文档库 最新最全的文档下载
当前位置:文档库 › CNT在锂离子电池中的应用

CNT在锂离子电池中的应用

CNT在锂离子电池中的应用
CNT在锂离子电池中的应用

关于浅谈锂电池充电电路原理及应用的专业论文

专业电子类论文 题目:浅谈锂电池充电电路原理及应用 作者:yyj 职称:自动化工程师 发表期刊号:XXX-XX 浅谈锂电池充电电路原理及应用 现代生活中,科技高速发展,电子产品需求量急升,应用之广,已达到一个新高度。从而对电子产品充电电池的要求,也越来越高。常用的电池有多种,而锂电池占据较大份额。锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比;

2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。 四、锂电池的充放电要求: 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。

锂离子电池常用的粘结剂的种类、作用及性能

锂离子电池常用的粘结剂的种类、作用及性能锂离子电池粘结剂一般都是高分子化合物,电池中常用的粘结剂有; (1)PVA(聚乙烯醇)PVA的分子式为卡CH2CHOH手JJ,聚合度”一般为700—2000,PVA是一种亲水性高聚物白色粉末,密度为1,24—1.34g?cm-3。PVA 可与其他水溶性高聚物混溶,如与淀粉、CMC、海藻钠等都有较好的混溶性。 (2)聚四氟乙烯(PTFE)PTFE俗称“塑料王”,是一种白色粉末,密度为2.1—2.3g?CITI+,热分解温度为415℃。PTFE电绝缘性能好,耐酸,耐碱,耐氧化。PTFE的分子式为卡CF2一CF2头。,是由四氟乙烯聚合而成的。nCF2=CF、2一卡CF2=CF2于。常用60%的PTFE乳液作电极粘结剂。 (3)羧甲基纤维素钠(CMC)CMC为白色粉末,易溶于水,并形成透明的溶液,具有良好的分散能力和结合力,并有吸水和保持水分的能力。 (4)聚烯烃类(PP,PE以及其他的共聚物); (5)(PVDF/NMP)或其他的溶剂体系; (6)粘接性能良好的改性SBR橡胶; (7)氟化橡胶; (8)聚胺酯。 锂电池用粘接剂;锂离子电池中,由于使用电导率低的有机电解液,因而要求电极的面积大,而且电池装配采用卷式结构,电池的性能的提高不仅对电极材料提出了新的要求,而且对电极制造过程中使用的粘接剂也提出了新的要求。 1、粘接剂的作用及性能; (1)保证活性物质制浆时的均匀性和安全性; (2)对活性物质颗粒间起到粘接作用; (3)将活性物质粘接在集流体上;

(4)保持活性物质间以及和集流体间的粘接作用; (5)有利于在碳材料(石墨)表面上形成SEI膜。 2、对粘接剂的性能要求; (1)在干燥和除水过程中加热到130—180~C情况下能保持热稳定性; (2)能被有机电解液所润湿; (3)具有良好的加工性能; (4)不易燃烧; (5)对电解液中的I.iClQ,I.iPP、6等以及副产物I.iOH,㈠2C03等稳定; (6)具有比较高的电子离子导电性; (7)用量少,价格低廉; 以往的镍镉、镍氢电池,使用的电解液是水溶液体系,粘接剂可以使用PVA,CMC等水溶性高分子材料,或PTFE的水分散乳液。锂离子蓄电池电解液是极性大(因此溶解能力和溶胀能力高)的碳酸酯类有机溶剂体系,粘接剂必须能耐碳酸酯(至少是不溶解),而且必须满足上述的几点要求,特别是必须满足在电化学环境中的稳定性,在负极中处于锂的负电位下不被还原,在正极中发生过充电等有氧产生的情况下不发生氧化。 锂离子电池中的特点是伴随充放电过程,锂在活性物质中的嵌入—脱出引起活性物质的膨胀—收缩(如石墨的层间距变化达到10%一11%),要求粘接剂对此能够起到缓冲作用。锂离子电池的电极在干燥过程中加热温度最高可以达到200℃,粘接剂必须能够耐受这样高的温度。 由此可见,粘接剂性能好坏对电池性能的影响很大,锂离子电池电极制备是采用涂布工艺,一般采用刮刀或辊涂布的方式,通过刀口间隙调节活性物质层的厚度。锂离子电池活性物质层的厚度很小,因此涂布刀口的间隙也很小,这样就要求在浆料中不能有大的团聚颗粒存在。制作电极需要经过辊压、分

《锂离子电池应用》word版

国海军对其使用的所有锂电池都要根据NA VSEA指南9310.1b和技术手册S9310-AQ-SAF-010进行安全性评估。描述了对战场准备自主水下航行体(BPAUV)上锂离子电池进行的安全性测试试验;也给出了由海军水面战中心(NSWC)Carderock实验室所做的

LiNi x Co(1-x)O2由LiNiO2材料改性得到,是一种高容量的锂离子正极材料,比容量比LiCoO2高30%左右,具有很好的比功率特性,价格相对低廉。但是由于这种材料的合成相对困难、吸水性较强、与电解液的相容性较差、安全性较差等原因,并未得到广泛的推广。目前世界上应用最好的是SAFT公司,其利用LiNi x Co(1-x)O2正极材料制造的各种型号的锂离子电池已广泛应用于卫星、UUV以及各类便携式电子设备上。 LiNi1/3Co1/3Mn1/3O2是另一种高容量的正极材料,集合LiNiO2、LiCoO2和LiMnO2的优点,可逆比容量可以达到160mAh/g以上,是非常有前途的正极材料。此材料不仅有比容量高的优势,而且安全性也相对较好,价格相对较低,与电解液的相容性好,循环性能优异,是最有可能在小型通讯和小型动力领域同时应用的电池正极材料,甚至有在大型动力领域应用的可能。 LiMn2O4是LiCoO2外研究最早的正极材料,它具有较高的电压平台,较高的安全性和低廉的价格,在大容量动力电池领域有广阔的应用前景;但是其较低的比容量(110mAh/g),较差的循环性能(300次),特别是高温循环性能差使得其应用受到了较大的限制。尽管经过这几年的研究,LiMn2O4的性能得到了较大的提高,但高温循环性能依然是使用的一个瓶颈。目前国内以锰酸锂为正极材料制造锂动力电池最成功的厂家为北京中信国安盟固利公司。其生产的大容量动力型锰酸锂电池经过了两到三年的示范运行,成为配套2008年北京奥运会电动汽车的唯一电池。 LiFePO4是最近两年才快速发展起来的正极材料,其较高的安全性能,良好的耐高温特性,优越的循环性能使得其作为动力电池和备用电源领域有广阔的应用前景。但是其也存在一些缺点,特别是其电压平台较低(3.2V),振实密度低,使其制成的电池比能量较低,而且由于磷酸铁锂制备工艺要求控制严格,批次生产质量一致性差,导致其成本居高不下。同时磷酸铁锂材料的电导率低,低温放电性能差,倍率放电差等问题也需要继续研究和改进。但是近年来在世界范围内的广泛研究已经使这些问题得到了改善,特别是低温放电性能及功率特性。日本三井造船生产的磷酸铁锂动力锂电池能够以20C的

锂离子电池的优点

锂离子电池的优点 1)能量密度高。能量密度可达460-600Wh/kg,其能量密度是铅酸电池的6-7倍; 2)相对较高的平均输出电压值。常用的锂离子电池单体平均工作电压约为3.7V,约为镍-隔电池或者镍-氢电池的3倍 3)可以高功率输出,在电动汽车的磷酸铁锂离子电池可以达到15-30C充放电能量,有利于启动加速; 4)相对较小的自放电率,无记忆效应,锂电池的自放电率为镍-隔电池或者镍-氢电池的一半甚至更小。记忆效应指的是电池在充放电循环过程中容量减小的现象,而锂离子电池在循环过程中不出现明显地容量衰减现象; 5)使用寿命长,在正常条件下,锂离子电池使用寿命可达6年,循环次数超过1000次。(6)可快速充电,使用额定电压为4.2 V的充电器只需1~2小时即可充满 (7)使用温度范围宽,通常可在-30~+45℃温度范围内使用,通过调整电解液甚至可以在更宽温度范围内使用; (8)绿色电池,对环境友好,无论生产、使用和报废,都不存在镉、铅、汞等对环境有污染的元素;

Figure 4b shows the typical charge?discharge voltage profiles of the S@CNTs/Co3S4?NBs, S@Co3S4?NBs and S@CNTs electrodes at 0.2 C (1.0 C = 1,675 mAh g?1). The S@CNTs/ Co3S4?NBs electrode exhibits two typical discharge plateaus at 2.35 and 2.08 V (vs Li+/Li), originated from the reduction of S8 to soluble long-chain polysulfides (Li2Sx, 4 ≤ x ≤ 8) and the formation of insoluble short-chain polysulfides (Li2S/Li2S2), respectively. The single charge plateau of S@CNTs/Co3S4?NBs between 2.25?2.36 V is ascribed to the oxidation of Li2S/ Li2S2 to Li2Sx and eventually S8. These charge and discharge plateaus are consistent with corresponding CV curves (Figure S5). Notably, the S@CNTs/Co3S4?NBs electrode exhibits lower potential hysteresis and higher sulfur utilization ratio than those of the S@Co3S4?NBs and S@CNTs, mainly attributed to the strong chemical affinity of polar Co3S4?NBs with polysulfides and the interconnected CNT network. 图4b 显示了S@CNTs/Co3S4?NBs、S@Co3S4?NBs 和S@CNTs 电极在0.2 c (1.0 c = 1675 麻将g?1)上的典型charge?discharge 电压剖面。S@CNTs/Co3S4?NBs电极展示两个典型的放电高原在 2.35 和 2.08 V (vs li +/李), 起源于 S8 的减少到可溶性长链多硫化物 (Li2Sx, 4 ≤ x ≤ 8) 和形成不溶性短链多硫化物 (Li2S/Li2S2),分别.2.25?2.36 V 之间

锂离子电池简介及主要应用

锂离子电池简介 使用煤炭,石油和天然气的很长一段时间以来,都是以化石燃料为主要能源,这样的能源结构,使得环境污染严重,并且由此导致的全球变暖问题和生态环境恶化问题受到越来越多的关注。所以,可再生能源和新能源的发展成为在未来技术领域和未来经济世界的一个最具有决定性的影响。锂离子电池作为一种新的二次清洁,且可再生能源,其具有工作电压高,质量轻,能量密度大等优点,在电动工具,数码相机,手机,笔记本电脑等领域得到了广泛的应用,并且显示出强大的发展趋势。 锂离子电池的发展历史 第二十世纪六十、七十年代,几乎在锂电池是发明的同时,研究发现许多插层化合物可以与金属锂的可逆反应,构成锂电池[1]。早在第二十世纪七十年代提出了分层组织作为阴极的斯梯尔最有代表性的一种,金属锂作为阳极的Li-TiS2系统。 1976年Whittingham证实了系统的可靠性。随后,埃克森公司的Li-TiS2系统进行深入研究,并希望其商业化。但是,系统很快就暴露出许多致命的缺陷。首先,活性金属锂容易导致有机电解液的分解,导致电池内部压力。由于锂电极表面的表面电位分布不均匀,在锂金属的电荷将在锂沉积的阴极,产生锂“枝晶”。一方面会造成可逆嵌锂容量损失,另一方面,枝晶可以穿透隔膜和负极连接,造成电池内部短路,瞬间吸收大量的热,发生爆炸,导致严重的安全隐患。这一系列因素导致金属锂电池的循环性能和安全两差异,所以Li-TiS2系统未能实现商业化。 1980,阿尔芒首次提出摇椅电池的想法。使用低锂嵌入化合物锂化合物代替金属锂作为阳极,采用高嵌锂电位嵌锂化合物作正极。同年,在美国德州大学Goodenough教授的国家提出了一系列的锂过渡金属氧化物LixMO2(M=Co 、Ni 或Mn)为两电池正极材料锂。1987,奥邦成功组装了浓差电池MO2 (WO2)/LiPF6-PC/LiCoO2和证明“摇椅电池”的想法的可行性,但由于负电极材料形成LiMoO2 CLiWO2嵌入电位高(0.7-2.0 V vs.Li/Li+)嵌锂容量较低,并没有显示高电压的锂离子二次电池的优点,比容量高。

锂离子电池工作原理

锂离子电池工作原理 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe

放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C 锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 组成部分 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10--20微米的电解铝箔。 (2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。 (3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

锂离子电池的正确使用方法

锂离子电池的正确使用方法 目前大家在市面上买到的便携电子产品,比如手机、MP3、相机等,绝大多数使用的都是可充锂离子电池,那么如何正确的使用锂离子电池呢~ 正确的充放电直接关系到锂离子电池的使用寿命和性能,在查了一些文献后,我总结了一下锂离子电池的正确使用方法供大家参考。 一、锂离子电池的定义 我们通常所说的“锂电池”,严格意义上来说,应该称为锂离子(Li-ion)电池。锂(Li)电池和锂离子(Liion)电池是两种不同的电池。最早出现的锂电池在使用时比较危险,经常会有在充电时出现燃烧、爆裂的情况出现。这是因为锂是比较活跃的金属元素,使用时不太安全。而锂离子电池(Li-ion)加入了能抑制锂元素活跃的成份,它是锂电池的替代产品,它的阳极采用锂的活性化合物组成,通常为钴酸锂(LiCoO2),负极则是吸藏锂离子的特殊分子结构的碳。充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列在呈片状结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。所以,在该电池中锂永远以锂离子的形态出现,不会以金属锂的形态出现,当然也就不会出现燃烧、爆炸等危险。从而使锂电真正达到了安全、高效、方便,而老的锂电也随之被淘汰了。区分锂电池和锂离子电池的方法相当简单:从电池的标识上就能识别,锂电的标识为Li,而锂离子电池为Li-ion。 二、电池的记忆效应 电池记忆效应是指电池长时间经受特定的工作循环后,自动保持这一特定的倾向。这一现象最早出现在镍镉电池中,如果不放尽电量,电池会随使用次数的增加而呈现出电量愈来愈少的状态,所以要每次用尽电池再充电。后来的镍氢电池,其实已经没有明显的记忆效应,但是仍然需要经常的彻底充放电来保持其正常的蓄电量,因此,某些镍氢电池的充电器提供了放电后再进行充电的功能。锂电池则基本上没有镍镉电池的记忆效应,记忆效应的原理是结晶化,在锂电池中几乎不会产生这种反应。但是,锂离子电池在多次充放后容量仍然会下降,其原因是复杂而多样的。主要是正负极材料本身的变化,从分子层面来看,正负极上容纳锂离子的空穴结构会逐渐塌陷、堵塞;从化学角度来看,是正负极材料活性钝化,出现副反应生成稳定的其他化合物。物理上还会出现正极材料逐渐剥落等情况,总之最终降低了电池中可以自由在充放电过程中移动的锂离子数目。 三、锂离子电池的激活 锂离子电池是不需要采用超常时间充电来激活的。如果从锂离子电池的工作原理和锂离子电池的性能特征来看,这一说法无疑是正确的。锂离子电池在出厂以前本身要经过恒压充电,然后放电,如此几个循环,使电极充分浸润电解液,充分活化,以容量达到要求为止,这个就是激活过程,这样出来的锂离子电池到用户手上已经是激活过的了。 但是存在一个问题,就是电池厂出厂的电池到用户手上,这个时间是难以确定的,有时可能是很短的,仅一两个月,但也有可能是很长的,长达半年一年。如果是很长的时间,那么电池电极材料就会钝化,故尔,锂离子电池在首次使用时进行激活还是有必要的。所以,厂家一般也建议:对初次使用的锂离子电池最好进行1~3 次完全充放电过程(这里的完全放电不可理解为过度放电),以便消除电极材料的钝化,达到最大容量。之后,电池就可以即用即充,只有在长时间不用后才需要再次进行完全充放电,使之恢复活力。 需要了解的是:锂离子电池不允许过度充电和过度放电(过度放电的意思是:比如你用的手机,你直接把电池用过自动关机,然后再强行开机,再自动关机,使电池彻底没电),这将对锂离子电池的正负极造成永久的损坏。此外,充电时若产生过高的温度,也将会引发锂离子电池的损害,所以在不少的锂离子电池正负极之间设有保护性的温控隔膜或电解质添加剂。在电池升温到一定的情况下,复合膜膜孔闭合或电解质变性,电池内阻增大直到断路,电池不再升温,确保电池充电温度正常。大多数锂离子电池配套的充电器通常具有充放电的控制电路,当充电完成时,电路会自动断开,指示灯会自动熄灭,以保护锂离子电池。这样,你在给锂离子电池充电时,忘记了及时拔下充电器的电源插头,一点也不用担心电池会过充和过热。这个时候插不插上电源其实已经没有区别了。但是,如果你的充电器没有自动断开的保护电路,那么,你的电池一旦充电完成时,应该及时拔下电源插头,以避免锂离子电池因过充而损坏。 四、锂离子电池的使用寿命 有一点需要告诉大家:锂离子电池的使用寿命不同于镍镉电池和镍氢电池的寿命是以充电的次数来计算,锂离子电池的使用寿命体现在充放电周期上,这个周期指的是一次完整的充放电过程。锂离子电池的使用寿命在出厂时就已经确定了,同一个品牌和批号的产品,他们的使用寿命,也就是充放电的周期数是一样的。举一个简单的例子来说,如果你上次使用了电池40%的电力,将电池充满电,下次又使用了60%的电力,又充满电,这样两次的充放电使用恰恰刚好是一个完整的充电周期,而不是两个,所以,无论你是喜欢把锂离子电池用完了再充电,还是喜欢随用随充,均无伤大雅。(这里的用完不是完全用完) 锂离子电池的保养的建议: ①其实不必刻意使锂离子电池每一次都是在电力用尽后再充,外出前可以将电池充满电,备上一块备用电池不失为一个理想的选择。 ②一段时间可以进行一次保护电路控制下的深充放以修正电池的电量。 ③切记不要使锂离子电池过度充电。如果你的充电器没有自动断电功能,那么就必须在充电完成后及时拔下电源插头。否则,不仅有可能会损坏电池,而且会有可能因为电池的电压过高而烧坏数码照相机,特别是袖珍数码照相机。 ④锂离子电池长期不用时,应充入一定的电量以防电池在存贮中自放电过量导致过度放电的损坏。同时,应存放在阴凉的地方以减弱其自身内部钝化反应的速度。 ⑤最后一条是:实际上,锂离子电池在使用中没有太多要顾及的方面,换句话说,就是顾及也没有太大的作用。一个电池能使用多少次,也许差别更多的来自电池

锂电池的工作原理和应用分析(定稿)

Southwest university of science and technology 本科毕业设计(论文)锂离子电池的工作原理和应用分析 学院名称理学院 专业名称光信息科学与技术 学生姓名杨大华 学号20072708 指导教师施鹏程讲师 二〇一一年六月

西南科技大学本科生毕业论文1锂离子电池的工作原理和应用分析 摘要:锂离子电池是一种新型的电池,在很多领域中得到了广泛应用。在各种新能源电池中,锂离子电池被认为是最有发展前途的新能源动力型电池之一。本论文通过介绍锂离子电池的原材料与工作原理,提高了对锂离子电池的结构特性和工作机制的认识。通过分析我国锂离子电池的研究动态,指出了我国在锂离子电池技术和产品上已经接近世界先进水平,并且向着更抗衰老,更低回收率,更耐受过充,更长寿命方向发展。最后针对国内动力型锂离子电池发展中存在的主要的六大问题,提出了七个相应的解决方法。 关键词:锂离子电池;新能源;工作原理;应用

西南科技大学本科生毕业论文2 The Work Principle and Application Analysis of the Lithium-ion Battery Abstract: Lithium ion battery is a new type of battery. It can be widely used in many fields. In all kinds of new energy battery, lithium ion battery is considered as one of the most promising new energy. To know more about the structure of lithium-ion battery characteristics and working mechanisms, this thesis describes the raw materials and working principle. Through analyzing of the lithium-ion battery researching trends, the technology and products of the lithium-ion batteryare in our country are closing to the world advanced level, and facing to a more anti-aging, more low recovery, more tolerance overcharge, longer life direction.Finally, according to six problems in the development of lithium ion batteries, put forward seven corresponding solutions. Keywords: Lithium-ion battery;New energy;Working principle;Apply 2

锂离子电池原理及生产工艺流程

锂离子电池原理及工艺流程 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造 石墨+导电剂+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理 3.1 充电过程:一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二工艺流程

1.正负极配方 1.1正极配方(LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极) (10μm):93.5% LiCoO 2 其它:6.5% 如Super-P:4.0% PVDF761:2.5% NMP(增加粘结性):固体物质的重量比约为810:1496 a)正极黏度控制6000cps(温度25转子3); b)NMP重量须适当调节,达到黏度要求为宜; c)特别注意温度湿度对黏度的影响 ●钴酸锂:正极活性物质,锂离子源,为电池提高锂源。 钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 μm,含水量≤0.2%,通常为碱性,PH值为10-11左右。 锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱碱性,PH值为8左右。 ●导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。 提高正极片的电解液的吸液量,增加反应界面,减少极化。 非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为2-5 μm;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。 ●PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。 非极性物质,链状物,分子量从300,000到3,000,000不等;吸水后分子量下降,粘性变差。 ●NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。 ●正极引线:由铝箔或铝带制成。 1.2负极配方(石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜 箔)负极) 负极材料:94.5% Super-P:1.0% SBR:2.25% CMC:2.25% 水:固体物质的重量比为1600:1417.5

锂离子电池工作原理及优缺点

新能源技术被公认为21世纪的高新技术。电池行业作为新能源领域的重要组成部分,已成为全球经济发展的一个新热点。当前世界电池工业发展的三个特点,一是绿色环保电池迅猛发展,包括锂离子蓄电池、氢镍电池等;二是一次电池向蓄电池转化,这符合可持续发展战略;三是电池进一步向小、轻、薄方向发展。锂离子电池是在锂电池的基础上发展起来的一种新型电池,主要由正极、负极、电解液、电极基材、隔离膜和罐材等材料组成。在商品化的可充电池中,锂离子电池的比能量最高,特别是聚合物锂离子电池,可以实现可充电池的薄形化。相对于传统的铅酸电池和镍氢、镉镍电池而言,锂离子电池比容量高、循环寿命长、安全性能好,将逐步取代镍氢、镉镍等电池。锂离子电池广泛的应用于便携式摄放一体机、CD、游戏机、手机、笔记本电脑和电动汽车等方面。本文就锂离子电池材料的工作原理及优缺点进行简单介绍。 构造及原理 锂离子电池是指以两种不同的能够可逆地嵌入及脱出锂离子的嵌锂化合物分别作为电池正极和负极的二次电池体系。充电时,锂离子从正极脱嵌,通过电解质和隔膜,嵌入到负极中;放电时则相反,锂离子从负极脱嵌,通过电解质和隔膜,嵌入到正极中。以以钴酸锂为正极材料的锂离子电池为例: 充电时的电极反应: 正极:LiCoO2→Li1-x CoO2+xLi+ + xe- 负极:6C + xLi+ + xe-→Li x C6

总反应:LiCoO 2 +6C → Li 1-x CoO 2+Li x C 6 放电时:有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。 正极 锂离子电池的正极材料须具备以下主要性质: 1、 吉布斯自由能高,以提供较高的电池电压。 2、 相对分子量小,能容纳的锂的量多,以提供较大的电池容 量。 3、 具有大孔径隧道结构以利于锂离子的嵌入和脱出。 4、 极性弱,以保证良好的可逆性。 5、 热稳定性良好,以保证工作的安全。 6、 重量轻、易于制作。 可以作为正极的材料有LiCoO 2、LiNiO 2、LiMn 2O 4、LiMnO 2、LiFePO 4、LiV 3O 8、LiVO 2、LiV 2O 4、Li 6V 5O 15、LiCo 0.2Ni 0.8O 2、摘自 百度百科; 锂离子电 池

锂离子电池的应用很广

锂离子电池的应用很广,其正极材料可再生利用。某锂离子电池正极材料有钴酸锂(LiCoO2)、导电剂乙炔黑和铝箔等。充电时,该锂离子电池负极发生的反应为6C+xLi++xe- = Li x C6。现欲利用以下工艺流程回收正极材料中的某些金属资源(部分条件未给出)。 回答下列问题: (1)LiCoO2中,Co元素的化合价为。 (2)写出“正极碱浸”中发生反应的离子方程式。 (3)“酸浸”一般在80℃下进行,写出该步骤中发生的所有氧化还原反应的化学方程式;可用盐酸代替H2SO4和H2O2的混合液,但缺点是。 (4)写出“沉钴”过程中发生反应的化学方程式。 (5)充放电过程中,发生LiCoO2与Li1-x CoO2之间的转化,写出放电时电池反应方程式。 (6)上述工艺中,“放电处理”有利于锂在正极的回收,其原因是。在整个回收工艺中,可回收到的金属化合物有(填化学式)。 (1)+3 (2)2Al + 2OH- + 6H2O = 2Al(OH)- 4 + 3H2↑

(3)2LiCoO2 + 3H2SO4 + H2O2Li2SO4 + 2CoSO4 + O2↑+ 4H2O 2H2O22H2O + O2↑;有氯气生成,污染较大。 (4)CoSO4 + 2NH4HCO3 = CoCO3↓+ (NH4)2SO4 +CO2↑+ H2O (5)Li1-x CoO2 + Li x C6 = LiCoO2 + 6C (6)Li+从负极中脱出,经由电解质向正极移动并进入正极材料中 Al(OH)3、CoCO3、Li2SO4 以工艺流程为背景考查化学反应原理中的电化学知识,包括电极反应式的书写、氧化还原反应,综合性较强。 (1)根据化合价代数和为0的原则,LiCoO2中Li为+1价,O为-2价,iCo元素的化合价为+3。(2)根据工艺流程和相关产物可知,锂离子电池正极材料中只有铝箔与氢氧化钠反应,发生反应的离子方程式2Al + 2OH- + 6H2O = 2Al(OH)- 4 + 3H2↑。 (3)根据“酸浸”的反应物和反应条件,发生的所有氧化还原反应的化学方程式为;2LiCoO2 + 3H2SO4 + H2O2Li2SO4 + 2CoSO4 + O2↑+ 4H2O,H2O2自身发生分解反应,2H2O22H2O + O2↑;LiCoO2具有较强的氧化性,用盐酸代替H2SO4和H2O2的混合液,氯气生成,污染较大。 (4)根据“沉钴”过程中反应物和产物,发生反应的化学方程式CoSO4 + 2NH4HCO3 = CoCO3↓+ (NH4)2SO4 +CO2↑+ H2O。 (5)充放电过程中,发生LiCoO2与Li1-x CoO2之间的转化,放电时负极发生的反应为Li x C6-xe-=6C+xLi+,正极Li1-x CoO2 + xe- = LiCoO2 + xLi+,电池总反应方程式Li1-x CoO2 + Li x C6 = LiCoO2 + 6C。 (6)进行放电处理时,Li+从负极中脱出,经由电解质向正极移动并进入正极材料中,有利于锂在正极的回收。根据整个工艺流程的化学反应原理,可回收到的金属化合物有Al(OH)3、CoCO3、Li2SO4三种。【考点定位】工艺流程、电化学、离子方程式

锂离子电池安全影响因素

锂离子电池安全问题概述 关键词:热稳定性;电解液;电极;锂离子电池 Abstract: Safety issues have been the main obstacle to restrict lithium ion batteries to large scale and high energy density. Safety problems of lithium ion batteries were summarized in this paper. The reasons of the problems were analyzed from thermal runaway and the flammability of organic electrtolyte. Thermal runaway could be supressed by increasing the thermal stability of electrode materials, and combustion and explosion may be prevented by using high safety electrolyte system. Key words: thermal stability; electrolyte; electrode; lithium ion battery 1,背景 锂离子电池由于具有能量密度高、输出电压高、循环寿命长、环境污染小等优点,在小型数码电子产品中获得了广泛应用,在电动汽车、航空航天等领域也具有广阔的应用前景。然而,近年来用于手机、数码相机和笔记本电脑中的锂离子电池爆炸伤人事件已经屡见不鲜,锂离子电池的安全问题引起人们广泛的关注。仅2009年5月份就发生了若干起与锂离子电池相关的安全事故,其中包括HTC Touch Pro原装电池燃烧事件,以及惠普笔记本电脑电池召回事件。惠普公司给出的召回原因是那些电池存在过热起火和烫伤消费者的隐患,据说该电池组发生过至少两起事故,主要是因为电池过热、破裂导致起火。目前报道的锂离子电池安全问题集中发生在用于数码产品上的小型锂离子电池,与手机电池相比,笔记本电脑电池由于容量更高,出现问题的几率也相对较高;而用于交通工具上大型的动力电池或电池组,其安全问题更为突出,目前安全问题已成为制约锂离子电池向大型化、高能化方向发展的瓶颈。 2安全问题原因分析 2.1 电池系统的安全问题 锂离子电池作为一个系统,其安全问题主要源于滥用情况下热失控的发生。电池系统的热失控即为系统产生的热量大于释放的热量而导致热量积累,温度迅速升高的过程[1]。锂离子电池发生热失控,主要是由电极和电解液间的化学反应引起。电解液通常使用的溶剂为有机碳酸酯类化合物,它们具有高活性,极易燃烧。处于充电态的电池正极材料为强氧化性化合物,同时处于充电态的负极材料为强还原性化合物。在滥用情况下,如过充、过热和短路等,强氧化性正极材料稳定性通常较差,易释放出氧气,而碳酸酯极易与氧气反应,放出大量的热和气体;产生的热量会进一步加速正极的分解,产生更多的氧气,促进更多放热反应的进行;同时强还原性负极的活泼性接近金属锂,与氧接触会立即燃烧并引燃电解液、隔膜

锂电池及其应用前景

锂电池及其应用 姓名:高雷学号:20075040007 单位:物理电子工程学院专业:物理学 指导老师:罗永松职称:教授 摘要:本文主要讲述了锂电池及其应用,并对其应用前景进行了展望,希望能引起人们对锂电池进一步研究的关注。 关键词:锂电池;应用;应用前景 Lithium battery and its application Abstract:It is mainly described in this paper that the lithium battery and the application of lithium, and its application prospect, expect to arouse interest for further research on lithium batteries. Key Words:Lithium Battery;Application;Prospects 引言 随着微电子技术的发展,小型化的设备日益增多,对电源提出了很高的要求。锂电池凭借着其在诸多方面卓越的性能被人们广泛的应用于很多方面[1],例如手机、掌上电脑、笔记本电脑、电动工具、电动车、路灯备用电源、航行灯、摄像机、照相机、家用小电器甚至军事装备及卫星上。锂电池也被人们称之为“最有应用前途的化学电源”,甚至称为“极限电池”或“最后一代电池”[2]。 1. 锂电池简介 1.1锂电池的原理 锂电池全称为锂离子电池,但是人们习惯上把锂离子电池称为锂电池,现在锂电池已经称为了主流电池。 锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质的电池[3]。最早出现的锂电池使用以下反应:Li+MnO2=LiMnO2,该反应为氧化还原反应。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存及使用对环境要求非常高,所以锂电池生产要在特殊的环境条件下进行,后来就出现了锂离子蓄电池。 日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池[4],锂离子蓄电池中不使用诸如铅酸蓄电池或镍氢蓄电池的水溶液为电解液,而是使用有机电

3C领域的锂电池应用-3

专题:3C领域对锂电池的需求 主要结论: 1,到2015年,3C领域对锂的需求平均增速18% 2,长期来看锂电池被新技术替代是必然,但是在近3-5年内不必过分担心 一、锂电池简介 一个典型的锂离子电池主要由正极、负极、隔膜和电解液四部分组成。锂离子二次电池的正极为钴酸锂、锰酸锂等锂化合物的粉体,涂覆在铝箔上;负极为石墨或其它材料(钛酸锂等),涂覆在铜箔上;正负极之间用一层多孔塑料膜隔开,通常采用微孔聚丙烯(PP)和聚乙烯(PE)或两者的复合膜(PE-PP-PE);正负极和隔膜一般浸在溶有LiPF6或者LiAsF6电解质的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合溶剂形成的电解液中。 图1 锂离子电池的构成 数据来源:天弘基金 (一)锂电池正极 最早的商业化应用的锂电池正极材料是钴酸锂,由于其比容量高、循环次数长,被广泛应用于对比容量要求较高的消费类电子品中(目前的固态锂电池的正极大多也是用钴酸锂的)。但是,随着钴酸锂的使用和锂电需求领域的扩展,钴酸锂的问题也就暴露出来:首先是其安全性比较差,在高温工作、隔膜破损等情况下,甚至会发生爆炸;其次,钴资源稀缺,导致钴酸锂造价昂贵,应用于大型电池领域的成本太高。为此,后来市场中又出现了许多其他锂化合物正极。 其中,具有橄榄石结构的磷酸铁锂是较早出现的材料,不仅价格便宜,而且安全性和稳定性好,隔膜穿刺也不会发生爆炸。但是磷酸铁锂的问题在于其比容量低、正极材料振实密度低(只有0.8-1.3,钴酸锂的一般会在2.5以上),所以体积是限制其未来发展的最大问题。 另一个致力于解决钴酸锂成本问题的方案是发展镍酸锂。镍酸锂的晶体构造与钴酸锂类似,理论比容量与钴酸锂相当,但是镍的价格只有钴的一半,是理想的替代钴酸锂的材料。

锂离子电池简介及主要应用

锂离子电池简介及主要 应用 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

锂离子电池简介 使用煤炭,石油和天然气的很长一段时间以来,都是以化石燃料为主要能源,这样的能源结构,使得环境污染严重,并且由此导致的全球变暖问题和生态环境恶化问题受到越来越多的关注。所以,可再生能源和新能源的发展成为在未来技术领域和未来经济世界的一个最具有决定性的影响。锂离子电池作为一种新的二次清洁,且可再生能源,其具有工作电压高,质量轻,能量密度大等优点,在电动工具,数码相机,手机,笔记本电脑等领域得到了广泛的应用,并且显示出强大的发展趋势。 锂离子电池的发展历史 第二十世纪六十、七十年代,几乎在锂电池是发明的同时,研究发现许多插层化合物可以与金属锂的可逆反应,构成锂电池[1]。早在第二十世纪七十年代提出了分层组织作为阴极的斯梯尔最有代表性的一种,金属锂作为阳极的Li-TiS2系统。 1976年Whittingham证实了系统的可靠性。随后,埃克森公司的Li-TiS2系统进行深入研究,并希望其商业化。但是,系统很快就暴露出许多致命的缺陷。首先,活性金属锂容易导致有机电解液的分解,导致电池内部压力。由于锂电极表面的表面电位分布不均匀,在锂金属的电荷将在锂沉积的阴极,产生锂“枝晶”。一方面会造成可逆嵌锂容量损失,另一方面,枝晶可以穿透隔膜和负极连接,造成电池内部短路,瞬间吸收大量的热,发生爆炸,导致严重的安全隐患。这一系列因素导致金属锂电池的循环性能和安全两差异,所以Li-TiS2系统未能实现商业化。 1980,阿尔芒首次提出摇椅电池的想法。使用低锂嵌入化合物锂化合物代替金属锂作为阳极,采用高嵌锂电位嵌锂化合物作正极。同年,在美国德州大学Goodenough教授的国家提出了一系列的锂过渡金属氧化物LixMO2(M=Co 、Ni或Mn)为两电池正极材料锂。

相关文档
相关文档 最新文档