文档库 最新最全的文档下载
当前位置:文档库 › 复变函数练习题习题

复变函数练习题习题

复变函数练习题习题
复变函数练习题习题

复变函数练习题习题

习题 5.求下列函数的极限,其中z?0. f1(z)?zRe(z)/|z| 解:因为zRe(z)lim|f1(z)|?lim||?lim|Re(z)|?0

z?0z?0z?0|z|所以教材节的定理1知limf1(z)?0. z?0 另解:设z?x?iy(x,y?R),则zRe(z)(x?iy)xf1(z)???22|z|x?y因为x222x?y?ixyx?y

220?x222x?y|xy|??22x?y?|x|,

0?xyx?y22|xy|?x?y|xy|222?|x|,2x?y

所以夹边法则得 1 limx?0y?0x222x?y?0,

limx?0y?0|xy|x?y22?0,limx?0y?0xyx?y22 ?0所以limf1(z)?limz?0x?0y?0x222x?y?ilimx?0y? 0xyx?y22?0?0?0 注1:极限存在是对趋向于极限点的任意路径极限都存在,不能仅对特殊路径证明,所以不

能设y?kx?0来证明极限存在!注2:设z?r(cos??isin?),则zrcos?limf1(z)?lim?limzcos??0?

z?0z?0z?0r此处?与z有关,不能直接得到极限,需要进一步将z?r(cos??isin?)带入再求极限. 2 f2(z)?Re(z)/|z| 解:设z?x?iy(x,y?R),当z沿任意射线y?kx(x?0)趋向零时有z?x?ikx?0,这时有Re(z)f2(z)??|z|xx?(kx)22?11?k2?11?k2极限与k有关,即与路径有关,所以当z?0时,f2(z)?Re(z)/|z|的极限不存在. 另解:设z?r(cos??isin?)(r,??R),当z沿任意射线???0趋向零时有z?r(cos?0?isin?0)?0即r?0,这时有Re(z)rcos?0f2(z)???cos?0?cos?0 |z|r极限与?0有关,即与路径有关,所以当z?0时,f2(z)?Re(z)/|z|的极限不存在.

3 f3(z)?Re(z)/(1?z) 解:Re(z)limf3(z)?limz?0z?01?zlimRe(z)z?0 ?lim(1?z)z?0 0??01 6.设f(z)在点z0连续且f(z0)?0,试证明存在

z0的一个邻域使在该邻域内恒有f(z)?0. 证明:因为f(z)在点z0连续,连续定义知???0,??(?)?0,当|z?z0|??时,有|f(z)?f(z0)|??. 因为f(z0)?0,可取??|f(z0)|?0,则存在?0??(|f(z0)|)?0,对于z0的邻域{z:|z?z0|??0}中任意一点z,有|f(z)?f(z0)|?|f(z0)|.于 4 ||f(z)|?|f(z0)||?|f(z)?f(z0)|,则对于上述邻域中的z,有||f(z)|?|f(z0)||?|f(z0)|??|f(z0)|?|f(z)|?|f( z0)|?|f(z0)|?0?|f(z)|?2|f(z0)|这表明存在z0的邻域,使在该邻域内|f(z)|恒正,即在该邻域内恒有f(z)?0. 注:复数不能比较大小,所以出现z?0,z?z0,f(z)?f(z0)??,f(z)?f(z0)???等等是极其错误的. 5

复变函数试题及答案

1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 22 22= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11--的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得 z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数

4、根式31-的值之一是( ) A i 2321- B 2 23i - C 223i +- D i 2321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =-12 3z z dz B ? =-1 2 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β C )1(>--=a a z a z e w i β D )1(<--=a a z a z e w i β 三、判断题(每小题2分)

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数综合练习

综合练习一 1、 设| |1,|| 1.a z <<证明: (i )| |1; 1z a az -<- (ii ) 22 2 2 (1||)(1||) 1||;1|1| z a a z az az ----= -- (iii )|||| ||||| || |1 1|||| 1|||| 1z a z a z a a z a z az --+≤≤ <-+- 2、 设12 12,,,,,,n n z z z ωωω 是任意2n 个复数,证明复数形式 的Lagrange 恒等式: 2 2 2 2 1 1 1 1||(||)(||)|| n n n j j j j j k k j j j j j k n z z z z ωωωω===≤<≤=- -∑∑∑∑ , 并由此推出Cauchy 不等式: 2 2 2 1 1 1 ||(||)(||). n n n j j j j j j j z z ωω===≤∑∑∑ 不等式中等号成立的条件是什么? 3、设12,,,n z z z 是任意n 个复数,证明必有{1,2,,}n 的子集E 使得 1 1 ||||. 6 n j j j E j z z ∈=≥ ∑∑ 4、设无穷三角阵 11212231 32 33 a a a a a a 满足 (i )对任意固定的k ,lim nk k n a a →∞ =存在; (ii ) 1 lim n nk n k a →∞ =∑存在; (iii ) 1 ||,. n nk k a M n =≤<∞?∈∑ 证明:若复数列{}n z 收敛,则1lim n nk k n k a z →∞=∑存在。 5、证明:若E ? 即是开集又是闭集,则E =?或.E = 6、设E 是非空点集,0ε>。若对于E 中的任意两个点,a b , 存在E 中的有限个点 01,,,,n a z z z b == 使得 1||k k z z ε--<成立(1)k n ≤≤,则称E 为ε-连通的。证明:紧集连通的充要条件是,对任意0ε>它都是ε-连通的。举例说 明将紧集改为闭集后结论不再成立。 7、设D 是 中的域,()f H D ∈,f 在D 中不取零值。证明:对任意0,p >有 22 222 22|()||()||()|.p p f z p f z f z x y -????'+= ????? 8、设D 是 中的域,1 ()f u iv C D =+∈。证明: 2 2 ||| |. u u x y f f v v z z x y ??????=-?????? 特别地,当()f H D ∈时,有 2 ||. u u x y f v v x y ????'=???? 9、设f 在(0,1){1}B 上全纯,并且 ((0,1))(0,1),(1)1,f B B f ?= 证明(1)0.f '≥ 10、设((0,1)),f H B ∈如果存在0(0,1)\{0}z B ∈,使得 0000|||| ()0,()0,|()|max |()|, z z f z f z f z f z ≤'≠≠=且那么000() 0. () z f z f z '> 11、证明(0,1)B 是 2 ()1z f z z = -的单叶性域,并求出 ((0,1))f B 。 12、求一单叶全纯映射,把 11(,)22B - 和11 (,)22B 的外部除去线 段[2,0]i -所成的域映为上半平面。 13、设0,(0,)r R f B r <<在中全纯。证明: (i ) 20 1(0)(); 2i f f re d πθ θπ=? (ii )2 ||1 (0)(). z r f f z dxdy r π<= ? 14、设 u 是 (0,)B R 中的调和函数, 0.r R <<证明: 20 1(0)(). 2i u u r e d π θ θπ = ? 15 、 ( Schwarz 积 分 公 式 ) 设 ((0,) ) (( 0, f H B R C B R f ∈=+ 证明: 20 1Re ()(Re )(0). 2Re i i i z f z u d iv z θ πθ θ θπ += +-? 16、设 f 是域 D 上的连续函数,如果对于任意边界和内部都位 于D 中的弓形域G ,总有()0 G f z dz ?=? ,那么f 是D 上 的全纯函数。如果把弓形域换成圆盘,结论是否仍然成立? 17、证明:幂级数 00 () n n n a z z ∞ =-∑在域D 上一致收敛,当且仅

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

【填空题】《复变函数与积分变换》期末练习题

2020届《复变函数与积分变换》练习题 填空题 1.若 ()f z u iv =+可导,则()f z ¢ = . 2.设()t d 是单位脉冲函数,则()t d 轾=臌 . 3.复变函数3()z f z e =的周期为 . 4.曲线积分3 4sin ()z z dz z p == -ò? . 5.已知复变函数 22()3326f z x y xyi =--+,若z x iy =+,则()f z 关于变量z 的 表达式为 . 6.复变函数()z f z e =的周期为 . 7. 若()f z u iv =+可导,则()f z ¢= . 8.计算乘幂 = . 9.曲线积分24cos ()z z dz z π== -?? . 10. 已知222211()(1)(1)f z x iy x y x y =+ +-++,若z x iy =+,则复变函数()z f 关于变 量z 的表达式为 . 11. ()=+51i ________. 12. 当=a ________,函数)72(2)(y x i y ax z f +-++=为复平面上的一个解析函数. 13. 复数6cos 6sin π πi z +-=的指数形式为=z ________________. 14. 函数t t f 7sin )(=的Fourier 变换为________________. 18. =?+∞ -tdt e t 2cos 04________________. 19. =i 1________.

20. 当=a ________,函数)9()(y x i ay x z f ++-=为复平面上的一个解析函数. 21. 复数32cos 32sin ππi z +=的指数形式为=z ________________. 22. 函数t t f 5sin )(=的Fourier 变换为________________. 23. =?+∞-tdt e t 2cos 03________________. 24.公式cos sin ix e x i x =+称为_____________________. 25.函数()f z Lnz =的奇点之集为_____________________. 26. ()+t dt δ∞∞=?— ___________. 27.复变函数3()z f z e =的周期为 . 28.若21(1)1n n n z i n n +=++-,则lim n n z =___________. 29.设34z i =+,则2z e = . 30.函数()cos 6f t t =的傅立叶变换[cos 6]F t = . 31.xyi y x z f 2)(22+-=的导数=')(z f . 32.已知复变函数 22()3326f z x y xyi =--+,若z x iy =+,则()f z 关于变量z 的 表达式为 . 33.=+i i )1(____________________. 34. 当=a _____,=b _____,函数)9()(2y x i ay bx z f ++-=为复平面上的一个解析函数. 35. =-)33(i Ln _______________.

复变函数习题及解答

第一章 复变函数习题及解答 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π2π,0,1,2,3k k +=±±L ;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 计算下列复数 (1 (2 答案 (1 (2)(/62/3) i n e ππ+ 已知x

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P Λ的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()() z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π =所以 4 ,4,(0,1,2,)n k n k k ππ===±±L 将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ 答案 53244235 (1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθ θθθθθ-+-+ 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有 对于复数 ,k k αβ,证明复数形式的柯西(Cauchy)不等式:

复变函数试题与答案

复变函数试题与答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 321+- (D )i 2 1 23+- 3.复数)2 (tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ) )]2 3sin()23[cos( sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小

5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i -- 4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无 界闭区域 10.方程232=-+i z 所代表的曲线是( )

复变函数练习册(全套)

第一章 复数与复变函数 一、选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足arg(2)3z π+=,5arg(2)6z π -=,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 1 23+- 3.一个向量顺时针旋转3 π ,对应的复数为i 31-,则原向量对应的复数( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 4.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 5.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 6.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续 (D )),(),(y x v y x u +在),(00y x 处连续 学号:____________ 姓名:______________ 班级:_____________

二、填空题 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.复数2 2 )3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 4.方程i z i z +-=-+221所表示的曲线是连接点 和 的线 段的垂直平分线 5.=+++→)21(lim 421z z i z 三、将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ 四、求下列各式的值: (1)5( 3)i - (2)100100(1)(1)i i ++- (3)1i + 五、解方程:5 ()1z i +=

复变函数习题解答(第6章)

p269第六章习题(一) [ 7, 8, 9, 10, 11, 12, 13, 14 ] 7.从 Ceiz /√zdz出发,其中C是如图所示之周线(√z沿正实轴取正值),证明:(0, +)cosx/√xdx= (0, +)sinx/√xdx=√(/2). 【解】| C(R)eiz /√zdz| C(R)| eiz |/R1/2 ds = [0,/2]| ei(cos+isin) |/R1/2 ·R d Ri = [0,/2]| e Rsin |R1/2 d

R R1/2 [0,/2]e Rsin d. 由sin2/([0,/2] ),故R1/2 [0,/2]e Rsin d R1/2 [0,/2]e(2R/) d C r ri = (/(2R1/2 ))(1–e R )/(2R1/2

所以,| C(R)eiz /√zdz|0 (asR+).rR而由| C(r)eiz /√zdz|(/(2r1/2 ))(1–e r ) 知| C(r)eiz /√zdz|0 (asr0+ ). 当r0+ ,R+时, [r,R]eiz /√zdz= [r,R]eix /√xdx= [r,R](cosx+isinx)/√xdx

(0, +)cosx/√xdx+i (0, +)sinx/√xdx. [ri,Ri]eiz /√zdz= [r,R]ei(iy) /√(iy)idy= [r,R]e y ei/4 /√ydy. = (1 +i)/√2 · [r,R]e y /√ydy= 2(1 +i)/√2 · [√r,√R]e u^2 du (1 +i)√2 · (0, +)e u^2 du= (1 +i)√2 ·√/2 = (1 +i)√(/2).由Cauchy积分定理, Ceiz

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

复变函数

1. 一个项目的输入输出端口是定义在 A 。 A. 实体中 B. 结构体中 C. 任何位置 D. 进程体 2. 描述项目具有逻辑功能的是 B 。 A. 实体 B. 结构体 C. 配置 D. 进程 3. 关键字ARCHITECTURE定义的是 A 。 A. 结构体 B. 进程 C. 实体 D. 配置 4. MAXPLUSII中编译VHDL源程序时要求 C 。 A.文件名和实体可以不同 B. 文件名和实体名无关 C. 文件名和实体名要相同 D . 不确定 5. 1987标准的VHDL语言对大小写是 D 。 A. 敏感的 B. 只能用小写 C. 只能用大写 D. 不敏感 6. 关于1987标准的VHDL语言中,标识符描述正确的是 A 。 A必须以英文字母开头B可以使用汉字开头C可以使用数字开D任何字符都可以 7. 关于1987标准的VHDL语言中,标识符描述正确的是 B 。 A下划线可以连用B下划线不能连用 C不能使用下划线 D可以使用任何字符 8. 符合1987VHDL标准的标识符是 A 。 A. A_2 B. A+2 C. 2A D. 22 9. 符合1987VHDL标准的标识符是 A 。 A. a_2_3 B. a_____2 C. 2_2_a D. 2a 10. 不符合1987VHDL标准的标识符是 C 。 A. a_1_in B. a_in_2 C. 2_a D. asd_1 11. 不符合1987VHDL标准的标识符是 D 。 A. a2b2 B. a1b1 C. ad12 D. %50 12. VHDL语言中变量定义的位置是 D 。 A. 实体中中任何位置 B. 实体中特定位置 C. 结构体中任何位置 D. 结构体中特定位置 13. VHDL语言中信号定义的位置是 D 。 A. 实体中任何位置 B. 实体中特定位置 C. 结构体中任何位置 D. 结构体中特定位置 14. 变量是局部量可以写在 B 。 A. 实体中 B. 进程中 C. 线粒体 D. 种子体中 15. 变量和信号的描述正确的是 A 。 A. 变量赋值号是:= B. 信号赋值号是:= C. 变量赋值号是<= D. 二者没有区别 16. 变量和信号的描述正确的是 B A. 变量可以带出进程 B. 信号可以带出进程 C. 信号不能带出进程 D. 二者没有区别 17. 关于VHDL数据类型,正确的是 C 。 A. 数据类型不同不能进行运算 B. 数据类型相同才能进行运算 C. 数据类型相同或相符就可以运算 D. 运算与数据类型无关 18. 下面数据中属于实数的是 A 。 A. 4.2 B. 3 C. ‘1’ D. “11011” 19. 下面数据中属于位矢量的是 D 。 A. 4.2 B. 3 C. ‘1’ D. “11011” 20. 关于VHDL数据类型,正确的是 B 。 A. 用户不能定义子类型 B. 用户可以定义子类型 C. 用户可以定义任何类型的数据 D. 前面三个答案都

复变函数课后习题答案(全)

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1 -+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤解:(1)2 cos sin 22 i i i e π ππ =+=

(2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+- )sin()](cos2sin 2)12 12 i i π π θθ=- +- + (2)12 )sin(2)]12 12 i i π θπ π θθ- =- +- =

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分? +i dz z 30 2 。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 () ()()?? +=??????+=+= +1 3 1 332 3 30 2 3313313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 33 2 3 2 33131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t i d t dz = () ()()33 1 31 2 33 2 3313313313-+=??????+=+= ?? +i it idt it dz z i ()()()33 3 3 1 02 30 2 30 2 33 13 3 133 133 13i i idt it dt t dz z i += - ++ = ++ = ∴ ?? ? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t i d t dz = ()()31 31 20 2 3131i it idt it dz z i =??? ???== ? ? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = () ()()33 1 31 2 32 3113131i i i t dt i t dz z i i -+=??????+=+= ?? + ()()33 3 3 32 2 30 2 13 13 113 13 1i i i i dz z dz z dz z i i i i += - ++ = + = ∴ ? ? ? ++ 2. 分别沿x y =与2 x y =算出积分()? ++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=? ???? ???? ??++=++=+∴ ? ?+i i x i x i dx ix x i dz iy x i 213112131111 0231 210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 0432 10 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 6 5 6121213131213 11+-=-++=??? ??+ +

第一章复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3k k +=±±;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 1.2 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1) (2)(/62/3) i n e ππ+ 1.4 已知x 的实部和虚部.

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 22 1,(p q pq p x q x ?-=??=??=±==±+ 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1() ()1||||| |||||||1()az b az b az b z az b az b z bz a bz a z z bzz az b az b az +++++=====+++++ 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 ()( ) 00i i =≡+=+b a P b a P 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.

复变函数与积分变换(练习题) (答案)

复变函数与积分变换 第一章 练习题 1. 计算 (1)(2) i i i --; 解:(1) 10 3) 31)(31()31(312 3) 2)(1(2 i i i i i i i i i i i i i +-= +-+= -= +-= --; (2)10 310 ) 2)(1() 2)(2(1)1)(1()2)(1() 2)(1(i i i i i i i i i i i i i +-= ---= ----------= --。 2. 解方程组1212 2(1)43z z i i z iz i -=??++=-?; 解:消元法,)2()1(+?i 得:i z i 33)31(1-=+, 解得:5 63) 31)(31()31)(33(31331i i i i i i i z --= -+--= +-= , 代入)1(得:5 1765 6322i i i z --= ---? =。 3.求1i --、13i -+的模与辐角的主值; 解:]arg arctan arctan ,arctan arg ππππ,(,,三 ,二一,四 -∈??? ? ? ???? -+=z x y x y x y z , ?? ? ???-+-= --)43s i n ()43c o s (21ππi i ; [])3a r c t a n s i n ()3a r c t a n c o s (1031-+-= +-ππi i 。 4 .用复数的三角表示计算3 12?? - ? ??? 、; 解:1)sin()cos()3cos()3cos(2313 3 -=-+-=??? ?? -+-=??? ? ??-ππππi i i ; 3,2,1,0,424 3s i n 4243c o s 2)43s i n 43(c o s 2283 4 1 =???? ? ? ? ? +++=?? ??? ? +k k i k i ππππππ,

复变函数及积分变换试题及答案

第一套 第一套 一、选择题(每小题3分,共21分) 1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。 A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。 2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。 A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C + 3. 2|2|1(2)z dz z -==-?( ) 。 A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。 A. 1 01 ()2()n n f d c i z ξξ πξ+= -? B. 0()!n n f z c n = C. 2 01()2n k f d c i z ξξπξ= -? D. 210! ()2()n n k n f d c i z ξξ πξ+= -? 5. z=0是函数z z sin 2 的( )。 A.本性奇点 B.极点 C. 连续点 D.可去奇点 6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。 A.1 z z w -= B. z 1z w -= C. z z 1w -= D. z 11 w -= 7. sin kt =()L ( ),(()Re 0s >)。 A. 22k s k +; B.22k s s +; C. k s -1; D. k s 1 . 二、填空题(每小题3分,共18分) 1. 23 (1)i += [1] ; ---------------------------------------- 装 --------------------------------------订 ------------------------------------- 线 ----------------------------------------------------

相关文档
相关文档 最新文档