文档库 最新最全的文档下载
当前位置:文档库 › 55定时器及其应用

55定时器及其应用

55定时器及其应用
55定时器及其应用

实验六 555定时器及其应用

一.实验目的

1.熟悉555定时器的组成及功能。

2.掌握555定时器的基本应用。

3.进一步掌握用示波器测量脉冲波形的幅值和周期。

二.实验原理

555定时器(又称时基电路)是一个模拟与数字混合型的集成电路。按其工艺分双极型

该端不用时,应将该端串入一只0.01μF 电容接地,以防引入干扰。

7脚:放电端。该端与放电管集电极相连,用做定时器时电容的放电。

在1脚接地,5脚未外接电压,两个比较器A 1、A 2基准电压分别为CC CC V 3

1

,V 32的情况下,555时基电路的功能表如表6—1示。

输出高电平时间

2)Vi接连续脉冲f = 512HZ,用示波器观察、记录Vi、V2、V C及V O的波形(以Vi为

触发信号),测出V

O 的脉冲宽度t

W

,且与理论值相比较。

4.设计一个用555定时器构成的方波发生器,要求方波的周期为1ms,占空比为5%。

四.预习要求

1.搞清555定时器的功能和应用

2.理论计算出实验内容1多谐振荡器的输出方波的周期T

3.理论计算实验内容3 中2)输出脉冲宽度t W。

4.搞清图6—5中R1、C1微分电路的作用。V i为连续脉冲,对应地分析、画出V2的波形。

五.思考题

1.用两片555定时器设计一个间歇单音发生电路,要求发出单音频率约为1KHZ,发音时间约为0.5S,间歇时间约为0.5S。

2.图6—4电路中指出电容C充电途径、放电途径。写出振荡周期T和占空比表达式。理论计算出实验内容2、3两种情况下的占空比。

3.图6—5中,设微分电路的输入连续脉冲周期为T i,R1、C1的参数应如何选择?

4.实验内容3中,如果不采用R1、C1微分电路,即V i直接接至定时器的2脚,是否还能得到原来脉冲宽度t

w

的输出脉冲。

六.实验仪器与器材

1.电子技术实验箱MS-ⅢA型1台

2.直流电源(+5V)DS-2B-12型1台

3.示波器5020B型1台

4.万用表MF-47型1只

5.555定时器1只

定时器、计数器操作与应用实验报告

实验三 定时器、计数器操作与应用实验报告 、实验目的 1、 了解和熟悉FX 系列可编程序控制器的结构和外 部接线方法; 2、 了解 和熟 悉 GX Developer Version 7.0 软件的 使用 方法 ; 3、 掌握 可编 程序 控制器 梯形 图程 序的 编制 与调 试。 二、实验要求 仔 细阅 读实 验指 导书 中关 于编 程软 件的 说明 ,复习 教材 中有 关内 容 , 分 析程 序运 行结 果。 三、实验设备 2 、 开关 量输 入 / 输出 实验 箱 3、 计算 机 4、 编程 电缆 注 意: 1) 开关量输入/输出实验 箱内的钮子开关用来产生模拟的 开关量输入 信 号; 2) 开关量输入/输出实验箱内的LED 用来指示开关 量输出信号; 3) 编程电缆在连接PLC 与计算机时请注意方向。 四、实验内容 1 、梯形图 1 、 FX 系列可 编程 序控 制器 一只 一套 5、 GX Developer Version 7.0 软件 一套

2、梯形图程序 0LD xooo 1OUT YOOO X001 2LD 3OR¥001 4AN I X002 5OUT Y001 6OUT TO K50 9MPS 10AHI TO 11OUT Y002 12MPP 13ASD TO 14OUT¥003 15LD X003 16RST CO 18LD X004 19OUT CO K5 22LD CO 23OUT Y004 24END 3、时序图

r 时序10 □ ?Si 正在进荷囲1SL 金冃勖厂手祜r XI广X3厂X5厂K1Q拧应C 40 J2fl MIB -380 .360 '340 -33 MW 脚 M 创Q,220,200,13Q -1?-14D ,1如■!? 如也 40 如厂「 五、实验步骤 1、程序的编辑、检查和修改; 2、程序的变换; 3、程序的离线虚拟设备仿真测试; 4、程序写入PLC; 5、用PLC运行程序; 6、比较程序的分析结果与实际运行结果。 六、实验报告 1、实验梯形图程序的编写; 2、梯形图程序的理论分析与结果; 3、梯形图程序的实际运行结果; 4、结论。 七、实验心得 通过这样一次实验,我对GX Developer Version 7.0 软件的使用方 法更加的熟悉了,也了解到在实验中需要我们集中精力,仔细认真地完成■XDU "Tlr-.Ll-t-1!- D LJ D-IT--1 z?E I4J 一 — Ti ll IL — 」 ill-t-ll-r — 1

555定时器的典型应用电路

555定时器的典型应用电路 单稳态触发器 555定时器构成单稳态触发器如图22-2-1所示,该电路的触发信号在2脚输入,R和C是外接定时电路。单稳态电路的工作波形如图22-2-2所示。 在未加入触发信号时,因u i=H,所以u o=L。当加入触发信号时,u i=L,所以u o=H,7脚内部的放电管关断,电源经电阻R向电容C充电,u C按指数规律上升。当u C上升到2V CC/3时,相当输入是高电平,5 55定时器的输出u o=L。同时7脚内部的放电管饱和导通是时,电阻很小,电容C经放电管迅速放电。从加入触发信号开始,到电容上的电压充到2V CC/3为止,单稳态触发器完成了一个工作周期。输出脉冲高电平的宽度称为暂稳态时间,用t W表示。 图22-2-1 单稳态触发器电路图 图22-2-2 单稳态触发器的波形图 暂稳态时间的求取: 暂稳态时间的求取可以通过过渡过程公式,根据图22-2-2可以用电容器C上的电压曲线确定三要素,初始值为u c(0)=0V,无穷大值u c(∞)=V CC,τ=RC,设暂稳态的时间为t w,当t= t w时,u c(t w)=2V CC/3时。代入过渡过程公式[1-p205]

几点需要注意的问题: 这里有三点需要注意,一是触发输入信号的逻辑电平,在无触发时是高电平,必须大于2V CC/3,低电平必须小于V CC/3,否则触发无效。 二是触发信号的低电平宽度要窄,其低电平的宽度应小于单稳暂稳的时间。否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。此时单稳态触发器成为一个反相器。 R的取值不能太小,若R太小,当放电管导通时,灌入放电管的电流太大,会损坏放电管。图22-2-3是555定时器单稳态触发器的示波器波形图,从图中可以看出触发脉冲的低电平和高电平的位置,波形图右侧的一个小箭头为0电位。 图22-2-3 555定时器单稳态触发器的示波器波形图[动画4-5] 多谐振荡器 555定时器构成多谐振荡器的电路如图22-2-4所示,其工作波形如图22-2-5所示。 与单稳态触发器比较,它是利用电容器的充放电来代替外加触发信号,所以,电容器上的电压信号应该在两个阈值之间按指数规律转换。充电回路是R A、R B和C,此时相当输入是低电平,输出是高电平;当电容器充电达到2V CC/3时,即输入达到高电平时,电路的状态发生翻转,输出为低电平,电容器开始放电。当电容器放电达到2V CC/3时,电路的状态又开始翻转。如此不断循环。电容器之所以能够放电,是由于有放电端7脚的作用,因7脚的状态与输出端一致,7脚为低电平电容器即放电。 图22-2-4 多谐振荡器电路图图22-2-5 多谐振荡器的波形

555定时器及其应用

实验六 555定时器及其应用 一.实验目的 1.熟悉555定时器的组成及功能。 2.掌握555定时器的基本应用。 3.进一步掌握用示波器测量脉冲波形的幅值和周期。 二.实验原理 555定时器(又称时基电路)是一个模拟与数字混合型的集成电路。按其工艺分双极型

该端不用时,应将该端串入一只0.01μF 电容接地,以防引入干扰。 7脚:放电端。该端与放电管集电极相连,用做定时器时电容的放电。 在1脚接地,5脚未外接电压,两个比较器A 1、A 2基准电压分别为CC CC V 3 1 ,V 32的情况下,555时基电路的功能表如表6—1示。

输出高电平时间

2)Vi接连续脉冲f = 512HZ,用示波器观察、记录Vi、V2、V C及V O的波形(以Vi为触发信号),测出V O的脉冲宽度t W,且与理论值相比较。 4.设计一个用555定时器构成的方波发生器,要求方波的周期为1ms,占空比为5%。 四.预习要求 1.搞清555定时器的功能和应用 2.理论计算出实验内容1多谐振荡器的输出方波的周期T 3.理论计算实验内容3 中2)输出脉冲宽度t W。 4.搞清图6—5中R1、C1微分电路的作用。V i为连续脉冲,对应地分析、画出V2的波形。 五.思考题 1.用两片555定时器设计一个间歇单音发生电路,要求发出单音频率约为1KHZ,发音时间约为0.5S,间歇时间约为0.5S。 2.图6—4电路中指出电容C充电途径、放电途径。写出振荡周期T和占空比表达式。理论计算出实验内容2、3两种情况下的占空比。 3.图6—5中,设微分电路的输入连续脉冲周期为T i,R1、C1的参数应如何选择? 4.实验内容3中,如果不采用R1、C1微分电路,即V i直接接至定时器的2脚,是否还能得到原来脉冲宽度t w的输出脉冲。 六.实验仪器与器材 1.电子技术实验箱MS-ⅢA型1台 2.直流电源(+5V)DS-2B-12型1台 3.示波器5020B型1台 4.万用表MF-47型1只 5.555定时器1只

555定时器的基本应用及使用方法

555定时器的基本应用及使用方法 我们知道,555电路在应用和工作方式上一般可归纳为3类。每类工作方式又有很多个不同的电路。在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。这样一来,电路变的更加复杂。为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。方便大家识别、分析555电路。下面将分别 介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是: “RT-6.2-CT”和“CT-6.2-RT”。

第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带 有一个RC微分电路。 第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。图中列出了2个常用电路。

双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。 555双稳电路可分成2种。 第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。 第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。

单片机实验之定时器计数器应用实验二

一、实验目的 1、掌握定时器/计数器计数功能的使用方法。 2、掌握定时器/计数器的中断、查询使用方法。 3、掌握Proteus软件与Keil软件的使用方法。 4、掌握单片机系统的硬件和软件设计方法。 二、设计要求 1、用Proteus软件画出电路原理图,单片机的定时器/计数器以查询方式工作,设定计数功能,对外部连续周期性脉冲信号进行计数,每计满100个脉冲,则取反P1.0口线状态,在P 1.0口线上接示波器观察波形。 2、用Proteus软件画出电路原理图,单片机的定时器/计数器以中断方式工作,设定计数功能,对外部连续周期性脉冲信号进行计数,每计满200个脉冲,则取反P1.0口线状态,在P 1.0口线上接示波器观察波形。 三、电路原理图 六、实验总结 通过本实验弄清楚了定时/计数器计数功能的初始化设定(TMOD,初值的计算,被计数信号的输入点等等),掌握了查询和中断工作方式的应用。 七、思考题 1、利用定时器0,在P1.0口线上产生周期为200微秒的连续方波,利用定时器1,对 P1.0口线上波形进行计数,满50个,则取反P1.1口线状态,在P 1.1口线上接示波器观察波形。 答:程序见程序清单。

四、实验程序流程框图和程序清单。 1、定时器/计数器以查询方式工作,对外部连续周期性脉冲信号进行计数, 每计满100个脉冲,则取反P1.0口线状态。 汇编程序: START: LJMP MAIN ORG 0100H MAIN: MOV IE, #00H MOV TMOD, #60H MOV TH1, #9CH MOV TL1, #9CH SETB TR1 LOOP: JNB TF1, LOOP CLR TF1 CPL P1.0 AJMP LOOP END C语言程序: #include sbit Y=P1^0; void main() { EA=0; ET1=0; TMOD=0x60; TH1=0x9C; TL1=0x9C; while(1) { TR1=1; while(!TF1); TF1=0; Y=!Y; } }

器件实验报告八—555集成定时器及其应用

555集成定时器及其应用实验报告 一、实验内容与目的 1.单稳态触发器功能的测试,对于不同的外界元件参数,测定输出信号幅度和暂稳时间。 2.多谐振荡器功能的测试与验证,给定一个外界元件,测量输出波形的频率、占空比,并且计算理论值,算出频率的相对误差。 实验仪器: 自制硬件基础电路实验箱,双踪示波器,数字万用表,集成定时器NE555 2片;电阻100kΩ、10kΩ各2只;51kΩ、5.1kΩ、4.7kΩ各1只;电容30μF、10μF、0.1μF、2200pF各1只;电位器100kΩ1只; 元器件:LM555。 二、实验预习内容: 本实验旨在了解555定时器的内部结构和工作原理:单稳态触发器、多谐振荡器的工作原理。 实验资料: (1)构成单稳态触发器 电路如下图所示,接通电源→电容C充电(至2/3Vcc)→RS触发器置0→Vo =0,T导通,C放电,此时电路处于稳定状态。当2加入VI<1/3Vcc时,RS触发器置1,输出Vo=1,使T 截止。电容C开始充电,按指数规律上升,当电容C 充电到2/3Vcc时,A1翻转,使输出Vo=0。此时T又重新导通,C很快放电,暂稳态结束,恢复稳态,为下一个触发脉冲的到来作好准备。其中输出Vo脉冲的持续时间tw=1.1RC,一般取R=1kΩ--10MΩ,C>1000PF,只要满足VI的重复周期大于tp0 ,电路即可工作,实现较精确的定时。 (2) 多谐振荡器 电路如下图所示,电路无稳态,仅存在两个暂稳态,亦不需外加触发信号,即可产生振荡(振荡过程自行分析)。电容C在1/3Vcc--2/3Vcc之间充电和放电,输出信号的振荡参数为:

周期T=0.7 C(R1+2R2) 频率f=1/T=1.44/(R1+2R2)C, 占空比D=( R1+R2 )/( R1+2R2)。 555电路要求R1与R2 均应大于或等于1kΩ ,使R1+R2 应小于或等于3.3MΩ。 三、实验过程与数据分析 1.单稳态触发器逻辑功能的测试。 连接电路如下:

实验三定时器计数器应用实验一

定时器/计数器应用实验一 设计性试验 2012年11月14日星期三第三四节课 一、实验目的 1、掌握定时器/计数器定时功能的使用方法。 2、掌握定时器/计数器的中断、查询使用方法。 3、掌握Proteus软件与Keil软件的使用方法。 4、掌握单片机系统的硬件和软件设计方法。 二、设计要求 1、用Proteus软件画出电路原理图,单片机的定时器/计数器以查询方式工作,在P1.0口线上产生周期为200μS的连续方波,在P 1.0口线上接示波器观察波形。 2、用Proteus软件画出电路原理图,单片机的定时器/计数器以中断方式工作,在P1.1口线上产生周期为240μS的连续方波,在P 1.1口线上接示波器观察波形。 三、电路原理图

四、实验程序流程框图和程序清单及实验结果 /********* 设计要求:(a)单片机的定时器/计数器以查询方式工作, 在P1.0口线上产生周期为200us的连续方波 编写:吕小洋 说明:用定时器1的方式1以查询方式工作 时间:2012年11月10日 ***************/ ORG 0000H 开始 系统初始化

START: LJMP MAIN ORG 0100H MAIN: MOV SP, #2FH CLR EA ;关总中断 CLR ET1 ;禁止定时器1中断 MOV TMOD, #00010000B ;设置定时器1为工作方式1 MOV TH1, #0FFH ;设置计数初值 MOV TL1, #9CH SETB TR1 ;启动定时器 LOOP: JNB TF1, LOOP ;查询计数是否溢出 MOV TH1, #0FFH ;重置计数初值 MOV TL1, #9CH CLR TF1 ;清除计数溢出标志 CPL P1.0 ;输出取反 LJMP LOOP ;重复取反 END

最新555定时器及基本应用汇总

555定时器及基本应 用

毕业论文 论文题目 555定时器及其基本应用 系别物电系 专业物理教育 班级 08级物理教育班 学号 130809066 姓名李小沙 指导教师袁乐民 二O一一年五月一日

555定时器及基本应用 摘要:555定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为555,用CMOS工艺制作的称为 7555,除单定时器外,还有对应的双定时器556/7556。555定时器的电源电压范围宽,可在5~16V工作,最大负载电流可达200mA,7555可在3~18V工作,最大负载电流可达4mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。 关键词:555定时器,施密特触发器,多谐振荡器,单稳态触发器引言:随着电子技术的发展,尤其是消费类电子的日益普及,555定时器的使用量也在飞速增长。在购买和使用555定时器时,人们对555定时器的性能要求也逐渐提高。555定时器最重要的两个性能为电池的容量和电池的内阻,电池容量与电池内阻存在密切的关系。一般而言, 电池的容量越大, 内阻就越小。电池内阻的大小及其变化可反应电池内部的变化。电池内阻大,电池放电电压平台低,电池输出功率小,电池充电时电压高,高倍率快速充电时,电池会产生大量的热,使充电效率降低,降低电池性能。可见电池内阻的大小是衡量电池性能好坏的重要指标, 准确测量电池内阻具有重要意义。目前,测量电池内阻的方法主要有加载降压法、短路电流法、电桥法、交流电流法、双量程测量法、电位差计法等。这些方法各有利弊, 普遍问题是测量步骤较繁琐, 有些测量方法存在着不可忽视的测量误差, 甚至某些测量方法(因电池放电时间过长等)对电池的寿命有一定影响。本文将以论证的方式介绍一种较容易、准确测量电池内阻和电池容量的方法。 一、 555定时器简介

实验08 555定时器及其应用

实验八 555定时器及其应用 一、实验目的 1.熟悉并掌握555时基电路的工作原理; 2.熟悉并掌握555构成的单稳态触发器、多谐振荡器、占空比可调的多谐振荡器三种典型电路结构及工作原理; 3.学会应用555时基集成电路。 二、实验任务(建议学时:4学时) (一)基本实验任务 1. NE555构成的单稳态触发器逻辑功能测试; 2. NE555构成的多谐振荡器及参数测试; 3. NE555构成的占空比可调的多谐振荡器及参数测试; (二)扩展实验任务() 1. 555构成的脉冲宽度调制(PWM —Pulse Width Modulation )器。 2. 利用555时基电路设计一个驱动电路,能够实现对LED 灯的亮度调节。 3. 利用555时基电路设计一个线性斜坡电压(Linear Ramp )发生器。 三、实验原理 1.555定时器又称为时基电路,由于它的内部使用了三个5K 的电阻,故取名555。 NE555引脚功能说明: GND :电源地;TRIG :触发端;OUT :输出端;RESET :清零端,低电平有效; CONT :控制端;THRES :阈值电压输入端;DISCH :放电端;Vcc :电源正极; 5K 5K 5K R S RE S Vcc CONT RESET THRES TRIG GND DISCH OUT 12 6 5 84 3 7 (a )引脚排列 (b )内部框图 图8-1 NE555引脚排列及内部框图

555定时器集成芯片型号很多,例如LM555、NE555、SA555、CB555、ICM7555、LMC555等等,尽管型号繁多,但它们的引脚功能是完全兼容的,在使用中可以彼此替换,大多数双极型芯片最后3位数码都是555,大多数CMOS型芯片最后4位数码都是7555(还有部分定时器芯片的命名采用C555来表示CMOS型555定时器,例如LMC555)。另外,还有双定时器型芯片双极型的556和CMOS型的7556、四定时器NE558。 555的引脚排列和内部框图见图8-1,556的引脚排列见图8-2。 图8-2 NE556双定时器引脚排列 2.双极型与CMOS型555定时器芯片的区别 1)双极型555定时器工作电压范围5~15V,其驱动能力强,最大负载电流达±200mA,其构成的多谐振荡器工作频率较低,极限大约为300kHz(不同厂商生产的555定时器其最高振荡频率不一定相同,具体值需要通过查阅厂商提供的芯片参数手册); 2)CMOS型555定时器工作电压范围3~16V,其驱动能力弱,最大负载电流仅有±4mA,其构成的多谐振荡器工作频率较高,可达500kHz(不同厂商生产的555定时器其最高振荡频率不一定相同,具体值需要通过查阅厂商提供的芯片参数手册); 由于CMOS型的555定时器驱动能力很弱,因此,使用CMOS型的555定时器时,当负载工作电流最大值超过±4mA时,需要在CMOS型555定时器的Out端和负载之间加一级缓冲电路以提高CMOS型555定时器的驱动能力。 注意,这里的负载电流正负表示的含义为:负载电流为正时,表示电流由Out端流出,负载电流为负时,表示电流流入Out端。

电子技术实验报告8—555定时器及其应用

学生实验报告 系别电子信息学院课程名称电子技术实验 班级10通信A班实验名称实验八 555定时器及其应用 姓名葛楚雄实验时间2012年5月30日 学号20指导教师文毅 报告内容 一、实验目的和任务 1.熟悉555型集成时基电路的电路结构、工作原理及其特点。 2.掌握555型集成时基电路的基本应用。 二、实验原理介绍 555集成时基电路称为集成定时器,是一种数字、模拟混合型的中规模集成电路,其应用十分广泛。该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,因而广泛用于信号的产生、变换、控制与检测。它的内部电压标准使用了三个5K的电阻,故取名555电路。其电路类型有双极型和CMOS型两大类,两者的工作原理和结构相似。几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。555和7555是单定时器,556和7556是双定时器。双极型的电压是+5V~+15V,最大负载电流可达200mA,CMOS型的电源电压是+3V~+18V,最大负载电流在4mA以下。 1、555电路的工作原理 555电路的内部电路方框图如图20-1所示。它含有两个电压比较器,一个基本RS触发器,一个放电开关Td,比较器的参考电压由三只5KΩ的电阻器构成分压,它们分别使低电平比较器Vr1反相输入

端和高电平比较器Vr2的同相输入端的参考电平为2/3VCC和1/3VCC。Vr1和Vr2的输出端控制RS触发器状态和放电管开关状态。当输入信号输入并超过2/3VCC时,触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于1/3VCC时,触发器置位,555的3脚输出高电平,同时充电,开关管截止。 R是异步置零端,当其为0时,555输出低电平。平时该端开路或接VCC。Vro是控制电压端(5脚),D 平时输出2/3VCC作为比较器Vr1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。Td为放电管,当Td导通时,将给接于脚7的电容器提供低阻放电电路。 2、555定时器的典型应用 (1)构成单稳态触发器 上图20-2为由555定时器和外接定时元件R、C构成的单稳态触发器。D为钳位二极管,稳态时555电路输入端处于电源电平,内部放电开关管T导通,输出端Vo输出低电平,当有一个外部负脉冲触发信号加到Vi端。并使2端电位瞬时低于1/3VCC,单稳态电路即开始一个稳态过程,电容C开始充电,Vc按指数规律增长。当Vc充电到2/3VCC时,输出Vo从高电平返回低电平,放电开关管Td重新导通,电容C上的电荷很快经放电开关管放电,暂态结束,恢复稳定,为下个触发脉冲的来到作好准备。波形图见图20-3。

555定时器及其应用

9.1 图题9.1是用两个555定时器接成的延时报警器。当开关S 断开后,经过一定的延迟时间后,扬声器开始发声。如果在延迟时间内开关S 重新闭合,扬声器不会发出声音。在图中给定参数下,试求延迟时间的具体数值和扬声器发出声音的频率。图中G 1是CMOS 反相器,输出的高、低电平分别为V OH =12V ,V OL ≈0V 。 (+12V) 图题9.5 解:1.工作原理: 图题9.1由两级555电路构成,第一级是施密特触发器,第二级是多谐振荡器。施密特触发器的输入由R 1、C 1充放电回路和开关S 控制,当S 闭合时,V C =0V ,施密特触发器输出高电平。施密特触发器的输出经反相器去控制多谐振荡器的R D 端,当施密特触发器的输出为高电平时,R D =0,多谐振荡器复位,扬声器不会发出声音。当开关S 断开 后,R 1、C 1充放电回路开始充电,V C 随之上升,但在达到CC T 32 V V =+之前,施密特触 发器的输出仍为高电平时,R D =0,扬声器仍不会发出声音。这一段时间即为延迟时间。 一旦V C 达到CC T 32 V V =+,施密特触发器触发翻转,输出低电平,R D =1,多谐振荡器工 作,扬声器开始发声报警。 2.求延迟时间: 延迟时间由R 1、C 1充放电回路的充电过程决定: τ t e v v v v -+ ∞-+∞=)]()0([)(C C C C 将 V 12)(CC C ==∞V v )0(C +v =0V τ=R 1C 1代入上式,得: )1(1 1CC C C R t e V v --= t=t 1时,CC C 3 2 V v =代入上式,整理得延迟时间: t 1= R 1C 1ln3≈1.1 R 1C 1=1.1×106+10×10-6=11S 扬声器发声频率:MHz 95.01001.010157.01 )2(7.016 3232≈????=+= -C R R f

单片机实验-定时器计数器应用实验二

定时器/计数器应用实验二 一、实验目的和要求 1、掌握定时器/计数器计数功能的使用方法。 2、掌握定时器/计数器的中断、查询使用方法。 3、掌握Proteus软件与Keil软件的使用方法。 4、掌握单片机系统的硬件和软件设计方法。 二、实验内容或原理 1、利用单片机的定时器/计数器以查询方式计数外 部连续周期性矩形波并在单片机口线上产生某一 频率的连续周期性矩形波。 2、利用单片机的定时器/计数器以中断方式计数外 部连续周期性矩形波并在单片机口线上产生某一 频率的连续周期性矩形波。 三、设计要求 1、用Proteus软件画出电路原理图,单片机的定时 器/计数器以查询方式工作,设定计数功能,对 外部连续周期性脉冲信号进行计数,每计满100 个脉冲,则取反P1.0口线状态,在P 1.0口线上 接示波器观察波形。 2、用Proteus软件画出电路原理图,单片机的定时 器/计数器以中断方式工作,设定计数功能,对 外部连续周期性脉冲信号进行计数,每计满200 个脉冲,则取反P1.0口线状态,在P 1.0口线上 接示波器观察波形。 四、实验报告要求 1、实验目的和要求。 2、设计要求。 3、电路原理图。 4、实验程序流程框图和程序清单。 5、实验结果(波形图)。 6、实验总结。 7、思考题。 五、思考题 1、利用定时器0,在P1.0口线上产生周期为200微秒的连续 方波,利用定时器1,对P1.0口线上波形进行计数,满 50个,则取反P1.1口线状态,在P 1.1口线上接示波器 观察波形。 原理图:

程序清单: /*功能:用计数器1以工作方式2实现计数(查询方式)每计满100个脉冲,则取反P1.0口线状态*/ ORG 0000H START:MOV TMOD,#60H MOV TH1,#9CH MOV TL1,#9CH MOV IE,#00H SETB TR1 LOOP:JBC TF1,LOOP1 AJMP LOOP LOOP1:CPL P1.0

定时器工作原理及应用

定时器工作原理及应用文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

555定时器 摘要:555定时器是一种多用途的数字——模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。由于使用灵活、方便,所以555定时器在波形的产生与交换、测量与控制、家用电器、电子玩具等许多领域中都得到了广泛应用。本文主要介绍了555定时器的工作原理及其在单稳态触发器、多谐振荡器方面的应用。 关键词:数字——模拟混合集成电路;施密特触发器;波形的产生与交换 555 Timer Abstract: 555 the timer is a general-purpose digital simulation hybrid integrated circuit, and use it to a very convenient to constitute schmidt flip-flop, single state trigger and harmonic oscillator. Due to the use of flexible, convenient, so 555 in the produce of the waveform timer and exchange, measurement and control, home appliances, electronic toys in many areas have been widely applied. Key words: Digital-simulation hybrid integrated circuit;Schmitt toggle;Waveform generation and exchange 1概述 555定时器的简介 555定时器是一种多用途的数字——模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。由于使用灵活、方便,所以555定时器在波形的产生与交换、测量与控制、家用电器、电子玩具等许多领域中都得到了广泛应用。自从signetics公司于1972年推出这种产品以后,国际上个主要的电子器件公司也都相继的生产了各自的555定时器产品。尽管产品型号繁多,但是所有双极型产品型号最后的3位数码都是555,所有CMOS产品型号最后的4位数码都是7555.而且,它们的功能和外部引脚排列完全相同。

555定时器工作原理及应用

555定时器 摘要:555定时器是一种多用途的数字——模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。由于使用灵活、方便,所以555定时器在波形的产生与交换、测量与控制、家用电器、电子玩具等许多领域中都得到了广泛应用。本文主要介绍了555定时器的工作原理及其在单稳态触发器、多谐振荡器方面的应用。 关键词:数字——模拟混合集成电路;施密特触发器;波形的产生与交换 555 Timer Abstract:555 the timer is a general-purpose digital simulation hybrid integrated circuit, and use it to a very convenient to constitute schmidt flip-flop, single state trigger and harmonic oscillator. Due to the use of flexible, convenient, so 555 in the produce of the waveform timer and exchange, measurement and control, home appliances, electronic toys in many areas have been widely applied. Key words:Digital-simulation hybrid integrated circuit;Schmitt toggle;Waveform generation and exchange 1概述 1.1 555定时器的简介 555定时器是一种多用途的数字——模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。由于使用灵活、方便,所以555定时器在波形的产生与交换、测量与控制、家用电器、电子玩具等许多领域中都得到了广泛应用。自从signetics公司于1972年推出这种产品以后,国际上个主要的电子器件公司也都相继的生产了各自的555定时器产品。尽管产品型号繁多,但是所有双极型产品型号最后的3位数码都是555,所有CMOS产品型号最后的4位数码都是7555.而且,它们的功能和外部引脚排列完全相同。 1.2 555定时器的应用 (1)构成施密特触发器,用于TTL系统的接口,整形电路或脉冲鉴幅等;(2)构成多谐振荡器,组成信号产生电路; (3)构成单稳态触发器,用于定时延时整形及一些定时开关中。

555集成定时器的应用试验报告

电工电子实验报告 555 集成定时器的应用 一、实验目的 1. 熟悉555 定时器电路的工作原理。 2. 熟悉555 时基电路逻辑功能的测试方法。掌握用555 定时器电路构成单稳态触 发器,多谐振荡器,施密特触发器的方法和原理。 3. 了解定时器555 的实际应用。(做一个闪烁指示灯门铃) 二、实验仪器与器材 1 、数字逻辑实验箱1 台 2 、万用表1 只 3 、双踪示波器1 台 4 、元器件:NE555、放光二极管、电阻、电容、扬声器、导线若干 三、预习要求 1 .对照功能表熟悉555 定时器各管脚及其功能。 2 阅读本实验的实验原理以及教材中有关单稳态触发器、多谐振荡器、施密特振荡器的容。 3 .根据原理图和给出的电路参数,画好单稳态触发器、多谐振荡器、施密特振荡器的电路图,估算实验结果。 4 .了解55 5 定时器的一般应用电路。 四、实验原理 555 定时器是模拟—数字混合式集成电路,利用它可以方便地构成脉冲产生、整形电路和定时、延时电路。具有功能强,使用灵活、方便等优点,在数字设备、工业控制、家用电器、电子玩具等许多领域都得到了广泛的应用。 集成定时器的产品主要有双极型和CMOS 型两类,按集成电路部定时器的个数又可分为单定时器和双定时器;双极型单定时器电路的型号为555 ,双定时器电路的型号为556 ,其电源电压的围为5~18V ;CMOS 单定时器电路的型号为7555 ,双定时器电路的型号为7556 ,其电源电压的围为2~18V 。CMOS 型定时器的最大负载电流要比双极型的小,它们的功能和外引脚排列完全相同。 (一)、555 定时器的电路结构及其功能 图4- 1为555 定时器的部逻辑电路和外引脚图,从结构上看,555 电路由2 个比较器、1 个基本RS 触发器、1 个反相缓冲器、1 个集电极开路的放电晶体管和3 个5k Ω电阻组成分压器组成。

555定时器及其应用华农演示教学

555定时器及其应用 华农

一、实验目的 1.熟悉555型集成时基电路的电路结构、工作原理及其特点。 2.掌握555型集成时基电路的基本应用。 二、实验仪器与元器件 1.555定时器电路芯片 X1 2.函数信号发生器 3.示波器 三、实验注意事项 1.“LM555”和“LMC555”分别是双极型和CMOS型;双极型的电压是+5V~+15V,最大负载电流可达 200mA,CMOS型的电源电压是+3V~+18V,最大负载电流在4mA以下。 四、实验项目及原理 1.555集成时基电路称为集成定时器,是一种数字、模拟混合型的中规模集成电路,其应用十分广 泛。该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,因而广泛用于信号的产生、变换、控制与检测。它的内部电压标准使用了三个5K的电阻,故取名555电路。其电路类型有双极型和CMOS型两大类,两者的工作原理和结构相似。双极型的电压是+5V~+15V,最大负载电流可达200mA,CMOS型的电源电压是+3V~+18V,最大负载电流在4mA以下。 555电路的工作原理: 555电路的内部电路方框图如下图所示。它含有两个电压比较器,一个基本RS触发器,一个放电开关Td,比较器的参考电压由三只5KΩ的电阻器构成分压,它们分别使低电平比较器Vr1反相输入3VCC。Vr1和Vr2的输出端控制RS触发器状态和放电管开关状态。当输入信号输入并超过 2/3VCC时,触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于1/3VCC时,触发器置位,555的3脚输出高电平,同时充电,开关管截止。 是异步置零端,当其为0时,555输出低电平。平时该端开路或接VCC。Vro是控制电压端(5脚),平时输出2/3VCC作为比较器Vr1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个0.01uf的电容器到滤波作用,以消除外来的干扰,以确保参考电平的稳定。Td为放电管,当Td导通时,将给接于脚7的电容器提供低阻放电电路。 555定时器的各个引脚功能如下: 1脚:外接电源负端VSS或接地,一般情况下接地。 2脚:低触发端TR。 3脚:输出端Vo 4脚:是直接清零端。当此端接低电平,则时基电路不工作,此时不论TR、TH处于何电平,时基电路输出为“0”,该端不用时应接高电平。 5脚:VC为控制电压端。若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰。 6脚:高触发端TH。 7脚:放电端。该端与放电管集电极相连,用做定时器时电容的放电。 8脚:外接电源VCC,双极型时基电路VCC的范围是4.5 ~ 16V,CMOS型时基电路VCC的范围为3 ~ 18V。一般用5V。 在1脚接地,5脚未外接电压,两个比较器A1、A2基准电压分别为低电平的情况下,555时基电路的功能表如表所示。

实验八_555集成定时器及其应用

实验八555集成定时器及其应用 一、实验目的 1.熟悉555 集成定时器的组成及工作原理。 2.掌握用定时器构成单稳态电路、多谐振荡电路和施密特触发电路。 3.了解555 定时器的应用:构成变音信号发生器。 4.学习用示波器对波形进行定量分析,测量波形的周期、脉宽和幅值等。二、实验原理及参考电路 1.555定时器的工作原理。 555定时器是一种数字与模拟混合型的中规模集成电路,应用广泛。外加电阻、电容等元件可以构成多谐振荡器,单稳电路,施密特触发器等。 555定时器原理图及引线排列如图8.1、图8.2所示。其功能见表8.1。定时器内部由比较器、分压电路、RS触发器及放电三极管等组成。分压电路由三个5 K的电阻构成,分别给A1和A2提供参考电平2/3Vcc和1/3Vcc。A1和A2的输出端控制RS触发器状态和放电管开关状态。当输入信号自6脚输入大于2/3 Vcc时,触发器复位,3脚输出为低电平,放电管T导通;当输入信号自2脚输入并低于1/3Vcc时,触发器置位,3脚输出高电平,放电管截止。4脚是复位端,当4脚接入低电平时,则Vo=0;正常工作时4接为高电平。5脚为控制端,平时输入2/3Vcc作为比较器的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制。如果不在5脚外加电压通常接0.01μF电容到地,起滤波作用,以消除外来的干扰,确保参考电平的稳定。 图8.1 555定时器内部框图图8.2 555定时器引脚排列 表8.1 555定时器的功能表

2.典型应用 (1)构成单稳态触发器 电路如图8.3所示,接通电源→电容C充电(至2/3Vcc)→RS触发器置0→Vo=0,T导通,C放电,此时电路处于稳定状态。当2加入VI<1/3Vcc时,RS 触发器置1,输出Vo=1,使T 截止。电容C开始充电,按指数规律上升,当电容C充电到2/3Vcc时,A1翻转,使输出Vo=0。此时T又重新导通,C很快放电,暂稳态结束,恢复稳态,为下一个触发脉冲的到来作好准备。其中输出Vo 脉冲的持续时间tw=1.1RC,一般取R=1kΩ--10MΩ,C>1000PF,只要满足VI的重复周期大于tp0 ,电路即可工作,实现较精确的定时。 图8.3 单稳态触发器图8.4 多谐振荡器 (2) 多谐振荡器 电路如图8.4所示,电路无稳态,仅存在两个暂稳态,亦不需外加触发信号,即可产生振荡(振荡过程自行分析)。电容C在1/3Vcc--2/3Vcc之间充电和放电,输出信号的振荡参数为: 周期T=0.7 C(R1+2R2) 频率f=1/T=1.44/(R1+2R2)C, 占空比D=( R1+R2 )/( R1+2R2)。

STM32f107定时器应用

// // /****************************************************************************** ********** ** 文件名称: STM32f107 T1定时器应用 ** 功能描述: ** 参数: None ** 返回值: None ** 作者: 汪仁海 ** 日期: 2012年2月17日 **--------------------------------------------------------------------------------------- ** 修改人: ** 日期: **--------------------------------------------------------------------------------------- ******************************************************************************* **********/ #include "main.h" int time1_NUM; /************************************************* 函数: void Timer1_Configuration(void) 功能: TIM1 配置 参数: 无 返回: 无 定时计算:(1 /(72 / (36 - 1 + 1))) * 2000 us = 1000us = 1ms **************************************************/ void Timer1_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); //打开TIM1定时器的时钟 TIM_DeInit(TIM1); //TIMx寄存器重设为缺省值 TIM_TimeBaseStructure.TIM_Period = 200; //自动重装载寄存器周期的值 TIM_TimeBaseStructure.TIM_Prescaler=36 - 1; //TIMx时钟频率除数的预分频值

相关文档