文档库 最新最全的文档下载
当前位置:文档库 › matlab机械原理连杆机构大作业程序

matlab机械原理连杆机构大作业程序

matlab机械原理连杆机构大作业程序
matlab机械原理连杆机构大作业程序

五、计算编程

用matlab编程计算

yy=(0:0.1:360); %杆AB的角位移,每隔0.1度计数yy1=yy/180*pi;%转化为弧度

xb=280*cos(yy1);%点B的x坐标

yb=280*sin(yy1);% 点B的y坐标

w=10;%?杆AB的角速度

vxb=-w*yb;%点B的速度在x方向的分量

vyb=w*xb;% 点B的速度在y方向的分量

axb=-w*w*xb;% 点B的加速度在x方向的分量

ayb=-w*w*yb;% 点B的加速度在y方向的分量

xd=0;%点D的x坐标

yd=160;% 点D的y坐标

vxd=0;%点D的速度在x方向的分量

vyd=0;% 点D的速度在y方向的分量

axd=0;% 点D的加速度在x方向的分量

ayd=0;点D的加速度在y方向的分量

jbcd=ones(1,3601);%给角BCD赋初值

fdb=ones(1,3601);%?给角BD赋初值

li=350;%杆BC的长度

lj=320;%杆CD的长度

lbd=ones(1,3601);%给BD赋初值

fi=ones(1,3601);% 给杆BC的角位移赋初值

fj=ones(1,3601);给杆CD的角位移赋初值

xc=ones(1,3601);% 给点Cx坐标赋初值

yc=ones(1,3601);% 给点Cy坐标赋初值

ci=ones(1,3601);%? 给中间变量赋初值

cj=ones(1,3601);% 给中间变量赋初值

wi=ones(1,3601);% 给杆BC的角速度赋初值

wj=ones(1,3601);% 给杆CD的角速度赋初值

ss=ones(1,3601);% 给ss赋初值

ffg=ones(1,3601);给构件5的角位移赋初值

xg=-25;%点G的x坐标

yg=80;% 点G的y坐标

vxg=0;%点G的速度在x方向的分量

vyg=0;% 点G的速度在y方向的分量

axg=0;% 点G的加速度在x方向的分量

ayg=0;% 点G的加速度在y方向的分量

wgf=ones(1,3601);%给杆GF的角速度赋初值

%求角BCD,角BD

for m=1:3601

lbd(1,m)=sqrt((xd-xb(1,m))^2+(yd-yb(1,m))^2);

if (lbd(1,m)<(li+lj)&&lbd(1,m)>abs(lj-li))

jbcd(1,m)=acos((li*li+lbd(1,m)*lbd(1,m)-lj*lj)/(2*li*lbd(1,m)));

elseif lbd(1,m)==(li+lj)

jbcd(1,m)=0;

elseif (lbd(1,m)==abs(lj-li)&&(li>lj))

jbcd(1,m)=0;

elseif (lbd(1,m)==abs(lj-li)&&(li

jbcd(1,m)=pi;

end

if (xd>xb(1,m) && yd>=yb(1,m))

fdb(1,m)=atan((yd-yb(1,m))/(xd-xb(1,m)));

elseif (xd==xb(1,m) && yd>yb(1,m))

fdb(1,m)=pi/2;

elseif (xd=yb(1,m))

fdb(1,m)=atan((yd-yb(1,m))/(xd-xb(1,m)))+pi;

elseif (xd==xb(1,m)&&yd

fdb(1,m)=3*pi/2;

elseif (xd>xb(1,m)&&yd

fdb(1,m)=atan((yd-yb(1,m))/(xd-xb(1,m)))+2*pi;

elseif (xd

fdb(1,m)=atan((yd-yb(1,m))/(xd-xb(1,m)))+pi;

end

fi(1,m)=fdb(1,m)-jbcd(1,m);% 杆BC的角位移

if fi(1,m)<0

fi(1,m)=fi(1,m)+2*pi;

end

end

%求点C的坐标

xc=xb+li*cos(fi);

yc=yb+li*sin(fi);

for n=1:3601%求杆CD的角位移

if (xc(1,n)>xd && yc(1,n)>=yd)

fj(1,n)=atan((yc(1,n)-yd)/(xc(1,n)-xd));

elseif (xc(1,n)==xd && yc(1,n)>yd)

fj(1,n)=pi/2;

elseif (xc(1,n)=yd)

fj(1,n)=atan((yc(1,n)-yd)/(xc(1,n)-xd))+pi;

elseif (xc(1,n)

fj(1,n)=atan((yc(1,n)-yd)/(xc(1,n)-xd))+pi;

elseif (xc(1,n)==xd && yc(1,n)

fj(1,n)=pi/2*3;

elseif (xc(1,n)>xd && yc(1,n)<=yd)

fj(1,n)=atan((yc(1,n)-yd)/(xc(1,n)-xd))+2*pi;

end

end

ci=li*cos(fi);

cj=lj*cos(fj);

si=li*sin(fi);

sj=lj*sin(fj);

g1=ci.*sj-cj.*si;

%求杆BC、CD的角速度

wi=(cj*vxd-cj.*vxb+sj*vxd-sj.*vyb)./g1;

wj=(ci*vxd-ci.*vxb+si*vxd-si.*vyb)./g1;

g2=-axb+wi.^2.*ci-wj.^2.*cj;

g3=-ayb+wi.^2.*si-wj.^2.*sj;

%求杆BC、CD的角加速度

ei=(g2.*cj+g3.*sj)./g1;

ej=(g2.*ci+g3.*si)./g1;

lbf=281.113856;

ai=51.499/180*pi;

fii=fi+ai*ones(1,3601);

%求点F的坐标、速度、加速度

xf=xb+lbf*cos(fii);

yf=yb+lbf*sin(fii);

vxf=vxb-lbf*wi.*sin(fii);

vyf=vyb+lbf*wi.*cos(fii);

axf=axb-lbf*wi.^2.*cos(fii)-lbf*ei.*sin(fii);

ayf=ayb-lbf*wi.^2.*sin(fii)-lbf*ei.*cos(fii);

%求杆GF的角位移

for i=1:3601

ss(1,i)=sqrt((xg-xf(1,i))^2+(yg-yf(1,i))^2);

if xf(1,i)>xg && yf(1,i)>=yg

ffg(1,i)=atan((yf(1,i)-yg)/(xf(1,i)-xg));

elseif xf(1,i)==xg && yf(1,i)>yg

ffg(1,i)=pi/2;

elseif xf(1,i)=yg

ffg(1,i)=atan((yf(1,i)-yg)/(xf(1,i)-xg))+pi;

elseif xf(1,i)

ffg(1,i)=atan((yf(1,i)-yg)/(xf(1,i)-xg))+pi;

elseif xf(1,i)==xg && yf(1,i)

ffg(1,i)=3*pi/2;

elseif xf(1,i)>xg && yf(1,i)

ffg(1,i)=atan((yf(1,i)-yg)/(xf(1,i)-xg))+2*pi;

end

end

%求杆GF 的角速度

for i=1:3601

if ss(1,i)==0

wgf(1,i)=0;

else

wgf(1,i)=(vyf(1,i)*cos(ffg(1,i))-vxf(1,i)*sin(ffg(1,i)))/ss(1,i); end

end

%求杆GF 的角加速度

vss=vxf.*cos(ffg)+vyf.*sin(ffg);

egf=(ayf.*cos(ffg)-axf.*sin(ffg)-2*vss.*wgf)./ss;

plot(yy,ffg,'-k')%画图

grid on %画网格线

(省略部分画图指令)

六、计算结果,如下图:

-150-100-50050100

-500

50

100

150

200

250

图1 点F 的运动轨迹

050100150200250300350400

-150-100

-50

50

100

150

200

250

图2 点F 的x 坐标和y 坐标随杆AB 角位移的变化

050100150200250300350400

-4000-3000

-2000

-1000

1000

2000

3000

4000

图3 点F 的速度在x 和y 方向的分量随杆AB 的角位移的变化

050100150200250300350400

5001000

1500

2000

2500

3000

3500

4000

4500

图4 点F 的绝对速度随杆B 的角位移的变化

050100150200250300350400

-1-0.5

0.5

1

1.5x 10

5

图5 点F 的加速度在x 和y 方向的分量随杆AB 角位移的变化

050100150200250300350400

02

4

6

8

10

12

14

16

x 10

4

图6 点F 的绝对加速度随杆AB 角位移的变化

对结果的分析:实线分别表示表示点F 的在x 方向上的坐标、速度、加速度随AB 角位移的变化,虚线表示其在y 方向上的坐标、速度、加速度随AB 角位移的变化。可以看出点F 的轨迹是一个封闭的类似于“8”字的图形。另外可以发现杆AB 旋转一周,点F 类似于转了两周。点F 的速度在x 方向的分量和在y 方向的分量在大小上变化规律基本一致,在AB 杆角位移在50°——100°是速度增加很快,其绝对速度增加也较快,从加速度的图像可以明显看出此时加速度增加迅速。

050100150200250300350400

01

2

3

4

5

6

7

图7 构件5的角位移

050100150200250300350400

1015

20

25

30

35

40

45

50

图8 构件8的角速度

050100150200250300350400

-800-600

-400

-200

200

400

600

图9 构件9的角加速度

结果分析:构件5的角位移在图像上看起来并不连续,但考虑到其角位移的周期性,当角位移增加到2时即相当于变为0。从图像可以看出AB 杆转动一周,GF 杆转动两周,而且其角速度变化较大,适合应用于要求在不同阶段速度差异较大的场合。其角加速度变化规律不明显且起伏较大,这对杆件的冲击较大,应注意杆件的强度。

基于matlab的GUI设计——机械原理教学演示系统

机械原理教学演示系统——基于matlab的GUI设计 xxx 指导老师: 20年月日

目录 一、功能简介 (3) 二、总界面 (3) 三、凸轮模块 (4) 四、齿轮模块 (6) 五.参考书目 (6) 六.附录(部分程序源代码) (7)

一、功能简介 本系统能实现机械原理教学过程中凸轮模块与齿轮模块的设计与运动仿真,加深对机械原理课程学习的理解。 二、总界面 总界面标题设置:set(gcf,'name','机械原理教学演示系统 made by 翟鲁鑫'); 背景图片设置:ximg=imread('机械原理课本.jpg'); imshow(ximg); 背景声音播放:Fs=44100; [ywav,Fs]=wavread('夜的钢琴曲 - 六3.wav'); sound(ywav,Fs); 到各个模块:到凸轮模块 clc close(gcf); clear all

GUItulun 到齿轮模块 clc close(gcf); clear all GUIchilun 关闭系统:clc question='真的要退出吗?'; title='确认退出?'; button=questdlg(question,title,'是','否','是'); switch button case'是' clear all close case'否' return end 三、凸轮模块 设计要点: 1.背景声音设置方法同主界面

2.推程角、远休角、回程角之和不能大于360度的判别条件;基圆半径、滚子半径、行程不能为0的判别条件 sr0=get(handles.edit2,'string'); r0=str2num(sr0); if isequal(r0,0) errordlg('基圆半径不能为0,请重新输入','出错'); return end srr=get(handles.edit3,'string'); rr=str2num(srr); if isequal(rr,0) errordlg('滚子半径不能为0,请重新输入','出错'); return end sh=get(handles.edit4,'string'); h=str2num(sh); if isequal(h,0) errordlg('行程不能为0,请重新输入','出错'); return end n3=phi01+phi02+phi03; %推程角、远休止角与回程角的总和 if n3>360 errordlg('角度之和大于360,请重新输入','出错'); end 3.仿真程序。采用for 循环以及m(j)=getframe之前要先使用moviein函数Initialize movie frame memory,否则要提示错误 4.仿真之前要先清除绘图时留下的图像,命令如下cla(handles.axes1); 5.回主界面之前要先clear all,关闭音乐、清空global定义的全局变量,以防全局变量影响下一程序 6.图像保存。绘制出的图像可以保存供以后查看。主要命令有uiputfile()、imwrite() [sfilename,sfilepath]=uiputfile({'*.jpg';'*.bmp';'*.tif';'*.*'},... '保存图像文件','unititled.jpg'); if ~isequal([sfilename,sfilepath],[0,0]) sfilefullname=[sfilepath ,sfilename]; h_tulun = getframe(handles.axes1); imwrite(h_tulun.cdata,sfilefullname); else msgbox('您按了取消,保存失败','保存失败','error'); end

机械原理大作业

机械原理大作业 This model paper was revised by the Standardization Office on December 10, 2020

机械原理大作业三 课程名称:机械原理 设计题目:齿轮传动设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间: 1、设计题目 机构运动简图 机械传动系统原始参数

2、传动比的分配计算 电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =, min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数: 35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=* a h ,径向间 隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

哈工大机械原理大作业连杆

Harbin Institute of Technology 机械原理大作业一 课程名称: 机械原理 设计题目: 连杆机构运动分析 院 系: 机电工程学院 班 级: 设 计 者: 学 号: 指导教师: 设计时间: 1.运动分析题目 (11)在图所示的六杆机构中,已知: AB l =150mm, AC l =550mm, BD l =80mm, DE l =500mm,曲柄以等角速度1w =10rad/s 沿逆时针方向回转,求构件3的角速度、角加速度和构件5的位移、速度、加速度。 2.机构的结构分析 建立以点A 为原点的固定平面直角坐标系A-x, y,如下图: 机构结构分析 该机构由Ⅰ级杆组RR (原动件1)、Ⅱ级杆组RPR (杆2及滑块3)和Ⅱ级杆组RRP (杆4及滑块5)组成。 3.建立组成机构的各基本杆组的运动分析数学模型 原动件1(Ⅰ级杆组RR ) 由图所示,原动件杆1的转角a=0-360°,角速度1w =10rad/s ,角加速度1a =0,运动副A 的位置坐标A x =A y =0,速度

(A, A),加速度 (A

, A ), 原动件1的长度AB l =150mm 。 求出运动副B 的位置坐标(B x , B y )、速度 (B

,B)和加速度 (B , B)。

杆2、滑块3杆组(RPR Ⅱ级杆组) 已出运动副B 的位置(B x , B y )、速度 (B ,B ) 和加速度

(B , B ), 已知运动副C 的位置坐标C x =0, C y =550mm,速度,加速度,杆长AC l =550mm 。 求出构件2的转角b,角速度2w 和角加速度2a . 构件二上点D 的运动

机械原理大作业

机械原理大作业 二、题目(平面机构的力分析) 在图示的正弦机构中,已知l AB =100 mm,h1=120 mm,h2 =80 mm,W1 =10 rad/s(常数),滑块2和构件3的重量分别为G2 =40 N和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。试用解析法求机构在Φ1=60°、150°、220°位置时各运动副反力和需加于构件1上的平衡力偶M 。 b Array 二、受力分析图

三、算法 (1)运动分析 AB l l =1 滑块2 22112112/,/s m w l a s m w l v c c == 滑块3 21113113/cos ,sin s m l w v m l s ??== 212 113/sin s m w l a ?-= (2)确定惯性力 N w l g G a m F c 2 1122212)/(== N w l g G a m F 121133313sin )/(?-== (3)受力分析 i F F i F F x R D R x R C R 43434343,=-= j F j F F R R R 232323-==

j F i F j F i F F R x R y R x R R 2121121212--=+= j F F F y R x R R 414141+= 取移动副为首解副 ① 取构件3为分离体,并对C 点取矩 由0=∑y F 得 1323F F F r R -= 由0=∑x F 得 C R D R F F 4343= 由 ∑=0C M 得 2112343/cos h l F F R D R ?= ②取构件2为分离体 由0=∑x F 得 11212cos ?R x R F F = 由0 =∑y F 得 1123212sin ?F F F R y R -= ③取构件1为分离体,并对A 点取矩 由0=∑x F 得 x R x R F F 1241= 由0 =∑ y F 得 y R y R F F 1241= 由0=A M 得 1132cos ?l F M R b = 四、根据算法编写Matlab 程序如下: %--------------已知条件---------------------------------- G2=40; G3=100; g=9.8; fai=0; l1=0.1; w1=10; Fr=400; h2=0.8; %--------分布计算,也可将所有变量放在一个矩阵中求解------------------- for i=1:37 a2=l1*(w1^2); a3=-l1*(w1^2)*sin(fai); F12=(G2/g)*a2;

机械原理大作业1连杆机构27题

大作业1 连杆机构运动分析 1、运动分析题目 如图所示机构,已知机构各构件的尺寸为280mm AB =,350mm BC =,320mm CD =,160mm AD =,175mm BE = 220mm EF =,25mm G x =,80mm G y =,构件1的角速度为110rad/s ω=,试求构件2上点F 的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。 2、建立坐标系 建立以点A 为原点的固定平面直角坐标系

图1 3、对机构进行结构分析 该机构由I级杆组RR(原动件1)、II级杆组RRR(杆2、杆3)和II级杆组RPR(滑块4及杆5)组成。I级杆组RR,如图2所示;II级杆组RRR,如图3所示;II级杆组RPR,如图4所示。 图2 图 3

图 4 4、各基本杆组运动分析的数学模型 (1)同一构件上点的运动分析: 图 5 如图5所示的构件AB,,已知杆AB 的角速度=10/rad s ,AB 杆长 i l =280mm,可求得B 点的位置B x 、B y ,速度xB v 、yB v ,加速度xB a 、yB a 。

=cos =280cos B i x l ??; =sin =280sin B i y l ??; = =-sin =-B xB i B dx v l y dt ω?ω; ==cos =;B yB i B dy v l x dt ω?ω 222B 2==-cos =-B xB i d x a l x dt ω?ω; 2222==-sin =-B yB i B d y a l y dt ω?ω。 (2)RRRII 级杆组的运动分析: 图 6 如图6所示是由三个回转副和两个构件组成的II 级组。已知两杆 的杆长2l 、3l 和两个外运动副B 、D 的位置(B x 、B y 、D x 、D y )、速度(xB yB xD yD v v v v 、、、)和加速度(xB yB xD yD a a a a 、、、)。求内运动副C 的位置(C C x 、y )、速度(xC yC v 、v )、加速度(xC yC a 、a )以及两杆

机械原理大作业3 凸轮结构设计

机械原理大作业(二) 作业名称:机械原理 设计题目:凸轮机构设计 院系:机电工程学院 班级: 设计者: 学号: 指导教师:丁刚陈明 设计时间: 哈尔滨工业大学机械设计

1.设计题目 如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。 表一:凸轮机构原始参数 序号升程 (mm) 升程运动 角(o) 升程运动 规律 升程许用 压力角 (o) 回程运动 角(o) 回程运动 规律 回程许用 压力角 (o) 远休止角 (o) 近休止角 (o) 12 80 150 正弦加速 度30 100 正弦加速 度 60 60 50 2.凸轮推杆运动规律 (1)推杆升程运动方程 S=h[φ/Φ0-sin(2πφ/Φ0)]

V=hω1/Φ0[1-cos(2πφ/Φ0)] a=2πhω12sin(2πφ/Φ0)/Φ02 式中: h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算) (2)推杆回程运动方程 S=h[1-T/Φ1+sin(2πT/Φ1)/2π] V= -hω1/Φ1[1-cos(2πT/Φ1)] a= -2πhω12sin(2πT/Φ1)/Φ12 式中: h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/6 3.运动线图及凸轮线图 运动线图: 用Matlab编程所得源程序如下: t=0:pi/500:2*pi; w1=1;h=150; leng=length(t); for m=1:leng; if t(m)<=5*pi/6 S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi)); v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6); a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6)); % 求退程位移,速度,加速度 elseif t(m)<=7*pi/6 S(m)=h; v(m)=0; a(m)=0; % 求远休止位移,速度,加速度 elseif t(m)<=31*pi/18 T(m)=t(m)-21*pi/18; S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi)); v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9))); a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9)); % 求回程位移,速度,加速度

哈工大机械原理大作业_凸轮机构设计(第3题)

机械原理大作业二 课程名称:机械原理 设计题目:凸轮设计 院系:机电学院 班级: 1208103 完成者: xxxxxxx 学号: 11208103xx 指导教师:林琳 设计时间: 2014.5.2

工业大学 凸轮设计 一、设计题目 如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤ ≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,6 50π =Φ带入正弦加速度运动规律的升程段方程式中得: ??? ?? ???? ??-=512sin 215650?ππ?S ;

?? ? ?????? ??-= 512cos 1601ππωv ; ?? ? ??= 512sin 1442 1?π ωa ; 2、凸轮推杆推程远休止角运动方程( π?π ≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(9 14π ?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,9 5'0π= Φ,6 s π = Φ带入余弦加速度运动规律的回程段方程式中得: ?? ? ???-+=)(59cos 125π?s ; ()π?ω--=59 sin 451v ; ()π?ω-=59 cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π 29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

机械原理大作业

机械原理大作业三 课程名称: 机械原理 级: 者: 号: 指导教师: 设计时间: 1.2机械传动系统原始参数 设计题目: 系: 齿轮传动设计 1、设计题 目 1.1机构运动简图 - 11 7/7777777^77 3 UtH TH7T 8 'T "r 9 7TTTT 10 12 - 77777" 13 ///// u 2

电动机转速n 745r/min ,输出转速n01 12r/mi n , n02 17r /mi n , n°323r/min,带传动的最大传动比i pmax 2.5 ,滑移齿轮传动的最大传动比 i vmax 4,定轴齿轮传动的最大传动比i d max 4。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实 现。设带传动的传动比为i pmax 2.5,滑移齿轮的传动比为9、心、「3,定轴齿轮传动的传动比为i f,则总传动比 i vi i vmax 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、 7、8 9和10为角度变位齿轮,其齿数: Z5 11,Z6 43,Z7 14,Z8 39,Z9 18,乙。35 ;它们的齿顶高系数0 1,径向间隙

系数c 0.25,分度圆压力角200,实际中心距a' 51mm。 根据定轴齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮11、12、13和14为角度变位齿轮,其齿数:Z11 z13 13,乙 2 z14 24。它们的齿顶高系数d 1,径向间隙系数c 0.25,分度圆压力角200,实际中心距 a' 46mm。圆锥齿轮15和16选择为标准齿轮令13,乙 6 24,齿顶高系数 h a 1,径向间隙系数c 0.20,分度圆压力角为200(等于啮合角’)。 4、滑移齿轮变速传动中每对齿轮几何尺寸及重合度的计算 4.1滑移齿轮5和齿轮6

机械原理大作业平面连杆机构

机械原理课程作业(一) 平面连杆机构的运动分析 (题号:1-A ) 班级 03021101 学号 姓名 成绩 同组者 完成日期 2014年1月1日

目录 一.题目及原始数据 (3) 二.平面连杆机构运动分析方程 (4) 三.计算程序框图 (6) 四.计算源程序 (7) 五.计算结果 (13) 六.运动线图分析 (17) 七.运动线图分析 (19) 八.体会及建议 (20) 九.参考书目 (20)

一. 题目及原始数据 1.如图1所示平面六杆机构,试用计算机完成其运动分析。 图1 设已知各构件的尺寸如表1所示,又已知原动件1以等角速度沿逆时针方向回转,试求各从动件的角位移、角速度、角加速度以及E 点的位移、速度、加速度的变化情况。已知其尺寸参数如下表所示: 表1 平面六杆机构尺寸参数 () mm 2、题目要求与成员组成及分工: (1)题目要求: 三人一组计算出原动件从0到360时(计算点数N=37)所要求的各运动变量的大小,并绘出运动曲线图及轨迹曲线,本组选取题号为:1—A ,1—B,1-C 组。 (2)分工比例: 学号 姓名 分工 2011300652 张正栋 报告书写,制图、程序 2011300620 肖川 制图 2011300622 尹志成 方程推导 组号 1l l 2 l 3 l 4 l 5 l 6 α A B C 2-A 2-B 3-C 26.5 67.5 87.5 52.4 43 600 l 2=116.6 l 2=111.6 l 2=126.6

二. 平面连杆机构运动分析方程 1. 位置方程 在图1的直角坐标系中,建立该六杆机构的封闭矢量方程: 将上式写成在两坐标轴上的投影式,并改写成方程左边尽含未知量的形式,即得 1122334112233' 1122226655'1122226655 cos cos cos sin sin sin cos cos cos()cos cos sin sin sin()sin sin G G L L L L L L L L L L x L L L L L y L L θθθθθθθθπαθθθθθπαθθθ??+?=?+? ?+?=?? ??+?-?-+=-?-????+?-?-+=-?-??将上式化简可得: 2233411223311' 222255664'22225566cos cos cos sin sin sin cos cos()cos cos sin sin()sin sin G G L L L L L L L L L L L x L L L L L y θθθθθθθθαθθθθαθθ??-?=-?? ?-?=-?? ??+?-+?+?=-???+?-+?+?=? 由以上各式即可得。 2. 速度方程 根据A ω=ω1B ,可得 222333111222333111'2222 22555666'222222555666sin sin sin cos cos cos sin sin()sin sin 0cos cos()cos cos 0L L L L L L L L L L L L L L θωθωθωθωθωθωθωθαωθωθωθωθαωθωθω?-??+??=??? ??-??=-??? ?-??-?-?-??-??=????+?-?+??+??=?化为矩阵形式为: 2233 22233 3'2 22255 665'2222 55 666111111111sin sin 00 cos cos 00sin()sin 0sin sin cos()cos 0 cos cos sin cos sin cos L L L L L L L L L L L L L L L L θθωθθωθαθ θθωθαθθθωθθωθθ?? ?? -??? ????-?? ????????-?--?-?-??????????-+????? ?????-??=????-????? ?? ??? 3. 加速度方程

机械原理课程设计Matlab编程

/*Matlab程序*/ l1 = 59.1000; l2 = 263.9000; l3=120; l4=266.83; l5=180; l6=45; x2=170; y2=132.7289; w1=9.4248; N=42:10:402; ay=119:10:479 a=2*l1*l3*sin(N/180*pi); b=2*l3*(l1*cos(N/180*pi)-l4); c=l2^2-l1^2-l3^2-l4^2+2*l1*l4*cos(N/180*pi); jiao3=2*atan((a- sqrt(a.^2+b.^2-c.^2))./ (b-c))/pi*180+77 g=2*l1*l2*sin(N/180*pi); h=2*l2*(l1*cos(N/180*pi)-l4); m=l1^2+l2^2+l4^2-l3^2-2*l1*l4*cos(N/180*pi); jiao2=2*atan((g- sqrt(g.^2+h.^2-m.^2))./ (h-m))/pi*180+77 lof=-sqrt(l6^2-x2^2-l5^2+2*l5*x2*cos((180+jiao3)/180*pi)+l5^2*sin(j iao3/180*pi).^2)+y2-l5* sin((180+jiao3)/180*pi)

j12=N-(jiao2-77); j32=jiao3-jiao2; j13=(N-(jiao3-77)); j23=(jiao2-jiao3); w3=(w1*l1*sin(j12/180*pi))./ (l3*sin(j32/180*pi)) w2=(-1*w1*l1*sin(j13/180*pi))./(l2*sin(j23/180*pi)) a3=(w1^2*l1*cos(j12/180*pi)+w2.^2*l2-(w3.^2).*(l3*cos(j32/180*pi)) )./ (l3*sin(j32/180*pi)) a2=(-w1^2*l1*cos(j13/180*pi)-(w2.^2).*(l2*cos(j23/180*pi))+l3*w3.^ 2)./ (l3*sin(j23/180*pi)) jiao4=acos((x2-l5*cos((180+jiao3)/180*pi))/l6)/pi*180 w4=((-l5*sin((pi+jiao3)/180*pi)).*w3)./ (l6*sin(jiao4/180*pi)) vof=((l5*sin((180+jiao3-jiao4)/180*pi)).*w3).* sin(jiao4/180*pi) aof=(l6*w4.^2+(l5*w3.^2).*(cos((180+jiao3-jiao4)/180*pi))+l5*a3.*si n((180+jiao3-jiao4)/180*pi))./sin(jiao4/180*pi) 作图程序: /*F点的位移*/ plot(N+77,lof,'-xk') xlabel('AB杆的角度'),ylabel('F点的位移/(mm)') title('F点的位移曲线图') text(100, 171.3339,'初始值= 171.3339')

机械原理课程设计matlab程序及成果图

Wjr_main.m %1.输入已知数据 clear; l2=0.1605;%AB的长度单位m l4=0.6914;%CD的长度单位m l5=0.2074;%DE的长度单位m l1=0.370;%AC的长度单位m l1p=0.6572;%CF的长度单位m omg2=8.378; af2=0; hd=pi/180; du=180/pi; %2.调用子函数abc.m计算牛头刨机构位移,角速度,角加速度for n1=1:689; tt2(n1)=-0.4488+(n1-1)*hd; ll=[l2,l4,l5,l1,l1p]; [tt,omg,af]=abc(tt2(n1),omg2,af2,ll); s4(n1)=tt(1); tt4(n1)=tt(2); tt5(n1)=tt(3); sE(n1)=tt(4);

v34(n1)=omg(1); omg4(n1)=omg(2); omg5(n1)=omg(3); vE(n1)=omg(4); a3(n1)=af(1); af4(n1)=af(2); af5(n1)=af(3); aE(n1)=af(4); end %3.位移,角速度,角加速度 figure(1); n1=1:689; t=(n1-1)*pi/180; subplot(2,2,1); %绘角位移及位移线图plot(t,tt4*du,'r-.'); grid on; hold on; axis auto; [haxes,hline1,hine2]=plotyy(t,tt5*du,t,sE);

grid on; hold on; xlabel('时间/份'); axes(haxes(1)); ylabel('角位移/\circ'); axes(haxes(2)); ylabel('位移/m'); hold on; grid on; text(1.15,-0.65,'tt_4'); text(3.4,0.27,'tt_5'); text(2.25,-0.15,'s_E'); subplot(2,2,2); %绘角速度及速度线图plot(t,omg4,'r-.'); grid on; hold on; axis auto; [haxes,hline1,hline2]=plotyy(t,omg5,t,vE); grid on; hold on; xlabel('时间/份') axes(haxes(1));

哈工大机械原理大作业

连杆的运动的分析 一.连杆运动分析题目 图1-13 连杆机构简图 二.机构的结构分析及基本杆组划分 1.。结构分析与自由度计算 机构各构件都在同一平面内活动,活动构件数n=5, PL=7,分布在A、B、C、E、F。没有高副,则机构的自由度为 F=3n-2PL-PH=3*5-2*7-0=1 2.基本杆组划分 图1-13中1为原动件,先移除,之后按拆杆组法进行拆分,即可得到由杆3和滑块2组成的RPR II级杆组,杆4和滑块5组成的RRP II级杆组。机构分解图如下:

图二 图一 图三 三.各基本杆组的运动分析数学模型 图一为一级杆组, ? c o s l A B x B =, ? sin lAB y B = 图二为RPR II 杆组, C B C B j j B E j B E y y B x x A A B S l C E y x S l C E x x -=-==-+=-+=0000 )/a r c t a n (s i n )(c o s )(?? ? 由此可求得E 点坐标,进而求得F 点坐标。 图三为RRP II 级杆组, B i i E F i E F y H H A l E F A l E F y y l E F x x --==+=+=111)/a r c s i n (s i n c o s ??? 对其求一阶导数为速度,求二阶导数为加速度。

lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0; yC=-350; A0=xB-xC; B0=yB-yC; S=sqrt(A0.^2+B0.^2); zj=atan(B0/A0); xE=xB+(lCE-S)*cos(zj); yE=yB+(lCE-S)*sin(zj); a=0:0.0001:20/255; Xe=subs(xE,t,a); Ye=subs(yE,t,a); A1=H-H1-yB; zi=asin(A1/lEF); xF=xE+lEF*cos(zi); vF=diff(xF,t); aF=diff(xF,t,2); m=0:0.001:120/255; xF=subs(xF,t,m); vF=subs(vF,t,m); aF=subs(aF,t,m); plot(m,xF) title('位移随时间变化图像') xlabel('t(s)'),ylabel(' x') lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0;

哈工大机械原理大作业-凸轮机构设计(第3题)

机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 院 系: 机电学院 班 级: 1208103 完 成 者: xxxxxxx 学 号: xx 指导教师: 林琳 设计时间: 2014.5.2 哈尔滨工业大学 凸轮机构设计 一、设计题目 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π= Φ带入正弦加速度运动规律的升程段方程式中得:

?? ??????? ??-=512sin 215650?ππ?S ; ?? ??????? ??-=512cos 1601ππωv ; ?? ? ??=512sin 1442 1?πωa ; 2、凸轮推杆推程远休止角运动方程( π?π≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(914π?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95' 0π= Φ,6s π =Φ带入余弦加速度运动规律的回程段方程式中得: ?? ????-+=)(59cos 125π?s ; ()π?ω--=5 9sin 451v ; ()π?ω-=5 9cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

机械原理大作业一-连杆传动机构分析

机械原理大作业一 课程名称:机械原理 设计题目:连杆机构及其分析 院系:机械设计制造及其自动化 班级:1208104 完成者:郑鹏伟 学号:1120810416 指导教师:林琳刘福利 设计时间:2014.6.3 哈尔滨工业大学

一.运动分析题目 如图 1-14 所示的矿石破碎机,已知各构件尺寸为: A B B C C D B E E F l 100m m ,l 460m m ,l 250m m , l 460m m ,l m,======D D G G x 300m m ,y 500m m ,x 430m m ,y 210m m ,3 δ== = ==试求构件5的角位移、角 速度、和角加速度。 二.机构结构分析、组成机构的基本杆组划分 1.计算机构的自由度 L H F 3n 2p p 35271=?-?-=?-?= 2.建立直角坐标系 以D 为原点建立直角坐标系 :D(0,0) ,A(-300,500),G(-730,210) 3.对机构进行结构分析: 该机构由一个RR 杆组(原动件AB )和三个RRR 杆组(BCD 、BEC 、EFG )组成,各基本杆组运动分析数学模型见下图:

三.计算编程(VB ): Private f1(3600) As Double '1杆的转角 Private xB(3600) As Double 'B 点的 x 位移 Private yB(3600) As Double 'B 点的 y 位移 Private vxB(3600) As Double 'B 点的 x 速度 Private vyB(3600) As Double 'B 点的 y 速度 Private axB(3600) As Double 'B 点的 x 加速度 Private ayB(3600) As Double 'B 点的 y 加速度 Private xC(3600) As Double 'C 点的 x 位移 Private yC(3600) As Double 'C 点的 y 位移 Private vxC(3600) As Double 'C 点的 x 速度 Private vyC(3600) As Double 'C 点的 y 速度 Private axC(3600) As Double 'C 点的 x 加速度 Private ayC(3600) As Double 'C 点的 y 加速度 Private xE(3600) As Double 'E 点的 x 位移

机械原理大作业

机械原理大作业 课程名称:机械原理 设计题目:连杆机构运动分析 院系:机械工程院 班级: xxxx 学号: xxxxx 设计者: xx 设计时间:2016年6月

一、题目 1-12:所示的六连杆机构中,各构件尺寸分别为:lAB =200mm,lBC=500mm,lCD=800mm,xF=400mm,xD=350mm,yD=350mm,w1=100rad/s,求构件5上的F点的位移、速度和加速度。 二、数学模型 1.建立直角坐标系 以F点为直角坐标系的原点建立直角坐标系X-Y,如下图所示。

2.机构结构分析 该机构由I级杆组RR(原动件AB)、II级杆组RRR(杆2、3)、II级杆组PRP (杆5、滑块4)组成。 3.各基本杆组运动分析 1.I级杆组RR(原动件AB) 已知原动件AB的转角

φ=0-2Π 原动件AB的角速度 w=10rad/s 原动件AB的角加速度 α=0 运动副A的位置 xA=-400,yA=0 运动副A的速度 vA=0,vA=0 运动副A的加速度 aA=0,aA=0 可得: xB=xA+lAB*cos(φ) yB=yA+lAB*sin(φ) 速度和加速度分析: vxB=vxA-wl*AB*sin(Φ) vyB=vyA+w*lAB*sin(φ) axB=axA-w2*lAB*cos(φ)-e*lAB*sin(φ) ayB=ayA-w2*lAB*sin(φ)+e*lAB*cos(φ)

2.II级杆组RRR(杆2、3) 杆2的角位置、角速度、角加速度 lBC=500mm,lCD=800mm,xD=350mm,yD=350mm, ψ2=arctan﹛[Bo+﹙Ao2+Bo2-Co2﹚?]/﹙Ao+Bo﹚﹜ ψ3=arctan[﹙yC-yD)/(xC-xD)] Ao=2*LBC(xD-xB) Bo=2*LBC(yD-yB) lBD2=(xD-xB)2+(yD-yB)2 Co=lBC2+lBD2-lCD2 xC=xB+lBC*cos(ψ2) yC=xB+lBC*sin(ψ2) 求导可得C点的角速度和角加速度。

哈工大机械原理大作业——连杆——24号

Harbin Institute of Technology 机械原理设计说明书 课程名称:机械原理 设计题目:连杆机构运动分析 指导老师:陈明丁刚 班级: 设计者: 学号: 指导教师: 设计时间:

一、运动分析题目 如图1-6所示是曲柄滑块机构,各构件长度分别为a 、b ,偏距为e ,连杆BC 上一点到铰链B 的距离为l m ,试研究各构件长度a 、b 、l m 及偏距e 的变化对点m 的轨迹的影响规律。 二、机构结构分析及基本杆组划分 1.除去虚约束力和局部自由度,计算机构的自由度并确定原动件 本机构中无虚约束或局部自由度。机构各杆件都在同一平面运动,活动构件数n=3,P L =4,P H =0,则机构的自由度为:F=3n-2P L -P H =33-24-10=1。原动件为曲柄AB 。 2.拆分杆组 从远离原动件(即杆AB ,如图1)进行拆分,可得到由杆BC 和C 点处滑块组成的RRP Ⅱ级杆组(如图2),剩下的就是Ⅰ级机构杆AB 。 3.确定机构的级别 由上可知,机构为Ⅱ级机构 三、各基本杆组的运动分析数学模型 (1)原动件AB (Ⅰ级杆组) ?????

原动件AB 的转角为:i ?=0~2π;角速度为:s rad /101=ω 角加速度为:01=ε 假定运动副A 的位置坐标为:x A =0,y A =0 A 点与机架相连,即该点的速度和加速度都为0。原动件AB 长度为l i ,从而可求得运动副B 点的位置坐标: i ?cos l x x i A B +=,i i A B l y y ?sin += (2)杆BC 和C 点的滑块(RRP Ⅱ级杆组) RRP Ⅱ级杆组是由两个构件两个转动副及一个外移动副组成的。 已知两杆长为l i 和l j (l j 杆垂直于滑块导路),外回转副B 的参数,滑块导路方向角和计算位移时的参考点K 的位置和导路的运动参数,求内运动副C 的运动参数。 位置方程:内回转副C 的位置方程为: j j j K i i B C j j j K i i B C l s y l y y l s x l x x ??????cos sin sin sin cos cos ++=+=-+=+= 消去s 可得:j i j i l l A ??++=0a r c s i n 其中 j K B j K B y y x x A ??c o s )(s i n )(0---= 为保证机构的存在,应满足装配条件i j l l A ≤+0,求得 i ?后,可求得x C 和y C ,而后求得滑块的位移s : j j j K C j j j K C l y y l x x s ????sin /)cos (cos /)sin (--=+-= 滑块D 点的位移方程为: j K D j K D s y y s x x ??sin cos +=+= (3)求M 点位置坐标 要画出点m 的轨迹图,需要求出点m 的位置坐标。假定以A 点为原点,则点B 的位置坐标为: 1 1sin cos ααa y a x B B == 点C 的位置坐标为: e y b a x C C =+=21cos cos αα 而点m 是杆BC 上的一点,且到B 点的 距离为l m ,则B,C,m 三点满足关系:C B m B B C B m m y y y y x x x x b l --=--= 从而求得m 点的位置

机械原理matlab分析大作业3-28

机械原理 第一题: 求C点的位移、速度及加速度。 由封闭形ABCDEA与AEFA得: L6+L4+L3 =L1+L2 L1’=L6+L4’ (1)位置分析 机构的封闭矢量方程式写成在两坐标上的投影表达式: 由以上方程求出θ2 、θ3 、θ4 、L1’ 1.主程序:

%输入已知数据 l2=60; l3=35; l4=75; l5=50; l6=40; l7=70; hd=pi/180; du=180/pi; omega1=10; alpha1=0; %调用子函数计算角位移,角速度及角加速度 for n1=1:66 %曲柄转角范围 theta1(n1)=(n1-1)*hd; ll=[l2,l3,l4,l5,l6,l7]; [theta,omega,alpha]=six_bar(theta1(n1),omega1,ll); l1(n1)=theta(1); theta2(n1)=theta(2); theta4(n1)=theta(3); theta3(n1)=theta(4); v1(n1)=omega(1); omega2(n1)=omega(2); omega3(n1)=omega(3); omega4(n1)=omega(4); a1(n1)=alpha(1); alpha2(n1)=alpha(2); alpha3(n1)=alpha(3); alpha4(n1)=alpha(4); e nd %图像输出 figure(1); n1=1:66; t=(n1-1)*2*pi/360; subplot(2,2,1); %滑块F线位移L1图像输出 plot(theta1*du,l1,'k'); title('L1线位移图'); xlabel('角位移\theta_1/\circ') ylabel('线位移/mm') grid on;

相关文档
相关文档 最新文档