文档库 最新最全的文档下载
当前位置:文档库 › 555真值表

555真值表

555真值表
555真值表

实验七 555时基电路

一.实验目的

1.掌握555时基电路的结构和工作原理,学会对此芯片的正确使用。

2.学会分析和测试用555时基电路构成的多谐振荡器,单稳态触发器,R-S触发器等三种典型电路。

二.实验仪器及材料

1.示波器

2.器件

NE556(或LM556,5G556等)双时基电路 1片

二极管 1N4148 2只

电位器 22K,1K 2只

电阻、电容若干

扬声器一支

三.实验内容

1.555时基电路功能测试

本实验所用的555时基电路芯片为NE556,同一芯片上集成了二个各自独立的555时基电路,图中各管脚的功能简述如下:TH高电平触发端:当TH端电平大于2/3 Vcc,输出端OUT呈低电平,DIS端导通。

低电平触发端:当端电平小于1/3 Vcc时,OUT端呈现高电平,DIS端关断。

复位端: =0,OUT端输出低电平,DIS端导通。

VC控制电压端:VC接不同的电压值可以改变TH,的触发电平值。

DIS放电端:其导通或关断为RC回路提供了放电或充电的通路。

OUT输出端:

芯片的功能如表9.1所示,功能简图如图9.2所示。

(1).按图9.3接线,可调电压取自电位器分压器。

(2).按表9.1逐项测试其功能并记录。

2.555时基电路构成的多谐振荡器

电路如图9.4所示

(1).按图接线。图中元件参数如下:

R1=15KΩ , R2=5 KΩ , C1=0.033μF , C2 =0.1Μf

(2).用示波器观察并测量OUT端波形的频率。

和理论估算值比较,算出频率的相对误差值。

(3).若将电阻值改为R1 =15KΩ,R2 =10 KΩ,电容C不变,上述的数值有何变化?

(4).根据上述电路原理,充电回路的支路是R1R2C1,放电回路的支路是R2C1,将电路略作修改,增加一个电位器Rw和两个引导二极管,构成图9.5所示的占空比可调的多谐振荡器。

其占空比q为 q= R1/(R1+R2)改变Rw的位置,可调节q值。

合理选择元件参数(电位器选用22 KΩ),使电路的占空比q=0.2,调试正脉冲宽度为0.2ms。

调试电路,测出所用元件的数值,估算电路的误差。

3.555构成的单稳态触发器

实验如图9.6所示

(1).按图9.6接线,图中R=10 KΩ,C1=0.01μF,V1是频率约为10KHz左右的方波时,用双踪示波器观察OUT端相

对V1的波形,并测出输出脉冲的宽度Tw。

(2).调节V1的频率,分析并记录观察到的OUT端波形的变化。

(3).若想使Tw=10μS, 怎样调整电路?测出此时各有关的参数值。

4.555时基电路构成的R-S触发器

实验如图9.7所示

(1).先令VC端悬空,调节R,端的输入电平值,观察V0的状态在什么时刻由0变1,或由1变0?

(2).若要保持V0端的状态不变,用实验法测定R,端应在什么电平范围内?

整理实验数据,列成真值表的形式。和R-SFF比较,逻辑电平,功能等有何异同。

(3).若在VC端加直流电压Vc-v,并令Vc-v分别为2V,4V时,测出此时V0状态保持和切换时R、端应加的电压值是多少?试用实验法测定。

5.应用电路

图9.8所示用556的两个时基电路构成低频对高频调制的救护车警铃电路。

(1).参考实验内容2确定图9.8中未定元件参数。

(2).按图接线,注意扬声器先不接。

(3).用示波器观察输出波形并记录。

(4).接上扬声器,调整参数到声响效果满意。

6.时基电路使用说明

556定时器的电源电压范围较宽,可在+5~+16V范围内使用(若为CMOS的555芯片则电压范围在+3~+18V内)

电路的输出有缓冲器,因而有较强的带负载能力,双极性定时器最大的灌电流和拉电流都在200mA左右,因而可直接推动TTL或CMOS 电路中的各种电路,包括能直接推动蜂鸣器等器件。

本实验所使用的电源电压Vcc=+15V。

四.实验报告

1.接实验内容各步要求整理实验数据。

2.画出实验内容3和5中相应波形图。

3.画出实验内容5最终调试满意的电路图并标出各元件参数。

4.总结时基电路基本电路及使用方法。

555定时器的典型应用电路

555定时器的典型应用电路 单稳态触发器 555定时器构成单稳态触发器如图22-2-1所示,该电路的触发信号在2脚输入,R和C是外接定时电路。单稳态电路的工作波形如图22-2-2所示。 在未加入触发信号时,因u i=H,所以u o=L。当加入触发信号时,u i=L,所以u o=H,7脚内部的放电管关断,电源经电阻R向电容C充电,u C按指数规律上升。当u C上升到2V CC/3时,相当输入是高电平,5 55定时器的输出u o=L。同时7脚内部的放电管饱和导通是时,电阻很小,电容C经放电管迅速放电。从加入触发信号开始,到电容上的电压充到2V CC/3为止,单稳态触发器完成了一个工作周期。输出脉冲高电平的宽度称为暂稳态时间,用t W表示。 图22-2-1 单稳态触发器电路图 图22-2-2 单稳态触发器的波形图 暂稳态时间的求取: 暂稳态时间的求取可以通过过渡过程公式,根据图22-2-2可以用电容器C上的电压曲线确定三要素,初始值为u c(0)=0V,无穷大值u c(∞)=V CC,τ=RC,设暂稳态的时间为t w,当t= t w时,u c(t w)=2 V CC/3时。代入过渡过程公式[1-p205]

几点需要注意的问题: 这里有三点需要注意,一是触发输入信号的逻辑电平,在无触发时是高电平,必须大于2 V CC/3,低电平必须小于 V CC/3,否则触发无效。 二是触发信号的低电平宽度要窄,其低电平的宽度应小于单稳暂稳的时间。否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。此时单稳态触发器成为一个反相器。 R的取值不能太小,若R太小,当放电管导通时,灌入放电管的电流太大,会损坏放电管。图22-2-3是555定时器单稳态触发器的示波器波形图,从图中可以看出触发脉冲的低电平和高电平的位置,波形图右侧的一个小箭头为0电位。 图22-2-3 555定时器单稳态触发器的示波器波形图 [动画4-5] 多谐振荡器 555定时器构成多谐振荡器的电路如图22-2-4所示,其工作波形如图22-2-5所示。 与单稳态触发器比较,它是利用电容器的充放电来代替外加触发信号,所以,电容器上的电压信号应该在两个阈值之间按指数规律转换。充电回路是R A、R B和C,此时相当输入是低电平,输出是高电平;当电容器充电达到2 V CC/3时,即输入达到高电平时,电路的状态发生翻转,输出为低电平,电容器开始放电。当电容器放电达到2V CC/3时,电路的状态又开始翻转。如此不断循环。电容器之所以能够放电,是由于有放电端7脚的作用,因7脚的状态与输出端一致,7脚为低电平电容器即放电。

实验4指导书 555定时器电路设计

实验4 555定时器电路设计 预习内容 阅读《电工电子实验教程》第6.5节中555集成定时器应用的内容。 预习实验的内容,自拟实验步骤和数据表格,完成理论设计,画出原理电路,选择所用元件名称、数量,熟悉元件引脚,手写预习报告。 一、实验目的 1.熟悉集成定时器555的工作原理及应用。 2.熟悉时钟信号产生电路的设计方法。 3.掌握使用定时器555设计多谐振荡器的方法。 二、知识要点 时钟信号在电子电路中有着非常重要的作用,而生成周期时钟信号的方法也有多种。比较常用的方法就是使用555定时器构成多谐振荡器。此电路广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。 555定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为555,用CMOS工艺制作的称为7555。555定时器的电源电压范围宽,可在4.5V~16V 工作,7555可在3~18V工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。 图5-1 555定时器的结构图和引脚分布图 1脚-GND,接地脚; 2脚-Trigger,低电平触发端; 3脚-Output,输出端; 4脚-Reset,复位端,低电平有效; 5脚-Control V oltage,电压控制端; 6脚-Threshold,阈值输入端; 7脚-Discharge,放电端; 8脚-V CC,电源端。 三、实验内容 题目:时钟信号发生电路设计 设计一个电路,能够产生时钟信号,要求信号频率可调,设计范围不小于500Hz~1000Hz,

实验三++555定时器的应用仿真实验

电子技术仿真实验报告实验题目: 3 555定时器的应用仿真实验 班级: 姓名: 学号: 实验日期: 实验成绩:

实验三 555定时器的应用仿真实验 一、实验目的: 1、熟悉555定时器的工作原理。 2、掌握555定时器的典型应用。 3、掌握基于multisim 10.0的555定时器应用仿真。 二、实验原理: 555定时器是一种常见的集数字与模拟功能于一体的集成电路。通常只要外接少量的外围元件就可以很方便地构成施密特触发器、单稳态触发器和多谐振荡器等多种电路。其中: (1) 构成施密特触发器,用于TTL 系统的接口,整形电路或脉冲鉴幅等; (2)构成多谐振荡器,组成信号产生电路; (3)构成单稳态触发器,用于定时延时整形及一些定时开关中。 555应用电路采用这3种方式中的1种或多种组合起来可以组成各种实用的电子电路。 U1 LM555CM GND 1DIS 7OUT 3 RST 4VCC 8THR 6CON 5 TRI 2 GND ——1脚,接地;TRI ——2脚,触发输入;OUT ——3脚,输出;RES ——4脚,复 位(低电平有效);CON ——5脚,控制电压(不用时一般通过一个0.01F 的电容接地);THR ——6脚,阈值输入;DIS ——7脚,放电端;VCC ——8脚,+电源

1、 由555定时器构成多谐振荡器 (1) 接通电源时,设电容的初始电压0=c V ,此时TR V \TH V 均小于1/3Vcc ,放电截止, 输出端电压为高电平,Vcc 通过1R 和2R 对C 充电,Vc 按照指数规律逐步上升。 (2) 当Vc 上升到2/3Vcc 时,放电管导通,输出端电压为低电平,电容C 通过2R 放电,Vc 按照指数规律逐步下降。 (3) 当Vc 下降到1/3Vcc 时,放电管截止,输出端电压由低电平翻转为高电平,电容C 又开始充电。当电容C 充到Vc=2/3Vcc 时,又开始放电,如此周而复始,在输出端即可产生矩形波信号。 矩形波信号的周期取决于电容器充、放电回路的时间常数,输出矩形脉冲信号的周期 C R R T )2(7.021+≈ 2、 施密特触发器是脉冲波形整形和变换电路中经常使用的一种电路。其具有两个稳定 状态,两个稳定状态的维持和相互转换取决于输入电压的高低和,属于电平触发,具有两个不同的触发电平,存在回差电压。由555定时器构成的施密特触发器将555定时器的THR 和TRI 两个输入端连在一起作为信号输入端即可得到施密特触发器。 (1) 当Vi<1/3Vcc 时,输出Vo 为高电平。随着Vi 的上升,只要Vi<2/3Vcc ,输出 信号将维持原状态不变,设此状态为第一稳定状态。 (2) 当Vi 上升到Vi ≥2/3Vcc 时,输出Vo 为低电平。电路由第一稳定状态翻转为第 二稳定状态,电路的正向阈值电压为+T V =2/3Vcc 。随着Vi 上升后又下降的情况,只要Vi 〉1/3Vcc ,电路将维持在第二稳定状态不变。 (3) 当Vi 下降到Vi ≤1/3Vcc 时,电路又翻转到第一稳态,电路的负向阈值电压为 -T V =1/3Vcc 。 三、实验内容: 1、555定时器构成多谐振荡器仿真实验

555定时器构成的多谐振荡器

一、用555定时器构成的多谐振荡器 1.电路组成: 用555定时器构成的多谐振荡器电路如图6-11(a)所示:图中电容C、电阻R1和R2作为振荡器的定时元件,决定着输出矩形波正、负脉冲的宽度。定时器的触发输入端(2脚)和阀值输入端(6脚)与电容相连;集电极开路输出端(7脚)接R1、R2相连处,用以控制电容C 的充、放电;外界控制输入端(5脚)通过0.01uF电容接地。 2.工作原理: 多谐振荡器的工作波形如图6-11(b)所示: 电路接通电源的瞬间,由于电容C来不及充电,Vc=0v,所以555定时器状态为1,输出Vo为高电平。同时,集电极输出端(7脚)对地断开,电源Vcc对电容C充电,电路进入暂稳态I,此后,电路周而复始地产生周期性的输出脉冲。多谐振荡器两个暂稳态的维持时间取决于RC充、放电回路的参数。暂稳态Ⅰ的维持时间,即输出Vo的正向脉冲宽度T1≈0.7(R1+R2)C;暂稳态Ⅱ的维持时间,即输出Vo的负向脉冲宽度T2≈0.7R2C。 因此,振荡周期T=T1+T2=0.7(R1+2R2)C,振荡频率f=1/T。正向脉冲宽度T1与振荡周期T

之比称矩形波的占空比D,由上述条件可得D=(R1+R2)/(R1+2R2),若使R2>>R1,则D≈1/2,即输出信号的正负向脉冲宽度相等的矩形波(方波)。 二、多谐振荡器应用举例: 1.模拟声响发生器: 将两个多谐振荡器连接起来,前一个振荡器的输出接到后一个振荡器的复位端,后一个振荡器的输出接到扬声器上。这样,只有当前一个振荡器输出高电平时,才驱动后一个振荡器振荡,扬声器发声;而前一个振荡器输出低电平时,导致后面振荡器复位并停止震荡,此时扬声器无音频输出。因此从扬声器中听到间歇式的"呜......呜"声响。 2.电压——频率转换器: 由555定时器构成的多谐振荡器中,若定时器控制输入端(5脚)不经电容接地,而是外加一个可变的电压源,则通过调节该电压源的值,可以改变定时器触发电位和阀值电位的大小。外加电压越大,振荡器输出脉冲周期越大,即频率越低;外加电压越小,振荡器输出脉冲周期越小,即频率越高。这样,多谐振荡器就实现了将输入电压大小转换成输出频率高低的电压—频率转换器的功能。

555定时器实验报告

一、实验目的 二、实验原理 555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。555 定时器的内部电路框图和外引脚排列图分别如图 2.9.1 和图2.9.2 所示。它内部包括两个电压比较器,三个等值串联电阻,一个 RS 触发器,一个放电管T 及功率输出级。它提供两个基准电压VCC /3 和 2VCC /3 555 定时器的功能主要由两个比较器决定。两个比较器的输出电压控制RS 触发器和放电管的状态。在电源与地之间加上电压,当 5 脚悬空时,则电压比较器 C1 的同相输入端的电压为2VCC /3,C2 的反相输入端的电压为VCC /3。若触发输入端 TR 的电压小于VCC /3,则比较器 C2 的输出为0,可使RS 触发器置1,使输出端OUT=1。如果阈值输入端 TH 的电压大于2VCC/3,同时 TR 端的电压大于VCC /3,则C1 的输出为 0,C2 的输出为1,可将RS 触发器置 0,使输出为 0 电平。 它的各个引脚功能如下: 1脚:外接电源负端VSS或接地,一般情况下接地。

8脚:外接电源VCC,双极型时基电路VCC的范围是4.5 ~ 16V,CMOS 型时基电路VCC的范围为3 ~ 18V。一般用5V。 3脚:输出端Vo 2脚:低触发端 6脚:TH高触发端 4脚:是直接清零端。当端接低电平,则时基电路不工作,此时不论、TH处于何电平,时基电路输出为“0”,该端不用时应接高电平。 5脚:VC为控制电压端。若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰。 7脚:放电端。该端与放电管集电极相连,用做定时器时电容的放电。 在1脚接地,5脚未外接电压,两个比较器A1、A2基准电压分别为的情况下,555时基电路的功能表如表6—1示。 三、实验内容 四、思考题

555定时器的电路结构与功能

一、555定时器的电路结构与功能 555定时器是一种多用途的数字-模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。由于使用灵活、方便,所以555定时器在波形的产生与变换、测量与控制、家用电器、电子玩具等许多领域中都得到了应用。 图6.25是国产双极性定时器CB555的电路结构图。它由比较器C1 和C2 、基本RS触发器和集电极开路的放电三极管三部分组成。 图6.25 CB555的电路结构图 :比较器C1 的输入端(也称阈值端,用TH标注) :比较器C2 的输入端(也称触发端,用标注) C 和C 的参考电压(电压比较的基准)和由V 经三个5kΩ电阻分压给出。(在控制电压输入端悬空时,,。如 果外接固定电压,则 ) 是置零输入端,则输出端,不受其他输入状态的影响。正常 工作时必须使。图中的数码1~8为器件引脚的编号。通过分析可以得到如下所示的CB555的功能表。 CB555的功能表

低 低 不变 高 高 为了提高电路的带负载能力,还在输出端设置了缓冲器G4 。如果将端经过 电阻接到电源上,那么只要这个电阻的阻值足够大,为高电平时也一定 为高电平,为低电平时也一定为低电平。555定时器能在很宽的电源电压范围内工作,并可承受较大的负载电流。双极性555定时器的电源电压范围为5~16 V,最大的负载电流达200mA。CMOS型7555定时器的电源电压范围为3~18 V,但最大负载电流在4mA以下。 可以设想,如果使和的低电平信号发生在输入电压信号的不同电平,那么输出与输入之间的关系将为施密特触发特性;如果在加上一个低电平触发信号以后,经过一定的时间能在端自动产生一个低电平信号,就可以得到单 稳态触发器;如果能使和的低电平信号交替地反复出现,就可以得到多谐振荡器。 二、用555定时器接成的施密特触发器 将555定时器的阈值输入端和触发输入端连在一起,便构成了施密特触发器,如下图。 图6.26 用555定时器接成的施密特触发器图6.27 图6.26的电压传输特性 当输入如图6.27所示的三角波信号时,则从施密特触发器的端可得到方波输出。

逻辑式与真值表

课题:逻辑式与真值表 课时:两课时 教学目标:1、了解逻辑式的概念; 2、会填写逻辑式的真值表; 3、理解等值逻辑式的涵义; 4、能够判断逻辑式是否等值 教学重点:理解等值逻辑式的概念,并能判断逻辑式是否等值。 教学难点:填写逻辑式的真值表 教学过程: 一、创设情境,导入课题 A 、A ·(B+C )、[(A B)+C] + D 、1、0 有常量1、0以及逻辑变量经逻辑运算构成的式子叫做逻辑代数式,简称逻辑式。 逻辑运算的优先次序依次为“非运算”、“与运算”、“或运算”,如果有添加括号的逻辑式,首先要进行括号内的运算。 二、动脑思考,探索新知 列出逻辑变量的一切可能取值与相应的逻辑式的值的表,叫做逻辑式的真值表。 问题1:试写出AB B A +?的真值表。 A B AB B A +? 1 1 1 0 0 1 0 分析:可以先写出B A ?和AB ,再计算AB B A +? 问题2:试写出B A +与B A ?的真值表,并观察它们值的关系 A B A+B B A + A B B A ? 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 1

如果对于逻辑变量的任何一组取值,两个逻辑式的值都相等,这样的两个逻辑式叫做等值逻辑式,等值逻辑式可用“=”连接,并称为等式。需要注意,这种相等是状态的相同。 问题3:用真值表验证下列等式是否成立 A·(B+C)=A·B+A·C A B C B+C A·(B+C)A·B A·C A·B+A·C 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 可以看出对于逻辑变量的任何一组值,A·(B+C)与A·B+A·C的值都相同,所以A·(B+C)=A·B+A·C。 随堂练习 1.填写下列真值表,并判断有没有等值逻辑式 (1) A B A·B B A?B A+ (2) A B A+B B A? A+B

555定时器综合实验报告

课程名称:数字电子技术基础项目名称:灯泡延时电路 项目组成员及分工及成绩评定

目录 1 课程设计目的 (2) 2 课程设计题目及要求 (2) 3 课程设计报告内容 (2) 3.1 按键式延时照明灯方案 (2) 3.2 电路元器件介绍 (3) 3.3 电路功能介绍 (4) 3.3.1 电路制作流程 (4) 3.4 实操连接电路和仿真电路的实现 (5) 3.4.1 电路实物图 (5) 3.4.2 手画电路原理图 (6) 3.4.3 仿真结果 (6) 3.5 电路调试过程 (7) 4总结 (8)

1课程设计目的 (1)掌握进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 (2)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 (3)提高学生的创新能力。 (4)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 2课程设计题目及要求 设计步骤 1.对单稳态电路的设计和元器件参数计算、选择。 2.购买相关器件,采用面包板搭建电路。 3.画出总体电路图。 4.结合仿真结果和电路图安装自己设计的电路,检查线路的准确性。 5.调试电路,将电路用multisim对电路进行仿真。 6.提交符合要求的电路和实验设计报告。 要求 1.输出接LED电路, 2.按键不按LED不亮,当按键按下时LED亮30秒,之后熄灭。 3课程设计报告内容 3.1按键式延时照明灯方案 设计的电路图如下所示

用555定时器构成的施密特触发器_百度文库

Φ 550×1233 mm : 解释:当输入信号Vi 减小至低于负向阀值时,输出电压Vo翻转为高电平VoH;而输入信号Vi增大至高于正向阀值时,输出电压Vo才翻转为低电平VoL液压盘式刹车-称为回差电压。 一、用 大钩提升速度范围定时器构成的施密特触发器 1.电路组成0.18-1.67 m/s 将555定时器的阀值输入端Vi1( 辅助刹车脚)、触发输入端Vi2(2脚)相连作为输入端Vi,由电磁涡流刹车 3脚)或’(转盘型号 脚)挂接上拉电阻RlVDD 所示的施密特触发器电路。 转盘开口直径

2.工作原理:如图所示,输入信号 520 mm,对应的输出信号为Vo,假设未接控制输入Vm 。 转盘档数 ①当Vi=0V时,即Vi1<2/3Vcc、Vi2<1/3Vcc,倒 Vo=1。以后Vi逐渐上升,(2/3Vcc,输出维持59-154,反93 ②当Vi 2/3Vcc)时,则Vi1>2/3Vcc、Vi2>1/3Vcc,此时定时器状态翻转为0,输出Vo=0,此后Vi继续上升,然后下降,只要不低于触发电位(1/3Vcc),输出维持0不变。型 (Π) ③当Vi继续下降,一旦低于触发电位(井架有效高度 )后,、 42.5 m,定时器状态翻转为1,输出 二层台高度 总结:26.5 m 时,正负向阀值电压=2/3Vcc、 =1/3Vcc4000 m V=1/3Vcc 顶部开档(正面×侧面) 1.8×1.75 m △V=1/2Vm。由此,通过调节外加电压Vm可改变施密特触发器的回差电压特性,从而改变输出脉冲的宽度。 7×2.4 m 1.波形变换: 施密特触发器可用以将模拟信号波形转换成矩形波,如图 箱式 4.5 m 可通过回差电压加以调节。

实验08 555定时器及其应用

实验八 555定时器及其应用 一、实验目的 1.熟悉并掌握555时基电路的工作原理; 2.熟悉并掌握555构成的单稳态触发器、多谐振荡器、占空比可调的多谐振荡器三种典型电路结构及工作原理; 3.学会应用555时基集成电路。 二、实验任务(建议学时:4学时) (一)基本实验任务 1. NE555构成的单稳态触发器逻辑功能测试; 2. NE555构成的多谐振荡器及参数测试; 3. NE555构成的占空比可调的多谐振荡器及参数测试; (二)扩展实验任务() 1. 555构成的脉冲宽度调制(PWM —Pulse Width Modulation )器。 2. 利用555时基电路设计一个驱动电路,能够实现对LED 灯的亮度调节。 3. 利用555时基电路设计一个线性斜坡电压(Linear Ramp )发生器。 三、实验原理 1.555定时器又称为时基电路,由于它的内部使用了三个5K 的电阻,故取名555。 NE555引脚功能说明: GND :电源地;TRIG :触发端;OUT :输出端;RESET :清零端,低电平有效; CONT :控制端;THRES :阈值电压输入端;DISCH :放电端;Vcc :电源正极; 5K 5K 5K R S RE S Vcc CONT RESET THRES TRIG GND DISCH OUT 12 6 5 84 3 7 (a )引脚排列 (b )内部框图 图8-1 NE555引脚排列及内部框图

555定时器集成芯片型号很多,例如LM555、NE555、SA555、CB555、ICM7555、LMC555等等,尽管型号繁多,但它们的引脚功能是完全兼容的,在使用中可以彼此替换,大多数双极型芯片最后3位数码都是555,大多数CMOS型芯片最后4位数码都是7555(还有部分定时器芯片的命名采用C555来表示CMOS型555定时器,例如LMC555)。另外,还有双定时器型芯片双极型的556和CMOS型的7556、四定时器NE558。 555的引脚排列和内部框图见图8-1,556的引脚排列见图8-2。 图8-2 NE556双定时器引脚排列 2.双极型与CMOS型555定时器芯片的区别 1)双极型555定时器工作电压范围5~15V,其驱动能力强,最大负载电流达±200mA,其构成的多谐振荡器工作频率较低,极限大约为300kHz(不同厂商生产的555定时器其最高振荡频率不一定相同,具体值需要通过查阅厂商提供的芯片参数手册); 2)CMOS型555定时器工作电压范围3~16V,其驱动能力弱,最大负载电流仅有±4mA,其构成的多谐振荡器工作频率较高,可达500kHz(不同厂商生产的555定时器其最高振荡频率不一定相同,具体值需要通过查阅厂商提供的芯片参数手册); 由于CMOS型的555定时器驱动能力很弱,因此,使用CMOS型的555定时器时,当负载工作电流最大值超过±4mA时,需要在CMOS型555定时器的Out端和负载之间加一级缓冲电路以提高CMOS型555定时器的驱动能力。 注意,这里的负载电流正负表示的含义为:负载电流为正时,表示电流由Out端流出,负载电流为负时,表示电流流入Out端。

555定时器实训报告

实训报告实训名称:555定时器 专业:电子信息工程技术 班级: 09电信班 姓名: XXX 学号: XXXXXXX 指导老师: XXX 实训时间:XXXX年XX月XX日

555定时器及应用电路的分析与测试 一、实训目的: ①进一步熟悉555定时器的基本功能和特点。 ②测试和分析555定时器构成的基本应用电路。 二、实训器材: 万用表 1 块、555 集成定时器(1 块),电阻元件 15 kΩ(1 只)、68 kΩ(1 只),极性电容10 μF( 1 只),瓷片电容0.01 μF( 1 只),发光二极管,导线若干, 三、实训内容: 秒脉冲产生电路及抢答报警电路的测试 将 555 定时器按布线图接线,在检查无误的情况下接通电源,看发光二极管是否是一闪一闪的亮,若不是,检查电路是否接错,直至正常为止。 四、布线图

实训总结 通过本次实训我学到了很多 1、能正确选用集成门电路,掌握用门电路进行简单数字逻辑电路设计的方法。 2、能进行电路的安装、调试和测试,并进行正确的分析。 3、具有安全生产意识,了解事故的预防措施。 4、能与他人合作、交流完成电路的设计、电路的组装与测试等任务,具有团结协作、敢于创新精神和解决问题的可迁移的关键能力。 5、了解了数字电路的特点(1)精度高(2)可靠性高(3)应用范围广(4)集成度高且成本低(5)使用效率高 实训中发现的问题、现象及事故 1、在画电路图的时候要仔细,不要把线接错,要分清集成块的型号。 2、在面包板上连接电路,注意IC芯片的方向和管脚排列应正确。 3、在布线时要注意不要漏了电源线和接地的线。 4、在焊接时,要注意不要桥连和虚焊;不要把面包板上的铜片弄掉。 5、在焊接的过程中要注意焊锡和松香的用量,影响焊点的美观。 6、焊接完后要检查是否拔下电烙铁的插头,防止意外事故发生;还要检查焊接的线路是否被焊锡松香短路。 在实训中我明白了团队合作的重要性,不懂就问,如果电路接好后不出结果,就要根据电路图检查错误,如果确实检查不了,就要及时向老师或同学求助。

555定时器的结构和工作原理

13.1 555定时器的结构和工作原理本节重点: (1)脉冲的基本知识 (2)555电路的组成结构和工作原理 (3)555芯片引脚图 (4)555电路功能表 (5)555电路的典型应用 本节难点: (1)555的内部电路组成和工作原理 (2)555电路的典型应用 引入:555定时器电路是一种中规模集成定时器,目前应用十分广泛。通常只需外接几个阻容元件,就可以构成各种不同用途的脉冲电路,如多谐振荡器、单稳态触发器以及施密特触发器等。555定时电路有TTL集成定时电路和CMOS集成定时电路,它们的逻辑功能与外引线排列都完全相同。双极型产品型号最后数码为555,CMOS型产品型号最后数码为7555。 一、555电路的结构组成和工作原理 (1)电路组成及其引脚

(2)555的工作原理 它含有两个电压比较器,一个基本RS 触发器,一个放电开关T ,比较器 的参考电压由三只5K Ω的电阻器构成分压,它们分别使高电平比较器C1同相比 较端和低电平比较器C2的反相输入端的参考电平为Vcc 32和Vcc 3 1 。C1和C2的 输出端控制RS 触发器状态和放电管开关状态。当输入信号输入并超过Vcc 3 2 时, 触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信 号自2脚输入并低于Vcc 3 1 时,触发器置位,555的3脚输出高电平,同时放电, 开关管截止。 D R 是复位端,当其为0时,555输出低电平。平时该端开路或接Vcc 。 Vco 是控制电压端(5脚),平时输出Vcc 3 2 作为比较器A1的参考电平,当5 脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个0.01F μ的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。 T 为放电管,当T 导通时,将给接于脚7的电容器提供低阻放电电路. (3)555电路的引脚功能 二、555电路的应用 (1)用555电路构成施密特触发器

电子技术实验报告8—555定时器及其应用

学生实验报告 系别电子信息学院课程名称电子技术实验 班级10通信A班实验名称实验八 555定时器及其应用 姓名葛楚雄实验时间2012年5月30日 学号20指导教师文毅 报告内容 一、实验目的和任务 1.熟悉555型集成时基电路的电路结构、工作原理及其特点。 2.掌握555型集成时基电路的基本应用。 二、实验原理介绍 555集成时基电路称为集成定时器,是一种数字、模拟混合型的中规模集成电路,其应用十分广泛。该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,因而广泛用于信号的产生、变换、控制与检测。它的内部电压标准使用了三个5K的电阻,故取名555电路。其电路类型有双极型和CMOS型两大类,两者的工作原理和结构相似。几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。555和7555是单定时器,556和7556是双定时器。双极型的电压是+5V~+15V,最大负载电流可达200mA,CMOS型的电源电压是+3V~+18V,最大负载电流在4mA以下。 1、555电路的工作原理 555电路的内部电路方框图如图20-1所示。它含有两个电压比较器,一个基本RS触发器,一个放电开关Td,比较器的参考电压由三只5KΩ的电阻器构成分压,它们分别使低电平比较器Vr1反相输入

端和高电平比较器Vr2的同相输入端的参考电平为2/3VCC和1/3VCC。Vr1和Vr2的输出端控制RS触发器状态和放电管开关状态。当输入信号输入并超过2/3VCC时,触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于1/3VCC时,触发器置位,555的3脚输出高电平,同时充电,开关管截止。 R是异步置零端,当其为0时,555输出低电平。平时该端开路或接VCC。Vro是控制电压端(5脚),D 平时输出2/3VCC作为比较器Vr1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。Td为放电管,当Td导通时,将给接于脚7的电容器提供低阻放电电路。 2、555定时器的典型应用 (1)构成单稳态触发器 上图20-2为由555定时器和外接定时元件R、C构成的单稳态触发器。D为钳位二极管,稳态时555电路输入端处于电源电平,内部放电开关管T导通,输出端Vo输出低电平,当有一个外部负脉冲触发信号加到Vi端。并使2端电位瞬时低于1/3VCC,单稳态电路即开始一个稳态过程,电容C开始充电,Vc按指数规律增长。当Vc充电到2/3VCC时,输出Vo从高电平返回低电平,放电开关管Td重新导通,电容C上的电荷很快经放电开关管放电,暂态结束,恢复稳定,为下个触发脉冲的来到作好准备。波形图见图20-3。

555定时器实验报告

555定时器实验报告 一实验内容 1 555定时器的动态和静态逻辑功能测试,动态测试要求输入为三角波,输出用数字示波器显示。 2 用555定时器设计一个数字定时器,每启动一次,电路产生一个5s左右的正脉冲。、 二实验条件 555定时器,数字万用表,数字示波器,计算机电路基础实验箱,导线若干。 三实验原理 1 静态测试555定时器的逻辑功能。用动态的电压作为输入0~5V,产生这个变化电压电路如下图所示: 电源为5V,A端接到555定时器的2号管脚。 测试电路连接方法:

从图中1开始逆时针分别为1~8,其连接方法为: 0~5V输入变化、 5~0V输入变化

从测试结果可以得到:输入电压由0~5V变化时,其跳变区域在输入电压,3.23V附近,输入电压由5~0V变化时,其跳变电压在1.7V附近。电压变化趋势不一样,跳变电压也是不一样的。 2动态测试555定时器的逻辑功能。 其中电路连接方法与前面静态测试无异。但是输入变为积分电路输出的三角波。积分电路选用的电阻为100KΩ,电容选择为0.1uF连接,在电容器两端输出的波形为所需要的三角波。 其中测得555定时器的输入输出为: CH1为输入,CH2为输出。 其中波形参数为:

合成后得到: 用三角波动态测试得到:输入电压由小到大变化时,跳变电压为3.44V,由大到小变化时,跳变电压为1.64V。其中1.80V。与静态测试的3.23V和1.70V相近,在误差允许范围内可以认为这两次测试结果是一样的. 3用555定时器设计一个数字定时器,每启动一次,电路产生一个5s 左右的正脉冲

其中电路图是按照资料收集到的上图来连接的,因为电路图找不到合适方法画这个电路图,所以直接把这个电路图粘贴。在实验中用到100KΩ电位器,47uF的电容。那么通过计算这个电路能产生的延迟是将应该是5.17s。 测试出的输入和输出3号引脚的波形图如下图所示: 其中可以看出只有4.10s的延迟。原因:使用的电位器是在实验板上 的,经过测量,其两端电阻只有82KΩ左右,经过计算与实验结果相

用定时器构成的施密特触发器

施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。见图6-2: 解释:当输入信号Vi减小至低于负向阀值时,输出电压Vo翻转为高电平VoH;而输入信号Vi增大至高于正向阀值时,输出电压Vo才翻转为低电平VoL。这种滞后的电压传输特性称回差特性,其值- 称为回差电压。 一、用555定时器构成的施密特触发器 1.电路组成: 将555定时器的阀值输入端Vi1(6脚)、触发输入端Vi2(2脚)相连作为输入端Vi,由Vo(3脚)或Vo’(7脚)挂接上拉电阻Rl及电源VDD作为输出端,便构成了如图6-3所示的施密特触发器电路。 2.工作原理:如图所示,输入信号Vi,对应的输出信号为Vo,假设未接控制输入Vm 。 ①当Vi=0V时,即Vi1<2/3Vcc、Vi2<1/3Vcc,此时Vo=1。以后Vi逐渐上升,只要不高于阀值电压(2/3Vcc),输出Vo维持1不变。 ②当Vi上升至高于阀值电压(2/3Vcc)时,则Vi1>2/3Vcc、Vi2>1/3Vcc,此时定时器状态翻转为0,输出Vo=0,此后Vi继续上升,然后下降,只要不低于触发电位(1/3Vcc),输出维持0不变。 ③当Vi继续下降,一旦低于触发电位(1/3Vcc)后,Vi1<2/3Vcc、Vi2<1/3Vcc,定时器状态翻转为1,输出Vo=1。

总结:未考虑外接控制输入Vm时,正负向阀值电压=2/3Vcc、=1/3Vcc,回差电压△V=1/3Vcc。若考虑Vm,则正负向阀值电压=Vm、=1/2Vm,回差电压△V=1/2Vm。由此,通过调节外加电压Vm 可改变施密特触发器的回差电压特性,从而改变输出脉冲的宽度。 二、施密特触发器的应用举例 1.波形变换: 施密特触发器可用以将模拟信号波形转换成矩形波,如图6-4所示将正弦波信号同相转换成矩形波的例子,输出脉冲宽度tpo可通过回差电压加以调节。 2.波形整形 若数字信号在传输过程中受到干扰变成如图6-5(a)所示的不规则波形, 可利用施密特触发器的回差特性将它整形成规则的矩形波。若负向阀值取为,则回差电压。整形后输出波形如图6-5(b)所示。由于输入信号的干扰在输出中表现为三个矩形脉冲,这是错误的。若减小负向阀值取为,则回差电压。此时整形后输出波形如图6-5(c)所示,消去了干扰。 3.幅度鉴别: 施密特触发器的翻转取决于输入信号是否高于或低于,利用此特性可以构成幅度鉴别器,用以从一串脉冲中检出符合幅度要求的脉冲。如图6-6所示,当输入脉冲大于时,施密特触发器翻转,输出端

555定时器构成的多谐振荡器

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 多谐振荡器是一种能产生矩形波的自激振荡器,也称矩形波发生器。“多谐”指矩形波中除了基波成分外,还含有丰富的高次谐波成分。多谐振荡器没有稳态,只有两个暂稳态。在工作时,电路的状态在这两个暂稳态之间自动地交替变换,由此产生矩形波脉冲信号,常用作脉冲信号源及时序电路中的时钟信号。 一、用555定时器构成的多谐振荡器 1.电路组成: 用555定时器构成的多谐振荡器电路如图6-11(a)所示:图中电容C、电阻R1和R2作为振荡器的定时元件,决定着输出矩形波正、负脉冲的宽度。定时器的触发输入端(2脚)和阀值输入端(6脚)与电容相连;集电极开路输出端(7脚)接R1、R2相连处,用以控制电容C的充、放电;外界控制输入端(5脚)通过0.01uF电容接地。 2.工作原理:

多谐振荡器的工作波形如图6-11(b)所示: 电路接通电源的瞬间,由于电容C来不及充电,Vc=0v,所以555定时器状态为1,输出Vo为高电平。同时,集电极输出端(7脚)对地断开,电源Vcc对电容C充电,电路进入暂稳态I,此后,电路周而复始地产生周期性的输出脉冲。多谐振荡器两个暂稳态的维持时间取决于RC充、放电回路的参数。暂稳态Ⅰ的维持时间,即输出Vo的正向脉冲宽度T1≈0.7(R1+R2)C;暂稳态Ⅱ的维持时间,即输出Vo的负向脉冲宽度T2≈0.7R2C。 因此,振荡周期T=T1+T2=0.7(R1+2R2)C,振荡频率f=1/T。正向脉冲宽度T1与振荡周期T之比称矩形波的占空比D,由上述条件可得D=(R1+R2)/(R1+2R2),若使R2>>R1,则D≈1/2,即输出信号的正负向脉冲宽度相等的矩形波(方波)。 二、多谐振荡器应用举例: 1.模拟声响发生器: 将两个多谐振荡器连接起来,前一个振荡器的输出接到后一个振荡器的复位端,后一个振荡器的输出接到扬声器上。这样,只有当前一个振荡器输出高电平时,才驱动后一个振荡器振荡,扬声器发声;而前一个振荡器输出低电平时,导致后面振荡器复位并停止震荡,此时扬声器无音频输出。因此从扬声器中听到间歇式的"呜......呜"声响。 2.电压——频率转换器: 由555定时器构成的多谐振荡器中,若定时器控制输入端(5脚)不经电容接地,而是外加一个可变的电压源,则通过调节该电压源的值,可以改变定时器触发电位和阀值电位的大小。外加电压越大,振荡器输出脉冲周期越大,即频率越低;外加电压越小,振荡器输出脉冲周期越小,即频率越高。这样,多谐振荡器就实现了将输入电压大小转换成输出频率高低的电压—频率转换器的功能。

555定时器构成的多谐振荡器-(时钟)

555定时器构成的多谐振荡器-(时钟)

电子课程设计 ——电子秒表 学院:电子信息工程学院 专业、班级:电气121501班 姓名:景国阳 学号:201215010109 指导教师:李小松 2014年12月

555定时器构成的多谐振荡器 555定时器是一种模拟电路和数字电路相结合的中规模集成器件,它性能优良,适用范围很广,外部加接少量的阻容元件可以很方便地组成单稳态触发器和多谐振荡器,以及不需外接元件就可组成施密特触发器。因此集成555定时被广泛应用于脉冲波形的产生与变换、测量与控制等方面。 本实验根据555定时器的功能强以及其适用范围广的特点,设计实验研究它的内部特性和简单应用。 一、原理 1、555定时器内部结构 555定时器是一种模拟电路和数字电路相结合的中规模集成电路,其内部结构如图(A) 及管脚排列如图(B)所示。 它由分压器、比较器、基本R--S触发器和放电三极管等部分组成。分压器由三个5K 的等值电阻串联而成。分压器为比较器 A、2A提供参考电 1 压,比较器 A的参考电压为23cc V,加在同相输入端, 1

比较器 A的参考电压为13cc V,加在反相输入端。比 2 较器由两个结构相同的集成运放 A、2A组成。高 1 电平触发信号加在 A的反相输入端,与同相输入 1 端的参考电压比较后,其结果作为基本R--S触 发器_D R端的输入信号;低电平触发信号加在 A的 2 同相输入端,与反相输入端的参考电压比较后, 其结果作为基本R—S触发器_ S端的输入信号。 D 基本R--S触发器的输出状态受比较器 A、2A的输 1 出端控制。 2、多谐振荡器工作原理 由555定时器组成的多谐振荡器如图(C)所示,其中R1、R2和电容C为外接元件。其工作波如图(D)所示。

555定时器及其应用实验报告

555定时器及其应用 【实验目的】 (1) 掌握555的工作原理及其性能特点 (2) 掌握555组成的基本电路及应用。 【实验要求】 (1) 用555组成一个时钟脉冲信号发生器,要求输出:标准秒脉冲, 20Hz~20kHz 范围内任意频率可调、占空比可调的脉冲信号。 (2) 设计一个触摸开关,要求每触发一次其输出端维持10秒钟的高 电平。 (3) 用555设计一个分频器,要求输入时钟脉冲的频率为1KHz ,其 输出为100Hz 。 【实验器材】 面包板,555芯片一片,函数发生器,直流稳压电源,万用表,示波器,电阻、电容、导线若干。 【实验原理】 (1) 时钟脉冲产生器 555组成的多谱振器可以用作各种时钟脉冲发生器,如图1所示,通过D1,D2两个二极管将电路的充电支路与放电支路分开,则由RC 电路的充放电时间公式得,充电时间为:110.7t R C = ,放电时间为230.7t R C =,因此输出脉冲的频率为131.43()f R R C =+ ,占空比为

1 11213 t R t t R R =++ 。通过调节R1和R3的阻值便可实现输出不同频率与占空比的脉冲信号。 图 1 时钟脉冲发生器 (2) 触摸开关 555组成的单稳态触发器可以用作触摸开关,电路如图2所示,其中M 为触摸金属片(或导线)。静态时无触发脉冲输入,555的输出为低电平即U O =0,发光二极管不亮,当用手触摸金属片M 时,相当 于2端输入一负脉冲,555的内部比较器A2翻转,使输出变为高电平即U O =1,发光二极管亮,直到电容C 上的电压充电23 C D D U U = 。发 光二极管亮的时间为 1.1tp RC = 。

应用555定时器组成施密特触发器

课程设计任务书 学生班级:学生姓名:学号 设计名称:应用555定时器组成施密特触发器 起止日期:指导教师:

摘要 施密特触发器是一种用途十分广泛的脉冲单元电路。利用它所具有的电位触发特性,可以进行脉冲整形,把边沿不够规则的脉冲整形为边沿陡峭的矩形脉冲(图4);通过它可以进行波形变换,把正弦波变换成矩形波;另一个重要用途就是进行信号幅度鉴别,只要信号幅度达到某一设定值,触发器就翻转,所以常称它为鉴幅器。用施密特触发器还能组成多谐振荡器和单稳态触发器。施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。为此,同学们通过书籍查阅了解到有多种方法可以组成施密特触发器,然后通过比较各种方案后,用555定时器组成施密特触发器,并通过去实验室实验和老师的指导了解到⑴施密特触发器有两个稳定状态,其维持和转换完全取决于输入电压的大小。⑵电压传输特性特殊,有两个不同的阈值电压(正向阈值电压和负向阈值电压。⑶状态翻转时有正反馈过程,从而输出边沿陡峭的矩形脉冲 关键词:施密特触发器,555定时器,阈值电压。

目录 一:绪论 (4) 二:555定时器组成施密特触发器 2.1设计任务、要求及目的 (5) 2.2 555定时器 (5) 2.3 设计施密特触发器的方案 (7) 2.4 主要参数 (8) 2.5 制作原理图 (8) 2.6制作PCB版 (9) 2.6.1 制作步骤 2.6.2 制作过程中遇到的问题、原因及解决办法 三:结论 (10) 四:参考文献 (11) 五:附录 (11)

相关文档
相关文档 最新文档