文档库 最新最全的文档下载
当前位置:文档库 › 不规则图形

不规则图形

不规则图形
不规则图形

课时教案

不规则立体图形的表面积和体积

立体几何专题 不规则立体图形的表面积和体积 基础知识:规则立体图形的表面积和体积 积和表面积。 [答疑编号505787490101] 【答案】体积是152立方厘米;表面积是216平方厘米。 【解答】体积:19×23=152(立方厘米) 上下看:3×3=9 左右看:4+3+1=8 前后看:4+4+3=10 (9+8+10)×2×22=216(平方厘米) 进一步思考: (1)对于由小正方体搭起来的组合形体,其表面积总是等于三个方向看到的面积之和的两倍? [答疑编号505787490102] 【答案】不是 (2)如果挪动最上面那个小正方体,将它移动到其他位置,那么所得到的新的组合形体的表面积最少是多少? [答疑编号505787490103] 【答案】200平方厘米 【解答】找盖住的面最多的位置,最多可以盖住3个面。 例2.如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体。问

这个物体的表面积是多少平方米?(π取3.14。) [答疑编号505787490104] 【答案】32.97平方米 【解答】结合例1的方法,我们将这个物体的表面积分为上下底的面积和侧面积两部分,不难看出这种叠放并不影响上下底的面积。 解:上底面积与下底面积相等,都是π×1.52=2.25π(平方米); 侧面积就是三个圆柱体的侧面积之和,等于2π×(1.5+1+0.5)×1=6π(平方米); 这个物体的表面积是2.25π×2+6π=10.5π=32.97(平方米)。 进一步思考: 如果沿这个物体的中心轴切一刀,将之分成两个相同的立体图形,那么两个新立体图形的表面积之和是多少? [答疑编号505787490105] 【答案】44.97平方米 【解答】原来的表面还是表面不变,增加的就是切口。 1×1+2×1+3×1=6(平方米) 32.97+6×2=44.97(平方米) 例3. 如图,有一个边长是5的正方体,如果它的左上方截去一个边长分别是5、3、2的长方体,那么它的表面积减少了百分之几? [答疑编号505787490106] 【答案】8% 【解答】与前面的例题类似,我们一般不直接计算切割后的立体图形的表面积,而是先将切割前后的两个立体图形进行比较。 减少的面就就是两个3×2=6的小长方形。 12÷150×100%=8%。 例4.如图,有一个边长为20厘米的大立方体,分别在它的角上、棱上、面上各挖掉一个大小相

第二讲不规则图形面积的计算(二)精选.

第二讲不规则图形面积的计算(二) 不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”(即:集合A与集合B 之间有:S A∪B=S A+S b-S A∩B)合并使用才能解决。 例1 如右图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。 解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。 解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示.阴影部分的面积是正方形面积的一半。解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半. 例2 如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。 解:由容斥原理 S阴影=S扇形ACB+S扇形ACD-S正方形ABCD

例3 如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。 解:S阴影=S扇形ABE+S扇形CBF-S矩形ABCD =13π-24=15(平方厘米)(取π=3)。 例4 如右图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。 分析已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,可以求出圆面积.半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长. =(157-7)×2÷20 =15(厘米)。 例5 如右图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积。

几何图案

几何图案在服装中的运用 服饰图案是人类精神和物质的载体,几何图案来源于远古,具有寓意象征及深远含义与内容,它见证着人类文明的发展,几何图案的合理运用是设计的基础技能,在服装设计中也不例外。在现代的时装设计中,几何图形的运用已经是达到一定的境界,越来越被人们作为表现个性的方式,让人更加耀人眼目,光芒四射! 服装设计中的几何图案几何图案因其单纯、明朗、富于装饰性的特征,从古至今就深受人们的喜爱。不同时代,不同地域,不同民族的人们都赋予几何图案以不同的内涵与个性。以直线分割的块面图形刚毅俊逸,以弧线作为构架的图形柔和优雅。设计师应用点、线、面和直线、弧线交叉使用令图案变化丰富,大块面的图案强调强烈醒目的视觉冲击效果,热烈、奔放;小面积或边缘装饰的几何图案起到延续视觉的效果,也可作为一个局部点与大面积图案相呼应,形成层次丰富,变化多样的图案效果。 几何图案是将各种直线、曲线以及圆形、三角形、方形、菱形、多边形等构成规则或不规则的几何图形的装饰性纹样。几何形纹是以几何形为母体而组成的图案,是点、线、面和黑、白、灰合理运用的图案,因其简洁、明朗、装饰性强的特征,从古至今就深受人们的青睐。不同时代、民族和地域的人们都赋予几何图案不同的个性与内涵。以直线分割的块面几何图案俊逸刚毅,以曲线作为构架的图形优雅柔和,应用点、线、面和直曲线的分割,令图案变化丰富。大块面的图案强调视觉强烈的冲击效果,热烈奔放;小面积的图案起到延续视觉

的效果,形成丰富变化,层次多样的呼应效果,也可作为大面积图案相映衬。 中国传统的织锦图案有很多是六角形、菱形、回字纹、寿字纹等,庄重典雅、古香古色。 随着现代服装工业技术的发 展,已经可以创造出更多、更 抽象、更夸张,装饰效果更强 的几何图案,以满足现代人张 扬个性,突显自我的需求,还 可以利用不同色彩、不同材质 的面料,作成几何块面在服装 上拼接,或用在服装造型或配 饰中,构成横条、竖条、斜条、 交叉条等形式,给人以庄重、 简洁、潇洒之感。(图1) 中国传统几何图案组合: 1、八达晕、天花、宝照等图案单位较大的复合几何纹基本骨骼由图形和米字格套合连而续成,并在古格内填充花卉和细几何纹。这类花纹只少量用于服装。

不规则图形面积的计算(一)

不规则图形面积的计算(一) 我们曾经学过三角形、长方形、正方形、平行四边形、梯形等基本图形(也叫规则图形)的面积计算,但在实际问题中,有些图形的面积是由一些基本图形通过组合、平凑而成的,他们的面积及周长无法用公式直接计算,我们通常称这些图形为不规则图形。 那么,我们怎样计算不规则图形的面积和周长呢? 我们一般是将这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,从而较轻松的解决问题。 【例1】如图,正方形的边长是4,求阴影部分面积 【分析】正方形的对角线将正方形平分,又因所截其直线平行于正方形的边,故阴影和空白处的面积相等。 【例2】如图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE。求阴影部分的面积。 【分析】由FG=2GE可知,G点是线段EF的三等分点,故阴影部分的面积是

三角形CEF面积的三分之一。 【例3】如图,平行四边形ABCD的边长BC=10,直角三角形BCE的直角边EC=8,已知阴影部分的面积比三角形EFG的面积大10。求CF的长。 【分析】本题看似没有思路,重要是要理清各个面积之间的联系。 提示语对于求不规则图形的面积,首先要看清题目所给的条件,及通过题目所给条件可以得出什么?一般利用加辅助线,可以通过剪、拼、凑的方法得出答案。, 自己练 1、求下列图形阴影部分面积:单位:厘米

2、解答题: 直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米。又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积。 (3)、有一三角形纸片沿虚线折叠到右下图,他的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米。求原三角形面积。 【提高题】求阴影部分面积(字母是为解题方便加的)

小学五年级逻辑思维学习—不规则图形面积与周长

小学五年级逻辑思维学习—不规则图形面积与周长 知识定位 几何是历届小升初和各杯赛的必考知识点,在奥数中,几何不但具有直观性,而且变换精巧,妙趣横生。本讲基于一般的规则图形周长与面积之基础上,重点讲解不规则图形面积与周长的求解方法。针对这些不规则图形,常常通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系。 由于本讲基于基本图形的变形之上,所以在讲解本讲之前有必要先复习一下常见几何图形的面积和周长的求解公式。然后通过生活实例或教学模具逐渐引出本讲专题,使学生领悟分割、拼补、旋转等转换思想。几何问题就像看图说话,需要掌握其中的玄妙。 知识梳理 一、不规则图形面积与周长 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。它们的面积及周长都有相应的公式直接计算,如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?针对这些图形,我们可以变动图形的位置或对图形进行适当的分割、拼补、旋转等方法将它们转化为基本图形的和、差关系。有时也可

利用公式的变形,比如巧用半径的平方。我们知道,要计算圆的面积通常要知道半径,有的时候题目不知道半径,根据其他条件也能求出圆的面积。 一般的,两个可以完全重合的图形的面积相等;图形被分成若干部分时,各部分面积之和等于图形的面积。 通过转换思想,复杂问题经常要化繁为简,从最简单的情况开始,找出其中规律,归纳总结到一般情形。 【授课批注】 不规则图形有时也称为组合图形,其重点在于掌握转换这一伟大思想,很多较复杂的问题都是以简单的基本图形为基础的,当然也都可以根据几何图形的特征,通过分割、割补、平移、翻折、对称、旋转等方法,化复杂为简单,变组合图形为基本图形的加减组合。 【重点难点解析】 1.一般图形问题的面积和周长公式。 2.巧求周长与面积的基本方法。 3.理解并掌握割补、平移等数学思想方法。 【竞赛考点挖掘】 1.杯赛考试中出现的几何问题多数需要进行适当的转换。 2.辅助线的巧妙利用能够有效提高做题速度。 3.割补法、平移法、旋转法、差不变等解题技巧。 例题精讲 【题目】计算右面图形的周长(单位:厘米)。

不规则图形面积的估算

不规则图形面积的估算 教学目标: 1、基础知识:能正确估计不规则的图形面积的大小。 2、基本技能:能用数方格的方法计算一些不规则图形的面积,掌握数方格的顺序和方法。 3、基本思想:能借助方格图估算不规则图形的面积,在估算面积的 过程中,体验解决问题策略的多样性,培养初步的估 算意识和估算习惯,体验估算的必要性和重要作用。3、基本活动经验:提高学生运用数学知识解决实际问题的能力,让学生通过实践活动体会数学源于生活,用于生活。让 学生欣赏大自然的美,使学生体会环保的重要性。 教学重点:利用方格图估计不规则图形面积。 教学难点:估算的习惯和方法的选择。 教具准备:树叶若干片,方格纸若干,作业纸3张,课件一套。 课前活动: 1、多媒体播放“嫦娥三号”探测器成功登月的视频,介绍中国的探月工程分三步走:一绕;二落;三回。鼓励学生勇于探索,努力学习。 2、师:(指课件封面)这就是“嫦娥三号”着落区的全景照片。这说明我们国家在探月工程的漫漫征途中,又添上了辉煌的一笔。我想:只要同学们努力学习科学文化知识,成功的道路上必将留下你们一串串成长的脚印。

3、师:也许若干年后的一天,在月球上留下第一个中国人的脚印的人就是在座的某一位。同学们要不要更努力的学习了?(要)那么这个崭新的开始就从老师的这节成长的脚印开始好不好?(好)有没有信心在这节课上跟老师配合好?(有) 教学流程: 一、情境引题,学习新知: 1、人物情境入题,学习新知: (1)师:同学们看看我请来了谁?(出示人物Eve),这是机器人总动员里的主人公:Eve。大家欢迎他跟我们一起学习 吗? (出示沙滩脚印图)学生猜是谁的脚印。 “啊?我的?这好像确实是我的脚印。” 师:既然是我的,同学们,老师给你们看下我刚出生时的脚印(出示出生脚印图)怎样才能知道这个脚印的面积有多 少呢? (2)学生自己先独立进行估计,然后小组内进行交流。 (3)全班交流: 生1:我们是用数格子的方法来进行计算的,我先数了数满格的大约是11个,其他不够一个格子的我进行了拼补,这样大约是 17cm2。 生2:我们的方法也是这样的,我们把不满一格的按照一格进行计算,这样大约是18 cm2。

难点8 “不规则”几何体的三视图问题

难点8 “不规则”几何体的三视图问题 1.放置方式的“不规则” 典例1 一个空间几何体的三视图如图所示,则该几何体的表面积为( ) A.48 B.32+8 C.48+8 D.80 答案C 解析由三视图可得该几何体是一个直四棱柱.如图,直四棱柱ABCD-A 1B 1 C 1 D 1 .因为放置方式 上的“不规则”,把直四棱柱的一个侧面放置在水平面上而不是把底面放置在水平面上,可能在脑海里会形成“不规则”几何体的形象,它实际上是一个常见的规则几何体.由三视图可得该直四棱柱的底面是一个上底边长为2,下底边长为4,高为4的等腰梯形,侧棱长是4,所以计算可得答案是C. 点拨以上两道题的难度虽然不大,但是如果不清楚几何体的放置方式,解决起来有一定的 难度,所以同学们在平时学习中要从放置方式的变化上去认识一些规则几何体对应的三视图. 对点练 某四面体的三视图如图所示,在该四面体的四个面中,直角三角形的面积和是( )

A.2 B.4 C.2+ D.4+2 答案 C 由三视图可得原几何体如图所示,由三视图知该几何体的高为2,底面ABC 是直角边长为2的等腰直角三角形,平面P AC⊥平面ABC,∠ACB=90°,则BC⊥平面PAC,所以BC⊥PC, 所以直角三角形有△PBC 和△ACB,易求得PC==,又BC=2,所以S △PBC =×2×=, 又S △ABC =×2×2=2,所以该四面体的四个面中,直角三角形的面积和为2+,故选C. 2.“残缺”的几何体 典例2 棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( ) A. B.4 C. D.3 答案 B 解析 由题意和三视图得,该几何体是由如图所示的平面A 1ECF 截正方体所得到的(其中E 、F 分别为BB 1、DD 1的中点).根据对称性知,所求几何体的体积为正方体体积的一半,所以该几何 体的体积为×23=4.故选B.

不规则几何体体积计算中的三钟方法例析

体积计算中的常用方法 一、转换法 当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时,可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积. 例1 在边长为a 的正方体1111ABCD A B C D -中,M N P ,,分别是棱11111A B A D A A ,,上的点,且满足1111 2 A M A B = ,112A N ND =,113 4 A P A A = (如图1) ,试求三棱锥1A MNP -的体积. 分析:若用公式1 3 V Sh = 直接计算三棱锥1A MNP -的体积,则需要求出MNP △的面积和该三棱锥的高,这两者显然都不易求出,但若将三棱锥 1A MNP -的顶点和底面转换一下,变为求三棱锥1P A MN -的体积,便能很容易的求出其 高和底面1A MN △的面积,从而代入公式求解. 解: 1113111111111231 3323223424 A MNP P A MN A MN V V S h A M A N A P a a a a --===?=??=△·······. 评注:转换顶点和底面是求三棱锥体积的一种常用方法,也是以后学习求点到 平面距离的一个理论依据. 二、分割法 分割法也是体积计算中的一种常用方法,在求一些不规则的几何体的体积以及求两个几何体的体积之比时经常要用到分割法. 例2 如图2,在三棱柱111ABC A B C -中,E F ,分别为AB AC ,的中点,平面11EB C F 将三棱柱分成两部分,求这两部分的体积之比. 分析:截面11EB C F 将三棱柱分成两部分,一部分是三棱台 111AEF A B C -;另一部分是一个不规则几何体,其体积可以利用棱 柱的体积减去棱台的体积求得. 解:设棱柱的底面积为S ,高为h ,其体积V Sh =.

不规则图形的面积计算

不规则图形的面积计算 在图形面积计算时,经常会到一些无法直接求或不规则的图形,这时我们需要转换解题思维,根据图形的基本关系,运用分解、平移、旋转、割补、添辅助线等方法来思考。下面介绍几种常见的面积计算的解题思路. 一、“大减小” 例1.求下图中阴影部分的面积(单位:厘米) 解析:阴部部分的面积=“大减小” =两正方形面积-空白部分面积 =(4×4+3×3)-(4+3)×4÷2 =11平方厘米 二、“补” 例2.四边形ABCD是一个长10厘米,宽6厘米的长方形,三角形ADE的面积比三角形CEF的面积大10平方厘米,求CF的长。 解析:假设三角形EFC为图1,四边形ECBA为图2,三角形ADE为图3。给1、3同时补上2,它们的面积差不会发生改变 图形3的面积-图形1的面积=10

(图形3+图形2)-(图形1+图形2)= 即长方形ABCD的面积-三角形ABF的面积=10 那么,三角形ABF的面积=60-10=50=AB×BF÷2 可算出 BF=10厘米,所以CF=10-6=4厘米 例3.如图,四边形ACEF中,角ACE=角EFA=90°,角CAF=45°,AC=8厘米,EF=2厘米,求四边形ACEF的面积 解析:分别延长AF、CE,交于B点 在三角形ABC中,很明显,它是个等腰直角三角形,面积=8×8÷2=32平方厘米 在三角形EFB中,很明显,它也是一个等腰直角三角形,面积=2×2÷2=2平方厘米 所以,S四边形ACEF=S△ABC-S△EFB=32-2=30平方厘米 三、“移” 例4.如图所示(1图),四边形ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求路的面积。 解析:小路是曲折的,不规则图形,可用采用“移”的思路来解决 把图1下面空白部分往上、往左移,使它与上面空白部分连接在一起,就成了图2中的空白部分,是一个长方形,长是20-2=18米,宽是14-2=12米,这个长方形的面积=18×12=216平方米,小路的面积=大长方形的面积-空白长方形的面积=20×14-216=64平方米 例5.如图,AE=ED,AF=FC,已知三角形ABC的面积是100平方厘米,求阴影部分的面积

第2讲 不规则图形面积的计算

第2讲不规则图形面积的计算(二) 解题思路:先考虑图中每条线的来源,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常结合“容斥原理”(即:集合A与集合B之间有:S AUB=S A+S B-S A∩B) 例1 如图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。 例2 如图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。 例3 如图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF 的半径CB=4厘米,求阴影部分的面积。 例4 如图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC的长。 例5 如图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积。

例6 如图,将直径AB为3的半圆绕A逆时针旋转60°,此时AB到达AC的位置,求阴影部 分的面积(取π=3). 例7 如图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积. 例8 如图,ABC是等腰直角三角形,D是半圆周上的中点,BC是半圆的直径,且AB=BC=10,求阴影部分面积(π取3.14)。 习题 一.填空题(根据图中所给的数据求阴影部分面积) 二、解答题: 1.如图,大圆的直径为4厘米,求阴影部分的面积。

2.如图,大扇形半径是6厘米,小扇形半径是3厘米.求阴影部分的面积。 3.如图,三个同心圆的半径分别是2、6、10,求图中阴影部分占大圆面积的百分之几? 4.如图,正方形ABCD边长为1厘米,依次以A、B、C、D为圆心,以AD、BE、CF、DG为半径画 出扇形,求阴影部分的面积. 5.如下图(a),求阴影部分的面积。 6.如下图(b),把OA分成6个等份,以O为圆心画出六个扇形,已知最小的扇形面积是10平方厘米,求阴影部分的面积。 7.如下图(a),△ABC是等腰直角三角形,直角边AB=2厘米,BE、BD分别为以C、A为圆心, BC、AB为半径所作的弧.求阴影部分面积. 8.如下图(b),已知半径OA=OB=OC=9=厘米,∠1=∠2=15°,求阴影部分的面积.

不规则图形面积的计算及详细讲解

第一讲不规则图形面积的计算(一) 习题一(及详细答案) 一、填空题(求下列各图中阴影部分的面积): 二、解答题: 1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。 2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN (阴影部分)的面积. 3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。 4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积. 5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积. 6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少? 7.如右图,有一三角形纸片沿虚线折叠得到右下图,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米.求原三角形面积.

8.如右图,ABCD的边长BC=10,直角三角形BCE的直角边EC长8,已知阴影部分的面积比△EFG的面积大10.求CF的长. 习题一解答 一、填空题: 二、解答题: 3.CE=7厘米. 可求出BE=12.所以CE=BE-5=7厘米. 4.3.提示:加辅助线BD ∴CE=4,DE=CD-CE=5-4=1。 同理AF=8,DF=AD-AF=14-8=6, 6.如右图,大正方形边长等于长方形的长与宽的和.中间小正方形的边长等于长方形的长与宽的差.而大、小正方形的边长分别是8米和3米,所以长方形的宽为(8-3)÷2=(米),长方形的长为=(米).

不规则几何图形面积计算方法

不规则几何图形面积计算方法 有一次坐车,曾与一位大学一年级的学生坐邻座。 问她现在还学不学数学,她说正学呢,学微积分。 问微积分有什么用,她想了想,说:“可以求不规则图形的面积”。 我将手拍在我们前面座椅的靠背上,问:“用您高中以前的知识,您怎么求我的手掌印的面积?” 她马上说:“这没有办法求。我们求面积都就是求的规则图形的面积。这个没有办法求。” 她没有用过新课程下的数学教材。对于用过新课程下的数学教材的学生来说,这样的问题,小学生应当能够解决了。 新世纪小学数学教材安排了探索不规则图形及物体的测量方法,如,“估计自己脚印的面积”的活动,“学生可以在脚印上画出透明的正方形格子,由此进行估计。对于感兴趣的学生,教师还可以引导她们计算出鞋印覆盖住的整方格数,得到鞋印面积的不足近似值;再计算出被鞋印接触过的所有方格数,得到鞋印面积的过剩近似值,鞋印的实际面积介于二者之间。根据经验,学生还可能认识到方格分得越细,不足近似值与过剩近似值越接近,这种认识实际上蕴涵了微积分的基本思想。[1]”大方格不能 上文说“根据经验,学生还可能认识到……”,似乎就是编写者“一厢情愿”的猜度。我们瞧到下面的材料,想来您会体会到编写者这样设计的意义与价值。这就是一位教师在上课中的实录节选。 例2[2] 求一块不规则图形的面积. 这与数学中的常规问题就是不同的,我们在数学中面对的一般都就是规则图形,可以直接用公式计算,或者通过适当割补后再用公式计算.如何解决这一问题呢?我们把它交给学生,竟然得到了如下一些成果: 方法1 将图形放在坐标纸上,也即将图形分割,瞧它有多少个“单位面积”. 方法2 将图形从内外两个方面用规则图形(或规则图形的组合)逼近. [1]义务教育课程标准实验教科书·数学教师教学用书(四年级上册)·致教师(一),北京师范在学出版社, [2]试谈以人为本的三维课堂教学,http://www、6318、cn/jyzx/Print、asp

第一讲不规则图形面积的计算(一)

第一讲不规则图形面积的计算(一) 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形,它们的面积及周长都有相应的公式直接计算。 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 例1 如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米。求阴影部分的面积。 A B C 解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个

“空白”三角形(△ABG、△BDE、△EFG)的面积之和。 1×10×10=50; 因为S△ABG= 2 1(10+12)×12=132; S△BDE= 2 1(12-10)×12=12。 S△EFG= 2 又因为S甲+S乙=12×12+10×10=244, 所以阴影部分面积=244-(50+132+12)=50(平方厘米)例2如下图,正方形ABCD的边长为6厘米,△ABE、 △ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。 解:因为△ABE、△ADF与四边形AECF的面积彼此相等,所以四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD面积的三分之一。也就是: 1×6×6=12。 S四边形AECF=S△ABE=S△ADF= 3 在△ABE中,因为AB=6,所以BE=4,同理DF=4,因此,CE=CF=2,所以△ECF的面积为2×2÷2=2。 所以S△AEF= S四边形AECF-S△ECF=12-2=10(平方厘米)。 例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如下图那样重合。求重合部分(阴影部分)的面积。

不规则几何图形面积计算方法

不规则几何图形面积计算方法 有一次坐车,曾与一位大学一年级的学生坐邻座。 问她现在还学不学数学,她说正学呢,学微积分。 问微积分有什么用,她想了想,说:“可以求不规则图形的面积”。 我将手拍在我们前面座椅的靠背上,问:“用你高中以前的知识,你怎么求我的手掌印的面积” 她马上说:“这没有办法求。我们求面积都是求的规则图形的面积。这个没有办法求。” 她没有用过新课程下的数学教材。对于用过新课程下的数学教材的学生来说,这样的问题,小学生应当能够解决了。 新世纪小学数学教材安排了探索不规则图形及物体的测量方法,如,“估计自己脚印的面积”的活动,“学生可以在脚印上画出透明的正方形格子,由此进行估计。对于感兴趣的学生,教师还可以引导他们计算出鞋印覆盖住的整方格数,得到鞋印面积的不足近似值;再计算出被鞋印接触过的所有方格数,得到鞋印面积的过剩近似值,鞋印的实际面积介于二者之间。根据经验,学生还可能认识到方格分得越细,不足近似值和过剩近似值越接近,这种认识实际上蕴涵了微积分的基本思想。[1]”大方格不能 上文说“根据经验,学生还可能认识到……”,似乎是编写者“一厢情愿”的猜度。我们看到下面的材料,想来你会体会到编写者这样设计的意义和价值。这是一位教师在上课中的实录节选。 例2求一块不规则图形的面积. 这与数学中的常规问题是不同的,我们在数学中面对的一般都是规则图形,可以直接用公式计算,或者通过适当割补后再用公式计算.如何解决这一问题呢我们把它交给学生,竟然得到了如下一些成果: 方法1 将图形放在坐标纸上,也即将图形分割,看它有多少个“单位面积”. [1]义务教育课程标准实验教科书·数学教师教学用书(四年级上册)·致教师(一),北京师范在学出版社, [2]试谈以人为本的三维课堂教学,

求不规则图形的面积

求不规则图形的面积 李荣璋 在实际问题中,有些图形不是以基本图形(如三角形、矩形、正方形、平行四边形等)的形状出现,而是由一些基本图形组合、拼凑而成的简单图形,在计算它们的面积时无法直接应用公式。但是,对这些图形进行割补、剪拼等操作,可将它们转化为基本图形加以解决。 1. 等积变形 三角形面积计算公式为 (1)等底同高 如图1所示,在△ABC中,BD=DC,则 引申:当等高时,两三角形面积的比等于底的比。 图1 如图2所示,若,则

图2 (2)同底等高 如图3所示, 图3 例1. 如图4所示,点A为△CDE的边DE的中点,。若△ABC的面积为5平方厘米,求△ABD及△ACE的面积。 图4 解:取BD中点F,连结AF。

因为等底、同高, 所以它们的面积相等,都等于5平方厘米。 即平方厘米 平方厘米 又因为等底、同高 所以平方厘米。 例2. 如图5所示,已知,求阴影部分的面积。 图5 解:连结DF 因为 所以 因为

所以 即 所以 2. 利用矩形性质 例3. 如图6所示,在正方形有ABCD中,△ABE的面积是8平方厘米,它是△DEC 的面积的,求正方形ABCD的面积。 图6 解:过E作于F 平方厘米 平方厘米 所以正方形的面积

(平方厘米) 3. 其它根据题意计算 例4. 如图7所示,有一个三角形纸片沿虚线折叠得图8,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米,求原三角形面积。 图7 图8 解:如图9所示,设折叠后重合部分的面积为x平方厘米,则 原三角形面积为平方厘米 依题意得: 解得: 所以原三角形的面积为 (平方厘米)。

小学六年级奥数专题训练:不规则图形的面积求法

一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。 二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可。 三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它是一个底2,高4的三角形,就可以直接求面积了。 四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。 五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助

线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便。 六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半. 七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。 八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积. 九、对称添补法:这种方法是作出原图形的对称图形,从而得到一

六年级数学-不规则图形面积计算

不规则图形面积计算(1) 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形. 我们的面积及周长都有相应的公式直接计算. 如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算. 一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过 实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了、例题与方法指导 例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10 厘米和 12厘米. 求阴影部分的面积。 思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白” 三角形(△ ABG、△BDE、△ EFG)的面积之和。

例 2 如右图,正方形 ABCD 的边长为 6 厘米,△ ABE 、△ ADF 与四边形 AECF 的面积 彼此相等,求三角形 AEF 的面积 . 1 ∴四边形 AECF 的面积与△ ABE 、△ ADF 的面积都等于正方形 ABCD 的 。 3 在△ ABE 中,因为 AB=6.所以 BE=4,同理 DF=4,因此 CE=CF=2, ∴△ ECF 的面积为 2×2÷ 2=2。 所以 S △ AEF=S 四边形 AECF-S △ECF=12-2=10(平方厘米)。 例 3 两块等腰直角三角形的三角板,直角边分别是 10 厘米和 6 厘米。如右图那样 在等腰直角三角形 ABC 中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积 =S △ ABG-S △ BEF=25-8=17(平方厘米)。 例 4 如右图, A 为△ CDE 的 DE 边上中点, BC=CD ,若△ ABC (阴影部分)面积为 5 平方厘米 . 求△ ABD 及△ ACE 的面积 . 思路导航: 取 BD 中点 F ,连结 AF.因为△ ADF 、△ ABF 和△ ABC 等底、等高, 所以它们的面积相等,都等于 5 平方厘米 . ∴△ ACD 的面积等于 15 平方厘米,△ ABD 的面积等于 10 平方厘米。 又由于△ ACE 与△ ACD 等底、等高,所以△ ACE 的面积是 15 平方厘米。 思路导航: ∵△ ABE 、△ ADF 与四边形 AECF 的面积彼此相等, 重合 . 求重合部分(阴影部分)的面积。 思路导航: C

不规则图形面积的求法九年级中考复习

不规则图形面积的求法 (九年级中考复习) 山东省沂水县高桥镇初级中学 王瑞辉 276411 求不规则图形面积的基本思路是通过分割、重叠、等积替换等方法把不规则图形转化为规则图形或规则图形面积的和差。 一、等积替换 (1)三角形等积替换 依据:等底等高的三角形面积相等或全等的三角形面积相等。 例1、如图1所示,半圆O 中,直径AB 长为4,C 、D 为半圆O 的三等分 点.,求阴影部分的面积. 解:连结OC 、OD , 由C 、D 为半圆O 的三等分点知:∠COD=60°,且∠ADC=∠DAB=30°, ∴CD ∥AB ,所以ODC ADC S S ??=(同底等高的三角形面积相等) ∴==扇形阴影OCD S S ππ323602602=?? 例2、如图2所示,在矩形ABCD 中,AB=1,以AD 为直径的 半圆与BC 切于M 点,求阴影部分面积. 解:由AB =1,半圆与BC 相切,得AD =2 取AD 的中点O ,则OD =BM =1。连结OM 交 BD 于E; 则△OED ≌△MEB ∴MEB OED S S ??= (全等三角形面积相等) ∴==扇形阴影OMD S S 4 3601902ππ=?? (2)弓形等积替换 依据:等弧所对的弓形面积相等。 例3、 在RT △ABC 中,∠B=90°,AB=BC=4,AB 为直径的⊙O 交AC 于点D, 求图中两个阴影部分的面积之和. 解:连结BD ,由AB 为⊙O 的直径得∠ADB =90°, RT △ABC 中∠B =90°AB =BC =4, 得∠A =45°且AC =42,AD =BD =CD =22 ∴A D BnD S S 弓形m 弓形= ∴CDB 1 1S CD BD 2222422 S ?????阴影==== 例4、点A、B、C、D是圆周上四点,且? AB +?CD =?AC +?BD , 弦AB=8,CD=4,求两个阴影部分的面积之和。 A 图2 图4

最新五年级不规则图形面积计算

五年级不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形?我们的面积及周长都有相应的公式直接计算?如下表:

实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这 些图形通过实施害际卜、剪拼等方法将它们转化为基本图形的和、差关 系,问题就能解决了。 一、例题与方法指导 例1如右图,甲、乙两图形都是正方形,它们的边长分别是 10厘米和12厘米?求阴影部分的面积。 思路导航: 阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白 三角形(△ABG、壬DE、AEFG )的面积之和。 例2 如右图,正方形ABCD的边长为6厘米,A ABE、A ADF

与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:

???△BE> △ADF与四边形AECF的面积彼此相等, 二四边形AECF的面积与厶ABE .△ADF的面积都等于正方形 ABCD 的1。 3 在A ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2 , ???△CF的面积为2X2吃=2。 所以S A AEF=S 四边形AECF-S △ECF=12-2=10 (平方厘米)。 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合?求重合部分(阴影部分)的面积。 思路导航: 在等腰直角三角形ABC中 ??AB=10 ??EF=BF=AB-AF=10-6=4 , ?阴影部分面积=S A ABG-S ^3EF=25-8=17 (平方厘米) 例4 如右图,A为△CDE的DE边上中点,BC=CD,若A ABC (阴影部分)面积为5平方厘米.

《估算不规则图形面积》教学设计

《不规则图形面积的估算》教学案 教学内容: 教材第100页,例5,不规则图形面积的估算。 教材分析:本节教学内容是不规则图形面积的估算。这部分是在部分学生掌握各种简单的平面图形面积和‘分割法’,‘添补法’的基础上进行学习的。例5创设情境,让学生估算树叶的面积,激发学生的想象力和学习兴趣,学生利用“数方格”的方法和把不规则图形看成一个近似规则的图形的方法估算树叶的面积。教材以对话的形式分析估算的过程,简单明了,是学生更容易理解。 教学目标: 1、能正确估算不规则图形面积的大小,能用数方格的方法或把他看成一个近似的规则图形 的方法,估算出一些不规则图形的面积。 2、能借助方格估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性, 培养初步的估算意识和估算习惯,体验估算的重要性和必要性。 3、体会数学与现实生活的密切联系,感受数学应用价值。 学习重点:利用方格图估计不规则图形的面积。 学习难点:把不规则的图形看成规则的图形进行面积估算。 学习准备: 教师准备:方格纸若干张,课件 学生准备:2片树叶,方格纸 学习过程:一、情境导入 1、教师展示课件(出示正方形,长方形,平行四边形,三角形,梯形,一片树叶): (1)说出每个图形面积的计算方法。 (2)学生困惑:树叶的面积怎么求? 2、教师手执一片树叶,先让学生指一指树叶的面积是哪一部分?指名几名学生上台指一指。引导学生思考:它是一个什么图形,那么面积如何计算呢? 学生交流,教师点题并板书:不规则图形面积 二、探究新知: 1.用“数方格”的方法求不规则图形的面积 教师引导:以树叶为例,我们怎样计算出它的面积吗?大家猜猜 组织学生小组交流: 引导学生说出:可以估计出它的面积。 学生一:在我们的手里都有一个正方形方格纸,方格纸的每一个小方格是1cm2。我们 可以把手中的树叶放在方格纸上,数一数树叶范围也就是树叶的面积占了多少个方格,就是多少cm2? 教师给予肯定后继而又抛出问题:那么从树叶的边缘看,有的占满格,有的占半大格,有的占小半格,怎么数呢? 学生二:大于半格和小于半格都算半格 小组学生自己数一数手中树叶的面积。 学生展示自己数方格的方法,教师随时点评。 学生:先数有几个满格,再数有几个半格,然后把满格的面积和半格的面积加起来就是这片树叶的面积。 教师根据学生的回答板书: 质疑:算出来的结果是准确值吗?为什么这里要说树叶的面积的计算方法算什么方法?

不规则几何体体积的求法

不规则几何体体积的求法 当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考. 一、等积转换法 当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时,可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积. 例1 在边长为a 的正方体ABCD —A 1B 1C 1D 1中,M ,N ,P 分别是棱A 1B 1,A 1D 1,A 1A 上的点,且满足A 1M = 12 A 1 B 1, A 1N =2ND 1,A 1P = 34 A 1A (如图1),试求三棱锥A 1—MNP 的体积. 分析:若用公式V= 13 Sh 直接计算三棱锥A 1—MNP 的体积,则需要求出△MNP 的面积和该三棱锥的高,这两者显然都不易求 出,但若将三棱锥A 1—MNP 的顶点和底面转换一下,变为求三棱锥P —A 1MN 的体积,便能很容易的求出其高和底面△A 1MN 的面积,从而代入公式求解. 解:V A 1-MNP =V A 1—MNP = 13 ·S △A 1MN ·h = 13 ×12 ·A 1M 1·A 1N ·A 1P=13 ×12×12a ·23 a · 34 a= 124 a 3. 评注:转换顶点和底面是求三棱锥体积的一种常用方法,也是以后学习求点到平面距离的一个理论依据. 二、分割法 分割法也是体积计算中的一种常用方法,在求一些不规则的几何体的体积以及求两个几何体的体积之比时经常要用到分割法. 例2 如图2,在三棱柱ABC —A 1B 1C 1中,E ,F 分别为AB ,AC 的中点,平面EB 1C 1F 将三棱柱分成两部分,求这两部分的体积之比. 分析:截面EB 1C 1F 将三棱柱分成两部分,一部分是三棱台 AEF —A 1B 1C 1;另一部分是一个不规则几何体,其体积可以利用棱柱 的体积减去棱台的体积求得. 解:设棱柱的底面积为S ,高为h ,其体积V =Sh . 则三角形AEF 的面积为14 S . 由于V AEF -A 1B 1C 1=13 ·h ·(s 4 +S+s 2 )= 712 Sh , 则剩余不规则几何体的体积为V ′=V -V AEF -A 1B 1C 1=Sh -712 Sh = 512 Sh , 所以两部分的体积之比为V AEF -A 1B 1C 1:V ′=7:5. 评注:在求一个几何体被分成的两部分体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积,再进行计算. 三、补形法 某些空间几何体是某一个几何体的一部分,在解题时, 把这个几何体通过“补形”补成

相关文档
相关文档 最新文档