文档库 最新最全的文档下载
当前位置:文档库 › 吸附动力学

吸附动力学

吸附动力学
吸附动力学

一.单一化合物的吸附等温模型

单一化合物的吸附等温模型是基于下述三种方法提出:

1、Langmuir法:Langmuir于1918年提出这种方法,他假设吸附体系是

处于动态平衡的,其中蒸发速率等于凝结速率;另外,公式是在单分子层吸附条件下推导出来的。在Langmuir 法基础上又可推出其它的等温线模型,如Freundlich等温线,它的适用性有限;基于Langmuir模型的扩展而来的BET方程,虽适用于多分子层吸附,但是由于它的数学表达式过于复杂和它不能应用于临界条件下的吸附,所以很少用BET方程关联吸附数据,它主要用于吸附剂比表面积的计算。

2、Gibbs法:这种方法利用Gibbs 吸附等温线-Adπ+ndμ=0,式中π是铺展压力(即表面压力),A 是表面积,n是摩尔数,μ是化学位。将Gibbs方程积分可求出等温线。此方程的参数不易得到,使用不方便,在实际工程应用中很少用它。

3位势理论(势论):

Polanyi在1914年左右提出了他的势能模型。他把吸附体系看成与行星的大气圈相类似,由于位势场的作用气体分子朝向固体表面逐渐变浓,因而Polanyi设想吸附力的作用范围远超过单个分子直径大小,而且这种吸附力不会因为有一层吸附物存在而被完全屏蔽掉。因此,可认为在固体的表面外存在一个吸附势能场,气体分子“落入”势能场内就被吸附,形成一个包括多层分子的吸附空间。若在固体表面的吸附空间中,把吸附势能相等的点连起来就可画出一系列等势能面,如图。

表面层截面图中虚线所示任何两个等势能面之间的空间都相应于一定体积。这样对于给定的的气固体系而言,位势场ε和表面上方的体积W 之间有一定的关系W= f (ε);这个函数实际上也是气体分子间的分布函数。随着离开表面的距离增加,热能降低,而吸附层体积增大,热能从固体表面的最大值ε0降到吸附层最外端(气体体相)处为零,相应地吸附层从体积为零增大到整个吸附空间的总体积W 0。

(二)特性曲线

Polanyi 还假定吸附势能在很广泛的温度范围内可视为与温度无关,即

W

T ??? ???ε?=0。所以W = f (ε)函数关系对已知气体可代表一切温度下的情况,所以称为特性吸附函数,如画成曲线就称为特性吸附曲线,如图,即吸附势与吸附剂表面及各等势面之间的吸附

空间容积的关系曲线。特性曲线取决于吸附质种类,同时两种不同物质在吸附空间容积相同时,它们的纵坐标或吸附势ε的比值是恒定的,并以β值(称为亲和系数)表示,见式1。

3214

εεβεε===L L (1) 两条曲线的特性方程式的区别在于一固定的乘数β,即如果表示第一种物质的特性曲线为ε1= f (W ),则第二种物质为ε2=β·f (W ),或

β=εε12。 取近似值可认为:W = nV m ,式中n 为摩尔数,V m 为摩尔体积。在恒温条件下,吸附力将1 mol 分子蒸气自吸附力实际上不再起作用的地方吸至吸附质表面所做的功,等于1 mol 分子蒸气自体积V 恒温压缩到V 0所做的功,见式(2)或(3)。

ε= RT 0

V V ln (2) 或 ε= RT P P ln

0 (3)

(完整版)BET吸附-脱附曲线分析及含义

气体吸附等温线通常分为六种,其中五种(I-V)是由国际理论与应用化学会(IUPAC)所定义的。I型等温线表示在低的相对压力(平衡蒸汽压与饱和蒸汽压的比值)时,材料具有很强的吸附能力进而达到平衡。I型等温线通常被认为是在微孔或者单层吸附的标志,由于强的吸附作用。(这可能也有化学吸附的作用,涉及到在吸附质与吸附剂表面的化学键作用,这里我们不讨论化学吸附)值得注意的是,孔的大小是根据他们的直径(或宽度)来进行分类的:微孔(小于2nm),中孔(2-50nm),大孔(大于50nm)。鉴于大多数多孔固体是使用非极性气体(N2 Ar)进行吸附研究的,所以不太可能出现化学吸附作用。因此,对于I型等温线的经典解释是材料具有微孔。然而,I型等温线也有可能是具有孔径尺寸非常接近微孔的介孔材料。尤其是N2在77K或者Ar在77K和87K圆柱孔情况下,I型等温线将在较低的相对压力(大约0.1作用)下达到平衡对于材料是微孔,从最近的一些报道结果得出的。因此,当I型等温线没有在相对压力0.1处达到平衡,该材料有可能存在大量的中孔或者就是单独的中孔。然而,这种I型分布有可能在某种程度上介孔孔径分布范围变宽。这是因为分布高度均匀圆柱孔的材料可能展示出在相对压力低于0.1或者更小时,可以在吸附等温线被识别(因此,这些等温线可以被分类成IV型等温线,下面我们会讨论)。 尽管,接近饱和蒸汽压的多层可能会十分不连续,但大孔材料大多是通过随着相对压力增加时,吸附量逐渐地增加的方式进行多层吸附。这种不受限制的多层形成过产生了II型和III型等温线。在这种情况下,吸附-脱附曲线重合;也就是说,没有发生滞后现象。这主要取决于所测试的材料的性质,II型等温线是单层形成的明显特征,否则是在整个压力范围内都是凸起的III型等温线。后者的行为可以观察到在吸附分子与吸附剂表面和被吸附物作比

吸附动力学和热力学各模型公式及特点

吸附动力学和热力学各模 型公式及特点 Newly compiled on November 23, 2020

分配系数 K d = (C 0?C e )V C e m 吸附量 Q t =C 0?C t m ×V Langmiur Q e =Q m K L C e 1+K L C e C e Q e =1Q m K L +C e Q m KL 是个常数与吸附剂结合位点的亲和力有关,该模型只对均匀表面有效 Freundlich Q e =K F C e 1/n lnQ e =lnK F +1n lnC e Ce 反应达到平衡时溶液中残留溶质的浓度 KF 和n 是Freundlich 常数,其中KF 与吸附剂的吸附亲和力大小有关,n 指示吸附过程的支持力。1/n 越小吸附性能越好一般认为其在~时,吸附比较容易;大于2时,难以吸附。 应用最普遍,但是它适用于高度不均匀表面,而且仅对限制浓度范围(低浓度)的吸附数据有效 一级动力学1(1)k t t e q q e -=- Q t =Q e (1?e ?K 1t ) 线性 ln (Q e ?Q t )=lnQ e ?K 1t 二级动力学 2221e t e k q t q k q t =+ Q t =K 2Q e 2t 2e 线性 t Q t =1K 2Q e 2+t Q e

初始吸附速度V0=K2Q e2 Elovich 动力学模型 Q t=a+blnt Webber-Morris动力学模型 Q t=K ip t1/2+c Boyd kinetic plot Q t Q e =1? 6×exp?K B t π6 令F=Q t/Q e, K B t=(1-F) 准一级模型基于假定吸附受扩散步骤控制; 准二级动力学模型假设吸附速率由吸附剂表面未被占有的吸附空位数目的平方值决定,吸附过程受化学吸附机理的控制,这种化学吸附涉及到吸附剂与吸附质之间的电子共用或电子转移; Webber-Morris动力学模型 粒子内扩散模型中,qt与t1/2进行线性拟合,如果直线通过原点,说明颗粒内扩散是控制吸附过程的限速步骤;如果不通过原点,吸附过程受其它吸附阶段的共同控制;该模型能够描述大多数吸附过程,但是,由于吸附初期和末期物质传递的差异,试验结果往往不能完全符合拟合直线通过原点的理想情况。粒子内扩散模型最适合描述物质在颗粒内部扩散过程的动力学,而对于颗粒表面、液体膜内扩散的过程往往不适合 Elovich 方程为一经验式,描述的是包括一系列反应机制的过程,如溶质在溶液体相或界面处的扩散、表面的活化与去活化作用等,它非常适用于反应过程中活化能变化较大的过程,如土壤和沉积物界面上的过程。此外,Elovich 方程还能够揭示其他动力学方程所忽视的数据的不规则性。 Elovich和双常数模型适合于复非均相的扩散过程。

吸附理论的提出与发展..

吸附技术原理与应用 结课报告 吸附理论的提出与发展

吸附理论的提出和发展 摘要吸附作用是一种界面现象,吸附技术的应用领域已渗透到各行各业中去。本文从吸附理论的发展历程出发,论述了研究吸附理论而得到的一些重要结论,重要的吸附模型的提出,适用条件及其适用范例,并描述了吸附理论的应用前景。关键词吸附作用发展历程重要结论吸附模型 引言 吸附作用是体相中某种或几种成分在界面上富集或贫化的一种最为基础的界面现象。吸附作用在工农业生产和日常生活中有许多直接应用。在石油化工、化学工业、气体工业和环境保护中,吸附是从气体和液体介质中除去杂质、污染物,使组分分离的一种方法。研究吸附作用有助于了解在界面上进行的各种物理化学过程的机理。这些过程包括物质的精制、脱色与染色、防湿与除臭、缓蚀与阻垢、润滑与摩擦、絮凝与聚集、除垢与洗涤等。作为最重要的工业助剂的表面活性剂应用原理的主要组成部分就是此类两亲性物质在各种界面上得吸附;应用吸附原理发展而成的各种色谱技术是重要的现代分析手段;多相催化中反应物的吸附与产物的脱附是催化反应的基本步骤;基于胶体化学原理发展起来的纳米粒子大小、形状的控制和自组装与表面活性剂特性吸附有关;固体支持体上生物膜半膜和固定化酶的模拟等吸附作用的广泛应用赋予其更加旺盛的生命力。吸附作用是胶体与界面科学最为基础的组成部分,也是最活跃的研究领域之一。 1 吸附理论的发展历程 我国胶体与表面化学的主要奠基人傅鹰在他的胶体科学绪论中说[1]:“一种科学的历史是那门科学的最宝贵的一部分。科学只给我们知识,而历史却给我们智慧。”因而,了解吸附研究的发展概况既可以使我们对前辈的优秀的研究成果得以继承,又可以在开拓新的研究领域中少走弯路。 吸附作用在生活与生产活动中应用的历史起源已不可考。例如,在远古时期人们可能已经知道草木灰、木炭可除去空气中的异味和湿气,这种应用延续至今。公元前5世纪古医学创始人Hippocrates就知道用炭可除去腐败伤口的污秽气味。这些都是气体在固体表面吸附的早期应用。我国考古工作者发现,在马王堆汉墓出土的帛画上有36种颜色,这实际上织物对燃料吸附的应用。

动力学和热力学各模型特点

动力学和热力学各模型特点 准一级模型基于假定吸附受扩散步骤控制; 准二级动力学模型假设吸附速率由吸附剂表面未被占有的吸附空位数目的平方值决定,吸附过程受化学吸附机理的控制,这种化学吸附涉及到吸附剂与吸附质之间的电子共用或电子转移; 粒子内扩散模型中,qt与t1/2进行线性拟合,如果直线通过原点,说明颗粒内扩散是控制吸附过程的限速步骤;如果不通过原点,吸附过程受其它吸附阶段的共同控制;该模型能够描述大多数吸附过程,但是,由于吸附初期和末期物质传递的差异,试验结果往往不能完全符合拟合直线通过原点的理想情况。粒子内扩散模型最适合描述物质在颗粒内部扩散过程的动力学,而对于颗粒表面、液体膜内扩散的过程往往不适合 Elovich 方程为一经验式,描述的是包括一系列反应机制的过程,如溶质在溶液体相或界面处的扩散、表面的活化与去活化作用等,它非常适用于反应过程中活化能变化较大的过程,如土壤和沉积物界面上的过程。此外,Elovich 方程还能够揭示其他动力学方程所忽视的数据的不规则性。 Elovich和双常数模型适合于复非均相的扩散过程。 Langmuir模型假定吸附剂表面均匀,吸附质之间没有相互作用,吸附是单层吸附,即吸附只发生在吸附剂的外表面。Qm 为饱和吸附量,表示单位吸附剂表面,全部铺满单分子层吸附剂时的吸附量;该模型的假设对实验条件的变化比较敏感,一旦条件发生变化,模型参数则要作相应的改变,因此该模型只能适用于单分子层化学吸附的情况。Langmuir 等温吸附模型作为第一个对吸附机理做了生动形象描述的模型,为以后其他吸附模型的建立起到了奠基作用。 Freundlich 吸附方程既可以应用于单层吸附,也可以应用于不均匀表面的吸附情况。Freundlich 吸附方程作为一个不均匀表面的经验吸附等温式,既能很好的描述不均匀表面的吸附机理,更适用于低浓度的吸附情况,它能够在更广的浓度范围内很好地解释实验结果。但是,Freundlich 吸附方程的缺点则是不能得出一个最大吸附量,无法估算在参数的浓度范围以外的吸附作用。由于Freundlich 等温吸附方程受低浓度的限制,而Langmuir 等温吸附方程则受高浓度的限制。Redlich–Peterson 等温吸附方程则是综合Freundlich 等温吸附方程和Langmuir 等温吸附方程而提出的较合理的经验方程。A 是一个与吸附量有关的常数,B 也是一个与吸附能力有关的经验常数,指数g 为介于0 和1 之间的经验常数。避免了吸附过程受浓度限制的影响。 Langmuir 方程适用于均匀表面的吸附,而Freundlich 方程和Temkin 方程适用于不均匀表面的吸附

吸附动力学和热力学各模型公式及特点

分配系数 吸附量 Langmiur KL 是个常数与吸附剂结合位点的亲和力有关,该模型只对均匀表面有效 Freundlich Ce 反应达到平衡时溶液中残留溶质的浓度 KF 和n 是Freundlich 常数,其中KF 与吸附剂的吸附亲和力大小有关,n 指示吸附过程的支持力。1/n 越小吸附性能越好一般认为其在0.1~0.5时,吸附比较容易;大于2时,难以吸附。 应用最普遍,但是它适用于高度不均匀表面,而且仅对限制浓度范围(低浓度)的吸附数据有效 一级动力学1(1)k t t e q q e -=- 线性

二级动力学 2 221e t e k q t q k q t =+ 线性 初始吸附速度 Elovich 动力学模型 Webber-Morris 动力学模型 Boyd kinetic plot 令F=Q t /Q e, K B t=-0.498-ln(1-F) 准一级模型基于假定吸附受扩散步骤控制; 准二级动力学模型假设吸附速率由吸附剂表面未被占有的吸附空位数目的平方值决定,吸附过程受化学吸附机理的控制,这种化学吸附涉及到吸附剂与吸附质之间的电子共用或电子转移; Webber-Morris 动力学模型 粒子内扩散模型中,qt 与t1/2进行线性拟合,如果直线通过原点,说明颗粒内扩散是控制吸附过程的限速步骤;如果不通过原点,吸附过程受其它吸附阶段的共同控制;该模型能够描述大多数吸附过程,但是,由于吸附初期和末期物质传递的差异,试验结果往往不能完全符合拟合直线通过原点的理想情况。粒子内扩散模型最适合描述物质在颗粒内部扩散过程的动力学,而对于颗粒表面、液体膜内扩散的过程往往不适合

(完整版)吸附动力学和热力学各模型公式及特点

分配系数 K d = (C 0?C e )V C e m 吸附量 Q t = C 0?C t m ×V Langmiur Q e =Q m K L C e 1+K L C e C e Q e =1Q m K L +C e Q m KL 是个常数与吸附剂结合位点的亲和力有关,该模型只对均匀表面有效 Freundlich Q e =K F C e 1/n lnQ e =lnK F +1n lnC e Ce 反应达到平衡时溶液中残留溶质的浓度 KF 和n 是Freundlich 常数,其中KF 与吸附剂的吸附亲和力大小有关,n 指示吸附过程的支持力。1/n 越小吸附性能越好一般认为其在0.1~0.5时,吸附比较容易;大于2时,难以吸附。 应用最普遍,但是它适用于高度不均匀表面,而且仅对限制浓度范围(低浓度)的吸附数据有效 一级动力学1(1)k t t e q q e -=- Q t =Q e (1?e ?K 1t ) 线性 ln (Q e ?Q t )=lnQ e ?K 1t 二级动力学 2221e t e k q t q k q t =+ Q t =K 2Q e 2t 1+K 2Q e t 线性 t Q t =1K 2Q e 2+t Q e 初始吸附速度V 0=K 2Q e 2 Elovich 动力学模型 Q t =a +blnt Webber -Morris 动力学模型 Q t =K ip t 1/2+c Boyd kinetic plot Q t Q e =1?6×exp ?K B t π6 令F=Q t /Q e,

K B t=-0.498-ln(1-F) 准一级模型基于假定吸附受扩散步骤控制; 准二级动力学模型假设吸附速率由吸附剂表面未被占有的吸附空位数目的平方值决定,吸附过程受化学吸附机理的控制,这种化学吸附涉及到吸附剂与吸附质之间的电子共用或电子转移; Webber-Morris动力学模型 粒子内扩散模型中,qt与t1/2进行线性拟合,如果直线通过原点,说明颗粒内扩散是控制吸附过程的限速步骤;如果不通过原点,吸附过程受其它吸附阶段的共同控制;该模型能够描述大多数吸附过程,但是,由于吸附初期和末期物质传递的差异,试验结果往往不能完全符合拟合直线通过原点的理想情况。粒子内扩散模型最适合描述物质在颗粒内部扩散过程的动力学,而对于颗粒表面、液体膜内扩散的过程往往不适合 Elovich 方程为一经验式,描述的是包括一系列反应机制的过程,如溶质在溶液体相或界面处的扩散、表面的活化与去活化作用等,它非常适用于反应过程中活化能变化较大的过程,如土壤和沉积物界面上的过程。此外,Elovich 方程还能够揭示其他动力学方程所忽视的数据的不规则性。 Elovich和双常数模型适合于复非均相的扩散过程。 Langmuir模型假定吸附剂表面均匀,吸附质之间没有相互作用,吸附是单层吸附,即吸附只发生在吸附剂的外表面。Qm 为饱和吸附量,表示单位吸附剂表面,全部铺满单分子层吸附剂时的吸附量;该模型的假设对实验条件的变化比较敏感,一旦条件发生变化,模型参数则要作相应的改变,因此该模型只能适用于单分子层化学吸附的情况。Langmuir 等温吸附模型作为第一个对吸附机理做了生动形象描述的模型,为以后其他吸附模型的建立起到了奠基作用。 Freundlich 吸附方程既可以应用于单层吸附,也可以应用于不均匀表面的吸附情况。Freundlich吸附方程作为一个不均匀表面的经验吸附等温式,既能很好的描述不均匀表面的吸附机理,更适用于低浓度的吸附情况,它能够在更广的浓度范围内很好地解释实验结果。但是,Freundlich 吸附方程的缺点则是不能得出一个最大吸附量,无法估算在参数的浓度范围以外的吸附作用。 由于Freundlich 等温吸附方程受低浓度的限制,而Langmuir 等温吸附方程则受高浓度的限制。Redlich–Peterson 等温吸附方程则是综合Freundlich 等温吸附方程和Langmuir 等温吸附方程而提出的较合理的经验方程。A 是一个与吸附量有关的常数,B 也是一个与吸

吸附动力学和热力学各模型公式及特点

分配系数 (0 -e ) K d = 0e e 吸附量 0 - t t = 0 t × t Langmiur mLe e = 1+Le e 1 e =+ e mL m KL 是个常数与吸附剂结合位点的亲和力有关,该模型只对均匀表面有效 Freundlich e =Fe 1/ 1 ln e = ln F + ln e Ce 反应达到平衡时溶液中残留溶质的浓度 KF 和n 是 Freundlich 常数,其中KF 与吸附剂的吸附亲和力大小有关,n 指示吸附过程的支 持力。1/n 越小吸附性能越好一般认为其在 0.1~0.5 时,吸附比较容易;大于 2 时,难以吸 附。 应用最普遍,但是它适用于高度不均匀表面,而且仅对限制浓度范围(低浓度)的吸附数据 有效 一级动力学q t = q e (1-e 1 ) t =e (1--1) 线性 ln(e - t ) = ln e - 1 1 t = 2e 2 + e 初始吸附速度0 =22 Elovich 动力学模型 t = + ln Webber-Morris 动力学模型 = ip 1/2 + Boyd kinetic plot 6 × exp - =1- = 1 - 6 令 F=Q t / Q e, K B t=-0.498-ln(1-F) 准一级模型基于假定吸附受扩散步骤控制; 准二级动力学模型假设吸附速率由吸附剂表面未被占有的吸附空位数目的平方值决定, 吸附过程受化学吸附机理的控制,这种化学吸附涉及到吸附剂与吸附质之间的电子共用或电 子转移; 二级动力学 k 2q e t 1+ k 2q e t t = 2e 2 1 +2e 线性

吸附动力学和热力学各模型公式及特点讲课稿

吸附动力学和热力学各模型公式及特点

分配系数 吸附量 Langmiur KL 是个常数与吸附剂结合位点的亲和力有关,该模型只对均匀表面有效 Freundlich Ce 反应达到平衡时溶液中残留溶质的浓度 KF 和n 是Freundlich 常数,其中KF 与吸附剂的吸附亲和力大小有关,n 指示吸附过程的支持力。1/n 越小吸附性能越好一般认为其在0.1~0.5时,吸附比较容易;大于2时,难以吸附。 应用最普遍,但是它适用于高度不均匀表面,而且仅对限制浓度范围(低浓度)的吸附数据有效 一级动力学1 (1)k t t e q q e -=- 线性

二级动力学 2 2 2 1 e t e k q t q k q t = + 线性 初始吸附速度 Elovich 动力学模型 Webber-Morris动力学模型 Boyd kinetic plot 令F=Q t/Q e, K B t=-0.498-ln(1-F) 准一级模型基于假定吸附受扩散步骤控制; 准二级动力学模型假设吸附速率由吸附剂表面未被占有的吸附空位数目的平方值决定,吸附过程受化学吸附机理的控制,这种化学吸附涉及到吸附剂与吸附质之间的电子共用或电子转移; Webber-Morris动力学模型 粒子内扩散模型中,qt与t1/2进行线性拟合,如果直线通过原点,说明颗粒内扩散是控制吸附过程的限速步骤;如果不通过原点,吸附过程受其它吸附阶段的共同控制;该模型能够描述大多数吸附过程,但是,由于吸附初期和末期物质传递的差异,试验结果往往不能完全符合拟合直线通过原点的理想情况。

粒子内扩散模型最适合描述物质在颗粒内部扩散过程的动力学,而对于颗粒表面、液体膜内扩散的过程往往不适合 Elovich 方程为一经验式,描述的是包括一系列反应机制的过程,如溶质在溶液体相或界面处的扩散、表面的活化与去活化作用等,它非常适用于反应过程中活化能变化较大的过程,如土壤和沉积物界面上的过程。此外,Elovich 方程还能够揭示其他动力学方程所忽视的数据的不规则性。 Elovich和双常数模型适合于复非均相的扩散过程。 Langmuir模型假定吸附剂表面均匀,吸附质之间没有相互作用,吸附是单层吸附,即吸附只发生在吸附剂的外表面。Qm 为饱和吸附量,表示单位吸附剂表面,全部铺满单分子层吸附剂时的吸附量;该模型的假设对实验条件的变化比较敏感,一旦条件发生变化,模型参数则要作相应的改变,因此该模型只能适用于单分子层化学吸附的情况。Langmuir 等温吸附模型作为第一个对吸附机理做了生动形象描述的模型,为以后其他吸附模型的建立起到了奠基作用。 Freundlich 吸附方程既可以应用于单层吸附,也可以应用于不均匀表面的吸附情况。Freundlich吸附方程作为一个不均匀表面的经验吸附等温式,既能很好的描述不均匀表面的吸附机理,更适用于低浓度的吸附情况,它能够在更广的浓度范围内很好地解释实验结果。但是,Freundlich 吸附方程的缺点则是不能得出一个最大吸附量,无法估算在参数的浓度范围以外的吸附作用。 由于Freundlich 等温吸附方程受低浓度的限制,而Langmuir 等温吸附方程则受高浓度的限制。Redlich–Peterson 等温吸附方程则是综合Freundlich 等温吸附方程和Langmuir 等温吸附方程而提出的较合理的经验方程。A 是一个与

动力学和热力学各模型特点

?准一级模型基于假定吸附受扩散步骤控制; ?准二级动力学模型假设吸附速率由吸附剂表面未被占有的吸附空位数目的平方值决定,吸附过程 受化学吸附机理的控制,这种化学吸附涉及到吸附剂与吸附质之间的电子共用或电子转移; ?粒子内扩散模型中,qt与t1/2进行线性拟合,如果直线通过原点,说明颗粒内扩散是控制吸附 过程的限速步骤;如果不通过原点,吸附过程受其它吸附阶段的共同控制;该模型能够描述大多数吸附过程,但是,由于吸附初期和末期物质传递的差异,试验结果往往不能完全符合拟合直线通过原点的理想情况。粒子内扩散模型最适合描述物质在颗粒内部扩散过程的动力学,而对于颗粒表面、液体膜内扩散的过程往往不适合 ?Elovich 方程为一经验式,描述的是包括一系列反应机制的过程,如溶质在溶液体相或界面处的 扩散、表面的活化与去活化作用等,它非常适用于反应过程中活化能变化较大的过程,如土壤和沉积物界面上的过程。此外,Elovich 方程还能够揭示其他动力学方程所忽视的数据的不规则性。 ?Elovich和双常数模型适合于复非均相的扩散过程。 Langmuir模型假定吸附剂表面均匀,吸附质之间没有相互作用,吸附是单层吸附,即吸附只发生在吸附剂的外表面。Qm 为饱和吸附量,表示单位吸附剂表面,全部铺满单分子层吸附剂时的吸附量;该模型的假设对实验条件的变化比较敏感,一旦条件发生变化,模型参数则要作相应的改变,因此该模型只能适用于单分子层化学吸附的情况。Langmuir 等温吸附模型作为第一个对吸附机理做了生动形象描述的模型,为以后其他吸附模型的建立起到了奠基作用。 ?Freundlich 吸附方程既可以应用于单层吸附,也可以应用于不均匀表面的吸附情况。Freundlich 吸附方程作为一个不均匀表面的经验吸附等温式,既能很好的描述不均匀表面的吸附机理,更适用于低浓度的吸附情况,它能够在更广的浓度范围内很好地解释实验结果。但是,Freundlich 吸附方程的缺点则是不能得出一个最大吸附量,无法估算在参数的浓度范围以外的吸附作用。 由于Freundlich 等温吸附方程受低浓度的限制,而Langmuir 等温吸附方程则受高浓度的限制。 Redlich–Peterson等温吸附方程则是综合Freundlich 等温吸附方程和Langmuir 等温吸附方程而提出的较合理的经验方程。A 是一个与吸附量有关的常数,B 也是一个与吸附能力有关的经验常数,指数g 为介于0 和1 之间的经验常数。避免了吸附过程受浓度限制的影响。 Langmuir 方程适用于均匀表面的吸附,而Freundlich 方程和Temkin 方程适用于不均匀表面的吸附

相关文档
相关文档 最新文档