽温度偏差,导 致减温水投用量增加、热效率降低。排烟温度升高,排烟损失增大,热效率降低。控制好FEGT 可以直接改善下列运行问题。炉膛结焦问题的改善。炉膛结焦是一 个复杂的问题,受到煤质、灰熔点、炉膛原设计单位面积/单位体积发热量、炉膛

锅炉热效率计算

1兆帕(MPa)=10巴(bar)=9.8大气压(atm)约等于十个大气压,1标准大气压=76cm汞柱=1.01325×10^5Pa=10.336m水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱 水的汽化热为40.8千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量. 一吨水=1000千克每千克水2260千焦 1000千克就是2260 000千焦 1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热。 用量是70万大卡/H 相当于1.17吨的锅炉 以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8万/千卡时。 第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=53.9万/千卡时。 把显热和潜热加起来,即是一吨蒸汽(其表压力为零时)在锅内所获得的热能, 即:53.9+8=61.9万/千卡时。这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时60万/大卡的容量。 天然气热值 天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ 产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳。 天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ。而1度=1kW*h=3.6*10^6J=3.6*10^3KJ。即每立方燃烧热值相当于9.3—9.88度电产生的热能, 3.83<1.07*9.3 OR 9.88 天然气价格: 天然气的主要成分是甲烷,分子式是CH4,分子量是12+4*1=16. 在1标准大气压下,1mol气体的体积是22.4升,1立方米的气体有

35吨循环流化床锅炉运行操作规程完整

35T循环流化床锅炉运行规程 第一章概况 锅炉型号:KG—35/3.82—M 锅炉采用单锅筒横置式自然循环,外置两个高温旋风分离器和反料装置。锅炉采用前吊后支,全钢架结构。炉膛采用膜式水冷壁结构,水冷风室。尾部竖井烟道布置有高温过热器低温过热器,三级省煤器,空气预热器。床下轻油点火,点火燃油系统由油罐、油泵、输油管、调压阀、点火装置组成。采用布袋式除尘器。配套有引风机一台,一次风机一台,二次风机一台,螺旋给煤机两台,滚筒式冷渣器一台,给水泵三台。 锅炉主要参数: 主要设备规

第二章锅炉启动前的检查与试验 第一节启动前的检查 一、燃烧系统的检查 1、煤仓应有足够合格的存煤。给煤机正常。 2、布风板上的混凝土无损坏,风帽无松动、损坏及缺少现象,小孔无堵塞。排渣口、放渣管及放渣挡板完好。 3、燃烧室、旋风分离器和返料器的部清洁无杂物,耐火砖和混凝土完好。水冷风室无积渣。 4、二次风喷口及观察孔无炉渣及其它杂物,各观察孔的玻璃完整。 5、返料器小风帽完好,小孔无堵塞。放灰管畅通且放灰阀开关灵活。返料风门在关闭位置。 6、各检查孔和人孔完好并能严密关闭。 7、防爆门完整严密,防爆门上及其周围无杂物,动作灵活可靠。平台、楼梯、设备及管道上无有杂物堆积。 二、风烟系统的检查 1、除尘器进口烟道部无积灰。除尘器进、出口主烟道关闭,旁路在开启位置。 2、风机管道和热风管道的保温材料应完好,并无漏风现象。各膨胀节、结合面应完整。 3、引风机和一、二次风机调节器正常,风门开关灵活。返料风阀门开关自如。 4、各风机地脚螺丝,防护罩应牢固完整。油位计的玻璃清洁,轴承箱油位在1/2处。油封、放油孔严密无漏油现象。 5、电动机的地脚螺丝应牢固,靠背轮连接可靠,电动机应有良好的接地线。 6、转动时不应有摩擦,撞击现象。 7、各冷却水畅通无堵塞。 上述各项检查合格后,可联系电气进行送电,进行试运行。电机在启动后,电流应在规定的时间恢复到空负荷位置,在调整负荷时电流应不超过额定电流。试运行中转动方向应正确,无摩擦、振动和过热现象。转动机械经过检修后,需进行不少于40分钟的试运转。新安装的转动机械应不少于2小时的试运,转轴承温度不高于70℃。 三、汽水系统的检查: 1、各阀门开关位置正确。 2、水位计处于工作位置,汽、水总阀和汽水阀门开,放水阀门关。汽水连管无堵塞,水位计上应有正确的高低水位线标志。就地水位计处应有良好的照明。 3、水冷壁及外管道的吊架、支架应牢固,完整。汽包、联箱,汽水管道的保温材料应完好。 4、各汽水阀门、阀杆应完好,开关位置与实际一致。各电动阀电、手动位置均应开关灵活。 5、汽包安全阀和高过出口集箱安全阀完整。 6、各种膨胀指示器刻度应清晰,指示应正确。 四、仪表、电气检查 1、测温热电偶完好,测压孔、管无堵塞,风压表的指示均应在零位。 2、汽水系统各就地压力表的一、二道阀应开启。给水流量表、压力表指针应在零位。汽包和过热蒸汽压力表最高允许压力指示处应画有红线。 2、给水自动调整及减温水的调整应灵敏可靠,实际开度与指示应一致。

现代火力发电厂锅炉运行优化策略

现代火力发电厂锅炉运行优化策略 摘要火力发电厂是我国的基础性发电厂类型,同时也是我国主要的发电厂类型。火力发电厂在我国发展时间较长,构建方式以及构建理念、发电厂的结构以及发电厂的运行等具体内容都较为成熟、较为稳定,但是存在的问题就是发展固定化,没有突破,火力发电厂逐渐无法适应社会的发展要求以及发展需求。新型的发电厂快速兴起,发电厂之间的竞争愈发激烈化,为保证火力发电厂的地位以及增加火力发电厂的竞争,主要的走向就是降低运行成本、电能生产节能化以及环保化,需要逐步改进逐步突破。 关键词火力发电;厂锅炉运行;优化策略 前言 电能是现今社会发展的基本组成部分,是主要应用能源形式,现在各行各业的发展都极为快速,生产的效率以及生产的数量都处于不断提升当中。电能的主要来源就是火电厂,即火力发电厂,火力发电厂在该环境中发展极为迅速,数量以及范围不断增加,所需要提供的原料以及所需要支出的成本都大幅提升。文章对火力发电厂锅炉经济运行进行了探讨。 1 火力发电厂锅炉运行的基本原理 1.1 运输过程 在火力发电厂锅炉运行过程中,最基本的操作就是借助对应设备进行煤炭材料的运行,将煤炭材料运送到火力发电厂锅炉的燃烧炉腔内,确保能进行有效的高速燃烧,燃烧的整个流程都需要技术管理人员对其燃烧情况进行实时监督,促进燃烧充分的同时,提高设备的监管。 在燃烧过程中,煤炭材料的能量是由化学能转化为热能,从而为设备的运行提供基本的能量,维持整个发电过程中相应设备的运行状态。 1.2 能量传递过程 当煤炭燃料在锅炉内流转的过程中,要经过锅炉内部的水冷壁以及高温过热装置等,并且运行时也要经过锅爐的屏式过热器,最终经过锅炉内部设置的再热器后完成有效的操作流程。 所有的接触都是受热表面进行接触,实现的就是热能的高效转化。只有利用这种能量的传递,才能在系统的高温状态下运行有效的操作过程,确保烟气裹挟着热量传递给锅炉的工作物质。 在这个过程中,最终目的就是要保证锅炉内部工作材料能形成持续性加热以

火力发电厂锅炉运行优化分析

火力发电厂锅炉运行优化分析 发表时间:2019-12-12T11:08:22.263Z 来源:《当代电力文化》2019年第15期作者:苏乙桐[导读] 随着我国社会经济的不断发展,人们生活水平不断提高以及科学技术产品的不断运用摘要:随着我国社会经济的不断发展,人们生活水平不断提高以及科学技术产品的不断运用,对于电能的需求量也日益增多。火力发电是国内的重要资源,运用该方式能够为社会生产出所需要的电能。但是火力发电需要耗费大量的煤炭资源,这对于环境有着严重的影响,为了能够保护环境,保证工厂的收益,本文主要讨论对火力发电厂的锅炉改进。在火力发电的技术之中,运用锅炉是最基本的方法。 锅炉是火力发电的主要构成。也正是如此,如何对火力发电厂的锅炉进行优化,如何运用更低的火力产生更多的环保、优质的电能是本文主要探讨的问题。关键词:火力发电;锅炉优化;优化措施;研究引言从锅炉整体构造的角度而言,火电厂锅炉主要应当包含辅助性的锅炉运行设备以及锅炉本体设备。锅炉设施在具体运行时,热能主要产生于燃煤原料。在受热面的作用下,迅速升高的锅炉水温将会导致水蒸气的生成。由此可见,发电装置赖以正常运转的关键动力就在于锅炉对其提供蒸汽动能。为此,火电厂对于内部现有的各种锅炉装置都应当逐步予以改进优化,通过优化锅炉性能的措施来保障电厂各类设施的正常运行。 1火力发电厂现有的锅炉运行难点 1.1蒸汽的参数问题蒸汽的参数是体现锅炉平稳运行的关键。锅炉在火场进行发电的过程中为发电提供动能。若是蒸汽产生的不稳定则会影响热能转化为电能。因此,如果要保证锅炉的平稳运行就需要蒸汽参数稳定。但是蒸汽参数并不好控制,在许多的火力发电厂内,对于锅炉产生蒸汽都需要应用煤炭的燃烧来使锅炉产生蒸汽。因此,对于煤炭的量的控制,对于煤炭燃烧所需要的时间的控制都需要更加专业。只有仔细分析燃烧煤炭的情况才能够保证蒸汽参数的平稳。 1.2煤炭燃烧产生的环保问题煤炭在其燃烧过程中会产生大量有毒有害气体、粉尘,若这些有害气体、粉尘未经环保设备进行除尘、脱硫、脱硝处理而直接排放,将造成严重的环境污染和环保事件。 1.3煤炭燃烧产生的杂质问题煤炭燃烧除了能够释放大量的热能以外,还会产生许多的细小的灰尘。灰尘会影响热能的传递,也会导致锅炉的工作效率降低。积灰会导致传热的热阻增大,使得热交换的效率降低,影响热交换,使其恶化。除此之外,积灰若是堵塞相关通道时,更会导致锅炉的使用情况发生恶化,严重时可能会损坏锅炉设备,导致不能再进行工作。 2如何对锅炉运行进行优化 2.1关于优化锅炉设备本体近些年以来,很多电厂锅炉逐渐增大了异常运行的概率,其中根源就在于较长的锅炉投产年限。在现有的锅炉异常现象中,较为典型的就是磨煤机出现卡涩、过热器脱落氧化皮、较高的脱硫风机能耗以及其他运行故障。经过全方位的燃烧技术转型与技术优化后,锅炉本体设备将会达到更好的运行性能指标。因此可见,全面改造锅炉本体设备的举措具有显著的必要性。火力发电厂具体在改造现有的锅炉设备时,关键措施在于同步控制锅炉系统目前的耗电量以及系统运行阻力,确保实现显著降低的系统耗电比例,提升锅炉装置现有的系统阻力。并且针对挡板频繁出现卡涩的情况来讲,重点应当关注优化现有的磨煤机系统,以便于灵活调节分离器。此外,改造锅炉本体设备还应当体现在控制煤粉细度、控制氧化皮脱落以及延长设备固有的运行年限等。 2.2对于锅炉装置及时清理在煤炭燃烧的过程中,很容易产生大量的灰尘颗粒,这些灰尘颗粒的导热性能差,并且会对设备进行隔热,因此,如果不及时清理积灰,长时间的积累,会导致锅炉内部向外散热减小,传热效率降低,热能减小,更有甚者是弱势锅炉内部的热能无法发散除去,锅炉内部温度过高,会导致故障的出现。所以在每天进行蒸汽的产生,对煤炭进行燃烧时,更需要的是对装置进行清理,防止积灰对装置的运行有影响。因此,工厂应当要安排人员对每天都进行使用的装置设备进行清理,减少积灰对于生产的影响。 2.3优化锅炉的热损耗锅炉燃烧过程如果伴有较高比例的热量损耗,则会造成偏高的锅炉能量消耗,甚至还可能引发锅炉燃烧污染。在此前提下,作为现阶段的火电厂尤其需要运用科学手段来优化锅炉装置现有的各项热损指标,如此才能保证稳定并且安全的锅炉运行效果。反之,锅炉热损指标如果无法得到及时的降低,那么火力发电厂对此将会投入较多的资金成本。并且,过高的锅炉热损还会造成超标的火电厂污染,对于此种现状亟待予以优化改进。具体在优化各项相应的锅炉热损指标时,技术人员需要做到全面着眼于送风量、煤粉细度、锅炉排烟损耗及其他相关指标。这是由于,锅炉燃烧效率较大程度上决定于排烟损失。为了保证整个锅炉机组能够达到最大化的机组经济效益以及锅炉燃烧效率,那么关键举措就在于改善现有的空气系数。对于煤粉在送入锅炉以前,应当对其予以反复的查看,确保其符合特定的煤粉细度指标,避免锅炉本体受到煤粉的磨损。 2.4针对锅炉配风方式进行调节锅炉采用倒三角配风方式时,会提升锅炉火焰中心位置,相应的蒸发换热面吸热量减少,对流换热面吸热量增加,可用于调节蒸汽参数不足问题,相应的锅炉烟气在炉膛停留时间变少,煤粉颗粒燃尽率降低。锅炉采用正三角配风方式时,火焰中心位置下移,可提高锅炉蒸发量,蒸汽品质会降低,可调节优化过、再热器超温、减温水流量大等问题。锅炉采用束腰型配风方式,可有效降低火焰中心热负荷强度,对NOx生成产生抑制影响,降低水冷壁结焦风险。锅炉采用腰鼓型配风,可增加火焰中心热负荷集中度,有利于提高燃烧稳定性、燃尽性。锅炉实际运行中需要根据实际需求采用不同的配风方式,在局部燃烧器配风时各个配风方式可相互组合,以达到锅炉燃烧组织最优工况。结语

循环流化床锅炉运行规范

目录 1 锅炉设备系统简介 (1) 1.1锅炉整体布置 (1) 1.2循环回路 (1) 1.3燃烧系统流程 (2) 1.4过热蒸汽流程 (2) 1.5再热蒸汽流程 (3) 2 设备规范 (4) 2.1锅炉设备概况 (4) 2.2锅炉要紧参数 (9) 3 锅炉主控各系统 (14) 3.1给煤系统 (14) 3.2石灰石系统 (15) 3.3床料的补充 (17) 3.4燃油系统 (17) 4 试验与养护 (19) 4.1检修后的检查验收 (19) 4.2设备试验总则 (19) 4.3主机联锁爱护试验规定 (20) 1 / 1

4.4水压试验 (21) 4.5过热器反冲洗 (25) 4.6安全门试验 (25) 4.7锅炉主联锁爱护 (26) 4.8锅炉烘炉养护 (28) 5 锅炉机组的启动 (29) 5.1总则 (29) 5.2启动前检查工作和应具备的条件 (29) 5.3锅炉上水 (32) 5.4锅炉底部加热 (33) 5.5冷态启动 (34) 5.6锅炉的温态启动和热态启动 (39) 6 锅炉运行中的操纵与调整 (42) 6.1运行调整的要紧任务 (42) 6.2定期维护工作及规定 (42) 6.3运行中要紧参数的操纵范围 (43) 6.4锅炉的运行调节 (43) 7 停炉及停炉后的保养 (51) 7.1停炉的有关规定 (51)

7.2停炉前的预备工作 (51) 7.3正常停炉 (51) 7.4锅炉的快速冷却 (52) 7.5锅炉放水 (52) 7.6停炉至热备用 (53) 7.7停炉的注意事项 (53) 7.8停炉后的保养 (53) 8 锅炉事故处理 (55) 8.1事故处理原则 (55) 8.2紧急停炉条件 (55) 8.3请示停炉条件 (56) 8.4紧急停炉的操作步骤 (56) 8.5床温高 (57) 8.6床温低 (58) 8.7床压过高或过低 (59) 8.8单条给煤线中断 (60) 8.9两条给煤线中断 (61) 8.10水冷壁泄漏及爆管 (62) 8.11过热器泄漏及爆管 (63) 1 / 1

75吨流化床锅炉操作规程

3.12.6.2炉膛吹扫 “吹扫备好”指示灯亮,启动吹扫按钮,进行吹扫,“吹扫”指示灯亮。5分钟后,吹扫完成,“吹扫完成”指示灯亮。 3.12.7点火许可条件 满足下列全部条件,“点火备好”指示灯亮: 3.12.7.1油压达到1.5Mpa 3.12.7.2总风量大于30000 NM3/h 3.12.7.3燃油快速关断阀已关 3.12.8汽包水位保护 连锁状态下,汽包水位高一值(+50mm)时报警,高二值(+75mm)时,紧急事故放水电动阀自动开启,水位降至+50mm时,紧急事故放水电动阀自动关闭。 3.12.9过热器出口压力保护 过热器出口两个压力均大于5.45MPa时,对空排汽电动阀自动打开。 3.12.10冷渣器连锁 3.12.10.1启动连锁:冷渣器冷却水电动调节阀开度>50%→冷渣器→冷渣器入口电动插板门 3.12.10.2连锁状态下,冷渣器停止,其入口电动插板门自动关闭。 3.12.11给煤机连锁保护 3.12.11.1满足下列全部条件,给煤机允许启动: 无MFT条件 平均床温>450℃ 给煤机出口电动门已开 给煤机就地控制柜在远方操作状态 3.12.11.2下列任一条件满足,给煤机自动停止: MFT动作 平均床温>1050℃ 平均床温<650℃ 给煤机堵煤 3.12.11.3 连锁状态下1号或2号发电机出口开关跳闸,运行锅炉给煤机转速指令变为10%。 3.12.12疏水泵联锁 3.12.12.1两台疏水泵之间的联锁:联锁投入时,运行疏水泵跳闸,备用疏水泵自启动。 3.12.12.2自动疏水功能:当联锁投入及两个疏水箱的水位高至2100mm时,已置“先启”的疏水泵自启动。当水位降至500mm时,运行疏水泵自动停止。 第四章锅炉启动与停止 4.1总则 4.1.1场地平整,道路畅通,照明、消防、通讯以及给排水系统正常。 4.1.2系统中检修的设备、管道、阀门已经过验收合格,工作票已销票。 4.1.3热工测量、控制和保护系统调试合格,各仪表二次阀已开启。 4.1.4首次投运的锅炉或大修后的锅炉应进行密封性试验、返料试验以及水压试验。

火力发电厂锅炉运行中存在的问题及优化策略研究 姜伟

火力发电厂锅炉运行中存在的问题及优化策略研究姜伟 发表时间:2019-05-05T16:53:22.877Z 来源:《电力设备》2018年第31期作者:姜伟 [导读] (黑龙江省华电能源富拉尔基区发电厂黑龙江 161041) 摘要:在国家经济社会发展的过程中,电力资源是其中不可或缺的重要能源之一。随着科技的进步,社会的发展,人们对于不可再生能源的重视程度也逐渐的增强。火力发电的耗能高是众所周知的,消耗煤炭量是在逐年的增加,依靠煤炭产生的动能的同时,还产生了污染气体。因此对火力发电厂的管理与控制迫在眉睫,火力发电厂的高能耗、低产量、低效率是优先要解决的难题。 关键词:火力发电;锅炉运行 引言:火力发电是我国现阶段电能产生的主要方式,本文对火力发电厂锅炉运行过程中存在的问题进行分析,明确了对锅炉、汽轮机的优化运行对于提高整体发电厂的工作效率的重要意义。在优化策略部分通过对蒸汽参数的稳定、减少锅炉运行的热损耗、提高汽轮机工作效率三个方面进行论述,进而不断提高火力发电厂运行的安全性与经济性,推动火力发电厂的高效正常运行。 1.火力发电厂锅炉运行中存在的问题 1.1火力发电厂锅炉的蒸汽参数 现阶段,在我国的社会中,人们由于经济收入的不断增长,生活水平也提升了非常高的层次,在这样的情况下,人们所使用的智能产品也越来越多,这也就导致电厂的工作压力越来越大,其工作的开展情况也开始被人们所重视。而在火力发电厂中,整个工作在运行过程中,其发电的阶段,锅炉是所有设备和零件中最为重要的组成部分之一,其能够为发电厂中电机的使用提供有效的动能,促使电机在发电的过程中能够平稳的运行,同时也能够保证这项工作的开展具有节能减排的效果,所以锅炉的使用在火电厂中的意义非凡。蒸汽的参数情况对于火力发电厂中锅炉的使用有着非常重要的影响,所以想要保证电厂平稳运行,还需要保证蒸汽参数的平稳性,这样才能够根据煤炭的质量,还有其中的符合因素有效的确定煤耗的高低和数量,也能够保证锅炉平稳的运行。 1.2火力发电厂锅炉的热损问题 在火力发电厂中,这一发电的方式对于社会经济的发展和进步,还有人们正常生活的开展有着非常重要的影响。在社会发展和经济进步的过程中,国家中的人员逐渐开始对可持续发展的战略给予一定的重视,所以这也在很大程度上造成火力发电厂的工作受到严重的监督和管理。火力发电厂中,锅炉作为主要的蒸汽动能和动力,主要是按照自身所产生的燃烧热量为主,在整个火力发电厂的锅炉运行的过程中,热损的问题也是影响整体耗能的关键问题之一,所以还需要关注到这一问题,如果没有减少热损问题就会严重降低锅炉的使用效果,甚至会导致排烟出现问题,造成热损的情况,影响火力发电厂工作的开展,同时在煤炭没有完全燃烧的过程中也出现了比较严重的资源浪费现象。 2.火力发电厂锅炉运行优化策略 2.1调整优化参数 粉煤锅炉使用粉末状的煤炭原料,对其进行燃烧,进而形成高温烟气,最终产生动力等多种能源。就粉煤锅炉结构来看,主要包括锅炉燃烧器、锅炉炉膛、锅炉供风设备以及锅炉制粉设备。这种锅炉的工作原理为利用锅炉供风和制粉设备加工煤炭原料,使其成为粉末状,随后由锅炉供风设备将生成的煤炭材料利用一次风送入粉煤锅炉炉膛中,之后利用二次风于锅炉燃烧器内建立环形风道,再次将粉末状的煤炭原材料带入粉煤锅炉炉膛中。而此时锅炉燃烧器会混合空气与粉末状的煤炭材料,并经由两次吹风将空气和煤炭原料送入粉煤锅炉炉膛,这时会在炉膛中形成一个空气动力场,通过上述原理来保证煤炭着火、燃烧等流程,确保了粉末状的煤炭的高效燃烧状态。通常情况下,粉末状的煤炭会在炉膛中停留1s左右,在这1s中为了保障粉末状煤炭材料燃烧尽所以必须对其设定足够的风量,从而保障整个供能反应。为了实现上述目标,应该对粉煤锅炉的运行参数进行计算和设计,具体的参数见表1。 根据表1中的参数值,具体的优化措施表示在以下几方面:第一,定期标定锅炉内的浓度、调平其质量、分析高温烟气的成分等,然后将这些操作获取的基本信息作为基础数据,以此来设定粉煤锅炉的运行参数,确保粉煤锅炉有序运行、安全运行。第三,调整粉煤锅炉的炉内负荷。依照规范的操作方式严格调整,调节操作速度要适当,切勿盲目的提升调节操作速度,保障调节过程的有序性。保证粉末状的煤炭原料于粉煤锅炉的炉膛内得以稳定燃烧具体的操作措施为在降低炉内负荷的同时首先撤出炉膛内的粉末状的煤炭原料,随后停止锅炉的供风设备的供风过程,而在提升炉内负荷时需要对供风设备的供风进行加大。随后再增加炉膛内的煤炭材料,通过这种操作来保证粉煤锅炉的稳定运行。在火力发电厂粉煤锅炉运行中常常会出现超负荷工作情况,这种情况会引发锅炉运作时出现炉膛结焦现象。为了避免火力发电厂粉煤锅炉在运行过程之中出现炉膛结焦问题,影响火力发电厂粉煤锅炉的运行效率,必须在火力发电厂粉煤锅炉内部采用配风试验的试验方式,不断调节火力发电厂粉煤锅炉供风设备所提供的一次风和二次风的风量大小和配比数值,并在火力发电厂粉煤锅炉的不同区域采用不同的分量配比数值,有效地阻止发电厂粉煤锅炉炉膛之中产生结焦问题。与此同时,还要不断调节火力发电厂粉煤锅炉内部的风量频率和吹风的范围,时刻保证火力发电厂粉煤锅炉内部的各个受热面不存在粉末状煤炭原料的污染。 表1 粉煤炉的运行参数数值: 2.2减少锅炉运行过程中的热损耗 实际上热损问题在锅炉运行中属于关键的优化因素,如果可以把热损问题有效解决,那么锅炉将会平稳、高效的运行。通常情况下固体燃料都不能够充分燃烧,因此,就引发了严重的热损问题,与此同时,还会造成严重的资源浪费现象。通过探究发现燃料质量和燃烧方式是影响燃烧效果的主要原因。此外,锅炉自身也是影响电能产生的一个因素。对于此类问题,火力发电厂应该合理配置煤炭,混合搭配

循环流化床锅炉运行规程资料

LJ200-3.82/450异重循环流化床 垃圾焚烧炉 运 行 规 程 (试行稿)

*********有限公司 ****年**月 目录 一.设备及燃料的简要特性 1.设备简要特性 2.锅炉燃料特性 二.锅炉机组检修后的检查与试验 1.检修后的检查 2.水压试验 3.冲洗过热器 4.转动机械试运行 5.漏风试验 6.循环流化床冷态试验 三.锅炉机组启动 1.启动前的检查与试验 2.启动前的准备 3.锅炉点火 4.锅炉升压 5.锅炉并列 四.锅炉运行中的监视与调整 1.锅炉运行调整的任务

. 2.锅炉水位的调整 3.汽温和汽压的调整 4.锅炉燃烧的调整 5.锅炉的排污 6.转动机械的运行 7.布袋除尘器的运行 8.烟气净化塔的运行 9.自动装置的运行 10.锅炉设备的运行维护 五.锅炉机组的停止 1.停炉前的准备 2.停炉程序 3.停炉后的冷却 4.停炉后的防腐、防冻 5.锅炉的压火 6.压火后的启动 六.事故停炉 1.紧急停炉 2.故障停炉 七.锅炉水位异常 1.锅炉满水 2.锅炉缺水

. 3.锅炉水位不明的判断 八.汽包水位计损坏 九.汽水共腾 十.锅炉承压部件损坏 1.锅炉埋管、水冷壁管损坏 2.省煤器管损坏 3.过热器管损坏 4.减温器损坏 5.蒸汽及给水管道损坏 十一.空气预热器故障 十二.锅炉及管道的水冲击 十三.锅炉燃烧异常 1.流化床灭火 2.流化床局部穿孔 3.流化床床料分层 4.流化床结焦 5.返料系统堵塞 十四.电气系统故障 1.负荷骤减 2.锅炉厂用电源中断 十五.辅助设备故障 1.风机故障

2.螺旋给煤机故障 3.垃圾给料机故障 1.设备及燃料的简要特性 目录 1.设备简要特性 2.锅炉燃料特性 1.1.设备简要特性 1.1.1.概况 a.锅炉型号:JL200-3.82/450 b.设计单位:浙江大学热能工程研究所、杭州锅炉厂 c.制造厂家:杭州锅炉厂 d.制造日期:2000年10月 e.投产日期:2001年2月 1.1. 2.主要参数

火力发电厂锅炉运行优化策略分析 邓昊立

火力发电厂锅炉运行优化策略分析邓昊立 摘要:随着我国社会经济以及科学技术的进一步发展,各行各业对电力的需求也实现了不断的提升,作为我国主要的电力资源构成部分,火力发电厂所产生的电力资源,极大程度上满足了我国人们生产以及生活的需求,因此火力发电厂在我国的电力资源中起到至关重要的作用。而在火力发电厂中,最主要的一项电能生产主机就是火力发电厂的锅炉。因此要想有效的实现对火力发电厂能源消耗的进一步降低以及对其工作效率的进一步提高,最关键的一项内容就是有效的实现火力发电厂锅炉运行的进一步优化。这样就可以有效的降低能源的消耗以及成本的消耗,并且对当今的用电需求实现有效的满足,有效的促进我国经济的持续发展。本文就是对火力发电厂锅炉运行优化的相关策略加以分析。 关键词:火力发电厂;锅炉运行;优化策略;分析 随着经济的持续发展以及人们对电力需求量的进一步提升,作为电力资源生产的主力,火力发电厂在当今社会中起到至关重要的作用,极大程度的影响着当今社会人们的生产以及生活。但是由于火力发电厂主要的装置就是锅炉,并且其对电能的生产是通过煤炭等能源的消耗来实现的。因此,在我国资源可持续发展的环境中,有效的实现火力电厂锅炉运行的优化,就可以进一步实现能源消耗的有效降低,从而实现火力发电厂工作效率以及经济效益的进一步提高。这样就可以在促进火力发电厂发展的同时有效的满足当今人们的用电需求,同时实现吴国资源以及经济的可持续发展。本文就是对火力发电厂锅炉运行进行优化的策略分析,希望可以起到有效的帮助作用。 一、火力发电厂锅炉运行进行发电的基本原理分析 在火力发电厂中,锅炉运行进行发电的时候所产生的主动能有着三个方面的基本原理,而这些基本的原理对于火力发电厂的锅炉在运行效率方面有着直接的影响。 (一)第一个方面的原理分析 在火力发电厂的锅炉运行的过程中,大多是采用煤炭等的燃烧来实现其运行发电的目的。随着煤炭在火力发电厂的锅炉中进行燃烧,其反应的过程中将会有大量的热能产生,通过化学反应的形式向汽轮机进行能量的提供,使汽轮机在其推动下有效运作,进而使得大量的电能产生。 (二)第二个方面的原理分析 煤炭的燃烧除了可以给汽轮机提供动能之外,在高温的条件下也将会有碳物质以及杂质的产生,进而有大量高温的烟气形成。而这些高温的烟气中也蕴含着大量的热能,这些热能将会在锅炉的内壁之中运行,使锅炉内的温度实现不断的提升,在高温的传递效应下,会有大量的水蒸气产生,对汽轮机的运作起到良好的推动作用[1]。 (三)第三个方面的原理分析 水蒸气以及高温的烟气同时对汽轮机进行作用,进一步实现由蒸汽能到动能的转化,对汽轮机的运转起到进一步的推动作用。在火力发电厂的锅炉运行发电中,这是最后的一个部分,使得燃料的燃烧过程中有着大量动能的产生,对于火力发电厂对电能的产生起到关键性的推动作用。 二、火力发电厂中锅炉运行发电所存在的问题分析 (一)火力发电厂中锅炉蒸汽参数的问题 作为火力发电厂的主要组成部分,火力发电厂的锅炉在火力发电厂的整个发

75吨循环流化床锅炉(济南)运行规程- 锅炉运行规程

75吨循环流化床锅炉(济南)运行规程- 锅炉运行规程FN/IMS/QJ/0212-01-03-A FN/IMS/QJ/0212-01-03-A 二次风预热温度: 150? 排烟温度:135? 锅炉运行规程 设计燃料:Qydw=19040kj/kg=4555大卡/公斤 热效率:89.92% 第一章设备简要特性 脱硫效率:85% 钙硫比:1.5,2 第一节设备概况 燃料消耗量:12090.7kg/h 燃料的颗粒度要求:?13mm #1/2锅炉 石灰石颗粒要求:?2mm 锅炉型号:YG-75/5.29-M型 12 锅炉外形尺寸宽度(包括平台) 11700mm 制造厂家:济南锅炉厂 深度(包括平台) 15100mm 制造年月:二OO二年六月 锅筒中心线标高 30500mm 投产年月:二OO二年十二月 本身最高点标高 33550mm 第二节主要参数 锅炉蒸发量:75t/h 第三节锅炉主要承压部件及受热面额定蒸汽压力:5.29MPa 额定蒸汽温度:485? 给水温度:150? 第四节燃烧设备一次风预热温度: 150? 177 178

FN/IMS/QJ/0212-01-03-A FN/IMS/QJ/0212-01-03-A 项目单位数值序号 (1)内径 mm 1500 汽 (2)壁厚 mm 70 1 序号项目单位数值 (3)长度 mm 8786 鼓 (1)进口截面 mm 2 850*2400 (4)材质 20G 旋风 (1)型式膜式水分离 (2)内径 1 mm 3200 冷 (2)外径及壁厚 2 mm 60*5 器(3)出口直径 mm 1500 壁 (3)材质 20号无缝钢管蜗壳式油燃(1)型式 (1)外径及壁厚 mm 42*3.5 高烧器点火器 2 (2)根数 58 (2)个数个 2 过 (3)材质 12Cr1M0V无缝钢管 (1)面积 m 2 10.78 3 布 (2)宽度 3 m 2.030 (1)外径及壁厚低 mm 42*3.5 风板 (3)长度 m 5.290 (2)根数 58 (1)型式锥体过 (3)材质 20号无缝钢管 风帽 (2)个数个 4 550 (1)外径及壁厚 mm 32*3.5 (3)材质耐热铸钢 (2)管数 52 省 (3)级数 3级煤 4 (4)横向节距 mm 80 器 (5)纵向节距 mm 50 (6)材质 20号无缝钢管 (1)型式管式空预5 177 器 (2)外径及壁厚 mm 40*1.5 178 FN/IMS/QJ/0212-01-03-A FN/IMS/QJ/0212-01-03-A 序项目单位数值序号项目单位数值第五节辅助设备号 (1)型 号 JLY75-10A21.8D (1)型号 Y355M-4 IP44 (2)台数台引1 电 (2)功率 kw 220 风(3)流量 m3/h 167800 动3 (3)电压 V 6000 机 (4)风压 Pa 4049 机 (4)转速 rpm 1450 (5)转数 rpm 960 1 (1)型号 WJGC-20 (1)型号 Y400-6 IP54 螺(2)台数台 3 (2)功率电kw 315 旋 (3)给煤机倾角 4? 动(3)电压 V 6000 给4 (4)输送量 t/h 0.5-10.5 机 (4)转速 rpm 960 煤 (5)驱动电机 kw 7.5 (5)重量 Kg 3480 机

火力发电厂锅炉运行优化策略分析 邓昊立

火力发电厂锅炉运行优化策略分析邓昊立 发表时间:2018-09-12T16:14:52.363Z 来源:《基层建设》2018年第22期作者:邓昊立 [导读] 摘要:随着我国社会经济以及科学技术的进一步发展,各行各业对电力的需求也实现了不断的提升,作为我国主要的电力资源构成部分,火力发电厂所产生的电力资源,极大程度上满足了我国人们生产以及生活的需求,因此火力发电厂在我国的电力资源中起到至关重要的作用。 广西华银铝业有限公司 摘要:随着我国社会经济以及科学技术的进一步发展,各行各业对电力的需求也实现了不断的提升,作为我国主要的电力资源构成部分,火力发电厂所产生的电力资源,极大程度上满足了我国人们生产以及生活的需求,因此火力发电厂在我国的电力资源中起到至关重要的作用。而在火力发电厂中,最主要的一项电能生产主机就是火力发电厂的锅炉。因此要想有效的实现对火力发电厂能源消耗的进一步降低以及对其工作效率的进一步提高,最关键的一项内容就是有效的实现火力发电厂锅炉运行的进一步优化。这样就可以有效的降低能源的消耗以及成本的消耗,并且对当今的用电需求实现有效的满足,有效的促进我国经济的持续发展。本文就是对火力发电厂锅炉运行优化的相关策略加以分析。 关键词:火力发电厂;锅炉运行;优化策略;分析 随着经济的持续发展以及人们对电力需求量的进一步提升,作为电力资源生产的主力,火力发电厂在当今社会中起到至关重要的作用,极大程度的影响着当今社会人们的生产以及生活。但是由于火力发电厂主要的装置就是锅炉,并且其对电能的生产是通过煤炭等能源的消耗来实现的。因此,在我国资源可持续发展的环境中,有效的实现火力电厂锅炉运行的优化,就可以进一步实现能源消耗的有效降低,从而实现火力发电厂工作效率以及经济效益的进一步提高。这样就可以在促进火力发电厂发展的同时有效的满足当今人们的用电需求,同时实现吴国资源以及经济的可持续发展。本文就是对火力发电厂锅炉运行进行优化的策略分析,希望可以起到有效的帮助作用。 一、火力发电厂锅炉运行进行发电的基本原理分析 在火力发电厂中,锅炉运行进行发电的时候所产生的主动能有着三个方面的基本原理,而这些基本的原理对于火力发电厂的锅炉在运行效率方面有着直接的影响。 (一)第一个方面的原理分析 在火力发电厂的锅炉运行的过程中,大多是采用煤炭等的燃烧来实现其运行发电的目的。随着煤炭在火力发电厂的锅炉中进行燃烧,其反应的过程中将会有大量的热能产生,通过化学反应的形式向汽轮机进行能量的提供,使汽轮机在其推动下有效运作,进而使得大量的电能产生。 (二)第二个方面的原理分析 煤炭的燃烧除了可以给汽轮机提供动能之外,在高温的条件下也将会有碳物质以及杂质的产生,进而有大量高温的烟气形成。而这些高温的烟气中也蕴含着大量的热能,这些热能将会在锅炉的内壁之中运行,使锅炉内的温度实现不断的提升,在高温的传递效应下,会有大量的水蒸气产生,对汽轮机的运作起到良好的推动作用[1]。 (三)第三个方面的原理分析 水蒸气以及高温的烟气同时对汽轮机进行作用,进一步实现由蒸汽能到动能的转化,对汽轮机的运转起到进一步的推动作用。在火力发电厂的锅炉运行发电中,这是最后的一个部分,使得燃料的燃烧过程中有着大量动能的产生,对于火力发电厂对电能的产生起到关键性的推动作用。 二、火力发电厂中锅炉运行发电所存在的问题分析 (一)火力发电厂中锅炉蒸汽参数的问题 作为火力发电厂的主要组成部分,火力发电厂的锅炉在火力发电厂的整个发电过程中都起到至关重要的作用。因此要想实现火力发电厂工作效率以及质量的进一步保证,最关键的一项任务就是保证锅炉能够平稳的运行。而在火力发电厂的锅炉进行运行发电的过程中,蒸汽的参数高低对其有着极大程度的影响,因此要想使锅炉的平稳运行得到有效的保障,就应该对蒸汽的参数实现有效的控制,使其保持在平稳的状态[2]。只有蒸汽参数的平稳得到有效的保障,才可以将煤炭的质量以及负荷等的很多因素作为有效的依据来进行耗煤量高低的确定,进而使火力发电厂中锅炉的运行平稳得到良好的保证。 (二)火力发电厂中锅炉热损的问题 蒸汽动能在火力发电厂中为锅炉的做功提供了主要的动力,蒸汽动能主要是由燃料的燃烧而产生,因此热损的问题是火力发电厂的锅炉运行中的一个关键性的问题,对火力发电厂能源的消耗有着直接的影响。热损的一个最主要的原因就是排烟的问题,另外,煤炭燃烧的不完全也是造成资源进一步浪费的一个主要的原因。这样就极大的消耗了发电厂锅炉运行所需的资源,同时使其工作的效率难以得到提高,对火力发电厂的经济效益以及自身发展造成严重的不利影响,同时也严重的影响了我国经济以及资源的可持续发展。 三、火力发电厂锅炉运行的优化策略 (一)对蒸汽的参数进行进一步的优化 在火力发电厂锅炉运行发电的过程中,相关的工作人员一定要对工作做到认真负责,在工作中保持高度的责任感,以有效的实现对蒸汽参数的变化进行实时的关注,进而使蒸汽的参数维持在一个稳定的状态。通常情况下,在火力发电厂的锅炉中都会存在自动保热的装置,这对于保持蒸汽参数的平衡有着极大的帮助作用。比如,当发电厂的锅炉是自然循环的煤粉炉的时候,其主蒸汽温度的变化就会直接造成蒸汽参数的变化,所以在进行11-15度主蒸汽温度的提高时,发电厂就会降低1.15克的煤耗,而当提升13度的热气温之后,就会降低0.83克的煤耗[3]。 (二)对热损的问题进行进一步的优化 在火力发电厂中,热损的问题一直都对锅炉运行发电起到决定性的影响,因此要想实现对火力发电厂锅炉运行的进一步优化,就也一定要对其热损的问题加以进一步的优化。造成热损问题做大的一个因素就是固体的燃料不能完全被燃烧,因此这也是热损问题出现的一个关键性因素,这不仅使得火力发电厂的发电效率被进一步降低,还极大程度上增加了能源的消耗,又对对环境造成一定程度的污染,进而使得火电厂成本进一步提升,对其经济效益造成极大的不利影响,同时又极大程度的造成了资源的消耗,对我国资源的可持续发展带来严

相关文档