文档库 最新最全的文档下载
当前位置:文档库 › 实验五 刚性转子动平衡设计与实验

实验五 刚性转子动平衡设计与实验

实验五  刚性转子动平衡设计与实验
实验五  刚性转子动平衡设计与实验

实验五刚性转子动平衡设计与实验

一、实验目的

1、掌握刚性转子动平衡设计的原理和方法;

2、掌握在动平衡机上对刚性转子进行动平衡的原理和方法。

二、实验预习的内容

1、预习与动平衡相关的知识;掌握动平衡设计的原理和方法;了解动平衡机的结构、工作原理和使用方法;了解动平衡实验的原理和方法。

2、动平衡设计

1)动平衡设计原理

在转子的设计阶段,尤其在设计高速转子及精密转子结构时,必须进行平衡计算,以检查惯性力和惯性力矩是否平衡。若不平衡则需要在结构上采取措施,以消除不平衡惯性力的影响,这一过程称为转子的平衡设计。转子的平衡设计分为静平衡设计和动平衡设计,静平衡设计指对于D/b≥5的盘状转子,近似认为其不平衡质量分布在同一回转平面内,忽略惯性力矩的影响。动平衡设计指径宽比D/b<5的转子(如多缸发动机曲轴、汽轮机转子等),其特点是轴向宽度较大,偏心质量可能分布在几个不同的回转平面内,因此,不能忽略惯性力矩的影响。此时,即使不平衡质量的惯性力达到平衡,惯性力矩仍会使转子处于不平衡状态。由于这种不平衡只有在转子运动时才能显示出来,因此称为动不平衡。为避免动不平衡现象,在转子设计阶段,根据转子的功能要求设计转子后,需要确定出各不同回转平面内偏心质量的大小和位置,然后运用理论力学中平行力的合成与分解的原理,将每一个离心惯性力分解为分别作用于选定的两平衡基面内的一对平行力,并在每个平衡基面内按平面汇交力系求解,从而得出两个平衡基面分别所需的平衡配重的质径积大小和位置,然后在转子设计图纸上加上这些平衡质量,使设计出来的转子在理论上达到平衡。

2)转子动平衡设计的方法及步骤

A:根据转子的结构确定出偏心质量所在的平面,并计算出各个偏心质量m1、

m2、…、m i,向径r1、r2、…、r i,方位角θ1、θ2、…、θi和惯性力F1、F2、…、F i;

B:选定平衡基面Ⅰ、Ⅱ,将惯性力F1、F2、…、F i分解到所选定的平衡基面

Ⅰ、Ⅱ,其分力分别为F'1、F'2、…、F'i和F″1、F″2、…、F″i,设在Ⅰ、Ⅱ面

上所加的配重为m

Ⅰ、m

,其向径为r

、r

,其方位角为θ

、θ

;确定两个平

衡基面Ⅰ、Ⅱ的距离L和各个偏心质量分别到平衡基面Ⅰ的距离l'1、l'2、…、l'

i 和到平衡基面Ⅱ的距离

l ″1、l ″2、…、l ″i ,;

C :分别列出平衡基面Ⅰ、Ⅱ动平衡方程式

12i 1122i i 12i 1122

i i 0L L L 0L L L l l l m r m r m r m r l l l m r m r m r m r ''''''

+++???='''

+++???=ⅠⅠ

ⅡⅡ

D :求解m Ⅰ、θⅠ和m Ⅱ、θⅡ。 解法一:

(1)取质径积(m i r i )比例μ

mr ;

(2)分别作出平衡基面Ⅰ、Ⅱ质径积矢量多边形,求出m Ⅰr Ⅰ、θⅠ和m Ⅱr Ⅱ、

θⅡ;

(3)分别选取平衡质量m Ⅰ、m Ⅱ在平衡基面Ⅰ、Ⅱ的向径为r Ⅰ、r Ⅱ,计算

出m Ⅰ、m Ⅱ。

解法二:

(1)列出平衡基面Ⅰ、Ⅱ的动平衡方程式分别在x 、y 方向上的投影方程式

12i 1122i i 12i 1122i i 12i 1122i i 1:c o s (c o s c o s c o s )L L L :s i n (s i n s i n s i n )L L L :c o s (c o s c o s c o s )L L L

:s i n (l l l X m r m r m r m r l l l Y m r m r m r m r l l l X m r m r m r m r l Y m r θθθθθθθθθθθθθ''''''

=-++???''''''

=-++???'''

=-++???'=-ⅠⅠⅠ12i

ⅠⅠⅠ12i

ⅡⅡⅡ12i

ⅡⅡ

Ⅱ2i 1122i i sin sin sin )L L L

l l m r m r m r θθθ''

++???12i

计算出m Ⅰr Ⅰ、m Ⅱr Ⅱ和θⅠ、θⅡ;

(2)选取m Ⅰ、m Ⅱ在平衡基面的向径r Ⅰ、r Ⅱ,计算出m Ⅰ、m Ⅱ。 3、动平衡设计报告 1)转子结构图

2)转子动平衡设计参数:

平衡基面的位置、转子材料密度ρ、不平衡质量所在回转平面位置、不平衡质量所在的向径r i 和方位角θi 、不平衡质量m i 、平衡基面之间的距离L 、平衡

质量m

Ⅰ、m

在平衡基面上的向径r

、r

3)动平衡设计计算

要求列出平衡基面动平衡方程式,用图解法和解析法分别进行计算。

三、实验设备和工具

1、实验用刚性转子(同动平衡设计);

2、平衡用钢块及橡皮泥;

3、天平;

4、动平衡机如下图所示。

a)RYQ-30

b)YYH-500 图5-1动平衡机

转子现场动平衡实验

实验一 转子现场动平衡实验 实验目的 通过本实验了解动平衡实验的基本方法 1. 实验原理 在实际工作过程中人们通常用单面加重三元作图法进行叶轮、转子等设备的现场动平衡,以消除过大的振动超差。这一方法的优点是设备简单——只需一块测振表。但缺点是作图分析的过程复杂,不易被掌握,而且容易出现错误。为此,我们在这里提出了一种简单易行的方法——单面现场动平衡的三点加重法。 假设在假设转子上有一不平衡量m ,所处角度为α,用分量m x 、m y 表示不平衡量。 m x =mcos α m y =msin α 为了确定不平衡量m 的大小和位置α,启动转子在工作转速下旋转,用测振设备在一固定点测试振动振速,设振速为V 0,则存在下列关系 式中K为比例系数 图42.1 三点加重法示意图 在P 1(α=0 )点加试重M ,启动转子到工作转速,测得振动振速V 1,有如下关系: 用同样的方式分别在P 2(α=120o )和P 3(α=240 o )点加试重M ,并测得振动值V 2 ,V 3, 有如下关系: 2 2V m m K y x =+ x ) (3P 1 2 2)(V m M m K y x =++222)2 3 ()21(V M m M m K y x =++- 322)2 3()21(V M m M m K y x =-+-

从以上三式推导可得: 从而可以进一步推得: 即由m x ,m y 计算不平衡质量m 和位置α。 2. 实验仪器和设备 1. 计算机 n 台 2. DRVI 快速可重组虚拟仪器平台 1套 3. 速度传感器(CD-21) 1套 4. 蓝津数据采集仪(DRDAQ-EPP2) 1台 5. 开关电源(DRDY-A ) 1套 6. 5芯-BNC 转接线 1条 7. 转子实验台(DRZZS-A ) 1 套 3. 实验步骤及内容 1. 转子动平衡实验结构如图4 2.2所示,将速度传感器通过配套的磁座吸附在转子实 验台底座上,然后通过一根带五芯航空插头-BNC 转接电缆和对应通道连接。图42.5是本实验的信号处理流程框图。 图42.2 转子动平衡实验结构示意图 2. 启动服务器,运行DRVI 主程序,点击DRVI 快捷工具条上的“联机注册”图标, 选择其中的“DRVI 采集仪主卡检测”进行服务器和数据采集仪之间的注册。在实验目录中选择“转子现场动平衡”实验。将参考的实验脚本文件读入DRVI 软件平台,如图42.3所示 3. 在转子实验台的配重盘上选取一个位置(比如贴反光纸的位置)作为初始位置(即 P 1点),然后用转子实验台附件中的螺钉,任意选取一个位置加上,作为不平衡重。 4. 启动转子/振动实验台到稳定转速,点击“数据采集开始”按钮,再点击“获取初 始振动数据”按钮,获取初始振动数据,然后停止运行转子实验台。 ) (3212 12/)(3/)3(23222 220212202322212V V MK m M MK V V m M V V V V K y x -= --=-++=) /(12 2x y y x m m tg a m m m -=+ =

回转体的动平衡实验实验指导书样本

回转体的动平衡实验 一、实验目的 1、掌握刚性转子动平衡的试验方法。 2、初步了解动平衡试验机的工作原理及操作 特点。 3、了解动平衡精度的基本概念。 二、实验设备及工具 1、 CYYQ—50TNC型电脑显示硬支承动平衡机 2、转子试件 3、橡皮泥, M6螺钉若干 4、电子天平( 精度0.01g) , 游标卡尺, 钢直尺 图 1 硬支承动平衡机三、 CYYQ—50TNC型硬支承动平衡机的结构与 工作原理 1、硬支承动平衡机的结构 该试验机是硬支承动平衡机, 实物如图1所示。 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备, 一 般由机座6、左右支承架4、圈带驱动装置2、计算机检测显示系统、传感 器5、限位支架3和光电头1等部件组成, 如图2所示。

图2 硬支承动平衡机结构示意图 1.光电头 2.圈带驱动装置 3.限位支架 4.支承架 5.传感器 6.机座 左右支承架是动平衡机的重要部件, 中间装有压电传感器, 此传感器在出厂前已严格调整好, 切不可自行打开或转动有关螺丝( 否则会严重影响检测质量) 。左右移动只需松开支承架下面与机座连接的两个紧固螺钉, 把左右支承架移到适当位置后再拧紧即可。支承架下面有一导向键, 保证两支架在移动后能互相平行, 支承架中部有升降调节螺丝, 可调节转子的左右高度, 使之达到水平。外侧有限位支架, 可防止转子在旋转时向左右窜动。 转子的平衡转速必须根据转子的外径及质量, 并考虑电机拖动功率及摆架动态承载能力来进行选择。本动平衡机采用变频器对电动机调频变速, 使工作速度控制自如。 2、 转子动平衡的力学条件 由于转子材料的不均匀、 制造的误差、 结构的不对称等诸因素导致转子存在不平衡质量。因此当转子旋转后就会产生离心惯性力, 它们组成一个空间力系, 使转子动不平衡。要使转子达到动平衡, 则必须满足空间力系的平衡条件 ?????==∑∑00M F 或 ?????==∑ ∑00B A M M ( 1)

实验二机构运动简图测绘

《机械设计基础》实验指导书课程编号:02106220、02106420、02107220、02106520 课程名称:机械设计基础(A)、机械设计基础(B)、机械设计基础(C) 注:1、实验01和10可合并在一起,分两个单元进行; 2、实验03和04应根据学时和专业方向从中选择一个。 实验一机构认识实验 一、实验目的 1.初步了解《机械原理》课程所研究的各种常用机构的结构、类型、特点及应用实例。 2.增强学生对机构与机器的感性认识。 二、实验内容 陈列室展示各种常用机构的模型,通过模型的动态展示,增强学生对机构与机器的感性认识。实验教师只作简单介绍,提出问题,供学生思考,学生通过观察,增加对常用机构的结构、类型、特点的理解,培养对课程理论学习和专业方向的兴趣。 三、实验设备和工具 机构陈列室机构展柜和各种机构模型。 四、实验原理

(一)对机器的认识:通过实物模型和机构的观察,学生可以认识到:机器是由一个机构或几个机构按照一定运动要求组合而成的。所以只要掌握各种机构的运动特性,再去研究任何机器的特性就不困难了。在机械原理中,运动副是以两构件的直接接触形式的可动联接及运动特征来命名的。如:高副、低副、转动副、移动副等。 (二)平面四杆机构:平面连杆机构中结构最简单,应用最广泛的是四杆机构,四杆机构分成三大类:即铰链四杆机构;单移动副机构;双移动副机构。 1.铰链四杆机构分为:曲柄摇杆机构、双曲柄机构、双摇杆机构,即根据两连架杆为曲柄,或摇杆来确定。 2.单移动副机构,它是以一个移动副代替铰链四杆机构中的一个转动副演化而成的。可分为:曲柄滑块机构,曲柄摇块机构、转动导杆机构及摆动导杆机构等。 3.双移动副机构是带有两个移动副的四杆机构,把它们倒置也可得到:曲柄移动导杆机构、双滑块机构及双转块机构。 (三)凸轮机构:凸轮机构常用于把主动构件的连续运动,转变为从动件严格地按照预定规律的运动。只要适当设计凸轮廓线,便可以使从动件获得任意的运动规律。由于凸轮机构结构简单、紧凑,因此广泛应用于各种机械,仪器及操纵控制装置中。 凸轮机构主要有三部分组成,即:凸轮(它有特定的廓线)、从动件(它由凸轮廓线控制着)及机架。 凸轮机构的类型较多,学生在参观这部分时应了解各种凸轮的特点和结构,找出其中的共同特点。 (四)齿轮机构:齿轮机构是现代机械中应用最广泛的一种传动机构。具有传动准确、可靠、运转平稳、承载能力大、体积小、效率高等优点,广泛应用于各种机器中。根据轮齿的形状齿轮分为:直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮及蜗轮、蜗杆。根据主、从动轮的两轴线相对位置,齿轮传动分为:平行轴传动、相交轴传动、交错轴传动三大类。 1.平行轴传动的类型有:外、内啮合直齿轮机构、斜齿圆柱齿轮机构、人字齿轮机构、齿轮齿条机构等。 2.相交轴传动的类型有圆锥齿轮机构,轮齿分布在一个截锥体上,两轴线夹角常为90°。 3.交错轴传动的类型有:螺旋齿轮机构、圆柱蜗轮蜗杆机构,弧面蜗轮蜗杆机构等。 在参观这部分时,学生应注意了解各种机构的传动特点,运动状况及应用范围等。 4.齿轮机构参数:齿轮基本参数有齿数z、模数m、分度圆压力角α、齿顶高系数h*a、顶隙系数c*等。 在参观这部分时学生们一定要知道,什么是渐开线?渐开线是如何形成的?什么是基圆、发生线? 并注意观察基圆、发生线、渐开线三者间关系,从而得出渐开线有什么性质?

机械原理实验室方案方案----上海顶邦教育设备制造有限公司

机械原理实验室方案 目前职业教育所培养出的人才最大的特点就是专门性强,专业性差。虽然可以适应社会的发展,但是对社会的发展起不到很好的推动作用,这也是企业在招聘人才时存在的最大问题。要解决这一现象,职业教育的人才培养思路最好贴近于基础扎实、实践能力强、综合素质高。 机械原理课程是机电类各专业中研究机械共性问题的主干课程,属专业基础课。它的任务是使学生掌握常用机构的工作原理、基本理论并初步具有分析和设计机械零件的能力。其专业覆盖面约占工科专业的80%,在培养和增强学生对机械技术工作的适应能力方面具有举足轻重的作用。 机械原理课程实验课是机械原理课中重要的实践环节。以前的机械原理课程实验大多是验证性的试验,只偏重于一些几何参数、运动参数、动力参数的测定和分析。这些实验对学生掌握课堂中所学的基本概念,加深理解一些基本原理具有显著的效果,但这些实验作为课程教学的一部分,在培养学生初步具有拟定机械运动方案,分析和设计新机构的能力,以及培养学生的创新与动手能力方面还远远不够。 提高学生理论学习融会贯通的能力,分析问题和解决问题的能力以及综合运用基本理论、基本原理的能力是课程教学的最终目标,也同我们的培养思想“基础扎实、实践能力强、综合素质高”相吻合。 机械原理实验室是机械原理系列课程:《机械原理》和《机械原理》的教学实验基地。承担机械与汽车工程系机械原理制造及自动化专业和汽车服务工程专业的教学实验课,以及机电综合实践的部分实践环节。 机械原理实验室旨在培养学生的综合设计能力、创造性设计能力及工程实践能力;打破传统的演示性、验证性、单一性的实验模式,建立新型的设计型、搭接型、综合型的实验体系;实验教学从以教师为中心转变成以学生为中心,从强调学术型转变为强调理论与实践相结合和应用型。实验室开设了机械创新设计陈列演示实验、带传动实验、机齿轮综合实验、转动平衡实验、机械系统创意组合综合实验、机构运动方案创新设计实验等。

转子动平衡

实验六转子动平衡 一、实验目的 1.巩固转子动平衡知识,加深转子动平衡概念的理解; 2.掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备与工具 1.CS-DP-10型动平衡试验机; 2.试件(试验转子); 3.天平; 4.平衡块(若干)及橡皮泥(少许)。 三、实验原理与方法 本实验采用的CS-DP-10型动平衡试验机的简图如图1所示。待平衡的试件1安放在框形摆架的支承滚轮上,摆架的左端与工字形板簧3固结,右端呈悬臂。电动机4通过皮带带动试件旋转,当试件有不平衡质量存在时,则产生的离心惯性力将使摆架绕工字形板簧做上下周期性的微幅振动,通过百分表5可观察振幅的大小。 1. 转子试件 2. 摆架 3. 工字形板簧 4. 电动机 5. 百分表 6. 补偿盘 7. 差速器 8. 蜗杆 图1 CS-DP-10型动平衡试验机简图 试件的不平衡质量的大小和相位可通过安装在摆架右端的测量系统获得。这个测量系统由补偿盘6和差速器7组成。差速器的左端为转动输入端(n1)通过柔性联轴器与试件联接,右端为输出端(n3)与补偿盘联接。 差速器由齿数和模数相同的三个圆锥齿轮和一个蜗轮(转臂H)组成。当转臂蜗轮不转动时:n3=-n1,即补偿盘的转速n3与试件的转速n1大小相等转向相反;当通过手柄摇动蜗杆8从而带动蜗轮以n H转动时,可得出:n3=2n H-n1,即n3≠-n1,所以摇动蜗杆可改变补偿盘与试件之间的相对角位移。

图2所示为动平衡机工作原理图,试件转动后不平衡质量产生的离心惯性力F =ω2mr,它可分解为垂直分力F y和水平分力F x,由于平衡机的工字形板簧在水平方向(绕y轴)的抗弯刚度很大,所以水平分力F x对摆架的振动影响很小,可忽略不计。而在垂直方向(绕x轴)的抗弯刚度小,因此在垂直分力产生的力矩M = F y·l =ω2mrlsinφ的作用下,摆架产生周期性上下振动。 图2 动平衡机工作原理图 由动平衡原理可知,任一转子上诸多不平衡质量,都可以用分别处于两个任选平面Ⅰ、Ⅱ内,回转半径分别为rⅠ、rⅡ,相位角分别为θⅠ、θⅡ,的两个不平衡质量来等效。只要这两个不平衡质量得到平衡,则该转子即达到动平衡。找出这两个不平衡质量并相应的加上平衡质量(或减去不平衡质量)就是本试验要解决的问题。 设试件在圆盘Ⅰ、Ⅱ各等效着一个不平衡质量mⅠ和mⅡ,对x轴产生的惯性力矩为: MⅠ=0 ;MⅡ=ω2mⅡrⅡlsin(θⅡ+ωt) 摆架振幅y大小与力矩MⅡ的最大值成正比:y∝ω2mⅡrⅡl ;而不平衡质量mⅠ产生的惯性力以及皮带对转子的作用力均通过x轴,所以不影响摆架的振动,因此可以分别平衡圆盘Ⅱ和圆盘Ⅰ。 本实验的基本方法是:首先,用补偿盘作为平衡平面,通过加平衡质量和利用差速器改变补偿盘与试件转子的相对角度,来平衡圆盘Ⅱ上的离心惯性力,从而实现摆架的平衡;然后,将补偿盘上的平衡质量转移到圆盘Ⅱ上,再实现转子的平衡。具体操作如下: 在补偿盘上带刻度的沟槽端部加一适当的质量,在试件旋转的状态下摇动蜗杆手柄使蜗轮转动(正转或反转),从而改变补偿盘与试件转子的相对角度,观察百分表振动使其达到最小,停止转动手柄。(摇动手柄要讲究方法:蜗杆安装在机架上,蜗轮安装在摆架上,两者之间有很大间隙。蜗杆转动一定角度后,稍微反转一下,脱离与蜗轮的接触,这样才能使摆架自由振动,这时观察振幅。通过间歇性地使蜗轮向前转动和观察振幅变化,最终可找到振幅最小的位置。)停机后在沟槽内再加一些平衡质量,再开机左右转动手柄,如振幅已很小(百分表摆动±1~2格)可认为摆架已达到平衡。亦可将最后加在沟槽内的平衡质量的位置沿半径方向作一定调整,来减小振幅。将最后调整到最小振幅的手柄位置保持不动,停机后用手转动试件使补偿盘上的平衡质量转到最高位置。由惯性力矩平衡条件可知,圆盘Ⅱ上的不平衡质量mⅡ必在圆盘Ⅱ的最低位置。再将补偿盘上的平衡质量m p'按力矩等效的原则转换为位于圆盘Ⅱ上最高位置的平衡质量m p,即可实现试件转子的平衡。根据等效条件有:

动平衡试验思考题参考答案

自己看个一遍再抄,挑着抄,之前都预习过,只要把数据整理下,然后思考题写上,再把实验遇到的困难与总结写下就可以了,4/4晚上我来收! 第一题: 1、当试件作旋转运动的零部件时,例如各种传动轴、主轴、风机、水泵叶轮、刀具、电动机和汽轮机的转子等,统称为回转体。在理想的情况下回转体旋转与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。 2、转子动平衡和静平衡的区别: 1)静平衡:在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。 2)动平衡:在转子两个及以上校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子动态时是在许用不平衡量的规定范围内,为动平衡又称双 面平衡。 3、转子平衡的选择与确定 1)如何选择转子的平衡方式,是一个关键问题。通常以试件的直径D与两校正面的距离b,即当D/b≥5时,试件只需做静平衡,相反,就必需做动平衡。 2)然而据使用要求,只要满足于转子平衡后用途需要的前提下,能做静平衡的,就不要做动平衡,能做动平衡的,则不要做静动平衡。原因很简单,静 平衡比动平衡容易做,省功、省力、省费用。 第二题: 主要原因是因为偏重太大会产生强大的离心惯性力..将在构件运动副中引起附加动压力,使机械效率,工作精度和可靠性下降,加速零件的损坏.当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音.因此,特别是在高速,重载,精密机械中,,必须对转子进行平衡以尽可能减少偏重... 第三题: 造成转子不平衡的因素很多,例如:转子材质的不均匀性,联轴器的不平衡、键槽不对称,转子加工误差,转子在运动过程中产生的腐蚀、磨损及热变形等。

机械原理实验报告大全

机械原理实验项目 机械原理课程实验(一) 机械传动性能测试实验 一、实验目的 (1) 通过测试常见机械传动装置(如带传动、链传动、齿轮传动、蜗杆传动等)在传递运动与动力过程中的速度、转矩、传动比、功率及机械效率等,加深对常见机械传动性能的认识与理解。 (2) 通过测试由常见机械传动组成的不同传动系统的机械参数,掌握机械传动合理布置的基本要求。 (3) 通过实验认识机械传动性能综合实验台的工作原理、提高计算机辅助实验能力。 二、实验设备 机械传动性能测试综合实验台。 三、实验内容 机械传动性能测试是一项基于基本传动单元自由组装、利用传感器获取相关信息、采用工控机控制实验对象的综合性实验。它可以测量用户自行组装的机械传动装置中的速度、转矩、传动比、功率与机械效率,具有数据采集与处理、输出结果数据与曲线等功能。 机械传动性能测试实验台的逻辑框图 变频 电机 ZJ 扭矩 传感器 ZJ 扭矩 传感器 工作载荷 扭矩测量卡 转速调节 机械传动装置 负载调节 工控机 扭矩测量卡

机械原理课程实验(二) 慧鱼机器人设计实验 一、实验目的 1)通过对慧鱼机器人、机电产品的系统运动方案的组装设计,培养学生独立确定系统运动方案设计与选型的能力。 2)利用“慧鱼模型”组装机器人模型,探索机器人各个功能的实现方法,进行机电一体化方面的训练。 二、实验设备 1)慧鱼创意组合模型包; 2)计算机一台; 3)可编程控制器、智能接口板; 4)控制软件。 三、实验内容 “慧鱼创意组合模型”是工程技术型模型,能够实现对工程技术以及机器人技术等的模拟仿真。模型是由各种可以相互拼接的零件所组成,由于模型充分体现了各种结构、动力、控制的组成因素,并设计了相应的模块,因此,可以拼装成各种各样的机器人模型,可以用于检验学生的机械结构和机械创新设计与控制的合理可行性。 慧鱼机器人实验二室 自动步行车 学生创新实验

刚性转子动平衡实验

刚性转子动平衡实验 一、实验目的 1.掌握刚性转子动平衡的基本原理和步骤。 2.掌握虚拟基频检测仪和相关测试仪器的使用。 3.熟悉动静法的工程应用。 二、实验性质 设计性实验 三、实验装置(图5-1) 1.动平衡机 2.电涡流传感器 3.前置器 4.接线盒 5.调速器 6.电子天平 7.配重 8.微型计算机 四、实验背景与基本原理 工程中许多高速转动的机器:气轮机、发电机、电动机、陀螺马达等其转子都不是理想的对称刚体,在轴承上安装时也存在着误差(既有偏心又有偏角)。所以工作时会产生不平衡的惯性力系,引起很大的轴承动约束力。这种交变的动约束力可引起轴承支座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。消除动约束力的方法是对转子进行动平衡,即通过在转子上适当的地方附加(或除去)小块质量,用其产生的惯性力去平衡原来不平衡的惯性力系,使转轴成为有一定精度的中心惯性主轴。 本实验采用两平面影响系数法对一多圆盘刚性转子进行动平衡。这是刚性转子动平衡操作的一种常用方法,其目标是使惯性力系的主矢和主矩同时趋近于零。为此,先在转子上任意选定两个截面I 、II (称校正平面),见图3-2。在离轴一定距离1r 、2r (称校正半径),与转子上某一参考标记成夹角1θ、2θ处,分别附加一块质量为1m 、2m 的重块(称校正质量)。如能使两质量1m 和2m 的惯性力(其大小分别为211ωr m 和2 22ωr m ,ω为转动角速度)正好与原不平衡转子的惯性力系相平衡,那么就实现了刚性转子的动平衡。该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行动平衡作业。 本实验装置中,动平衡机的转子是工作转速低于最低阶临界转速的转子,称为刚性转子,反之称为柔性转子。转子由调速器设定转速,由涡流传感器测量轴承的水平振动,经前置器、接线盒送给计算机,由专用程序进行处理。 图 5-1

动平衡实验.doc

实验八 零件设计专项能力训练 ——回转件的动平衡 一、实验目的 1. 熟悉运动平衡机的工作原理及转子动平衡的基本方法 2. 掌握用动平衡机测定回转件动平衡的实验方法。 二、设备和工具 简易动平衡试验机、药架天平。 三、原理和方法 T ?、 ? 内,回转半径分别为r o ?、r o ?的两个不平 G o ?、G o ?所产生,如图8-1所示。因 进行动平衡试验时,只需对G o ?、G o ?进 简易动平衡试验机可以分别测出上述 平衡重径积G o ?r o ?和 o ?r o ?的大小和方位,使回转件达到动平 图8-2是简易动平衡机的工作原理图。 图8-1 图8-2 如图所示,框架1经弹簧2与固定的底座3相联,它只能绕OX 轴线摆动,构成一个振动系统。框架上装有主轴4,由固定在底座上的电动机14通过带和带轮12驱动。主轴4上装有螺旋齿轮6,它与齿轮5齿数相等,并相互啮合,齿轮6可以沿主轴4移动。移动的距离和齿轮的轴向宽度相等,比齿轮5的节圆圆周要大,因此调节手轮18,使齿轮6从左端位置移到右端位置时,齿轮5及和它固定的轴9可以回转一周以上,借此调节φc ,φc 的大小由指针15指示。圆盘7固定在轴9上,通过调节手轮17可以使圆盘8沿轴向9上下移动,以调节两圆盘间的距离l c ,l c 由指针16指示。7、8两圆盘大小、重量完全相等,上面分别

装有一重量为G c的重块,其重心都与轴线相距r c,但相位差180°。 被平衡的回转件10架于两个滚动支承13上,通过挠性联轴器11由主轴4带动,因此回转件10与圆盘7、8转速相等,当选取T?和T?为平衡校正面后,回转件10的不平衡就可以看作平面T?和T?内向径为r o?和r o?的不平衡重量G o?和G o?所产生。平衡时可先令摆架的振摆轴线OX处于平面T?内(如图8-2所示)。当回转构件转动时,不平衡重量G o?的离心力P o?对轴线OX的力矩为零,不影响框架的振动,仅有G o?的离心力P o?对轴线OX形成的力矩M o,使框架发生振动,其大小为 M o=P o??l?cosφ 这个力矩使整个框架产生振动。 为了测出T?面上的不平衡重量大小和相位,加上一个补偿重径积G c r c,使产生一个补偿力矩,即在圆盘7和8上各装上一个平衡重量G c。当电机工作时,带动主轴4并带动齿轮5、6,因而圆盘7、8也旋转,这时G c的离心力P c,就构成一个力偶矩M c,它也影响到框架绕OX轴的振摆,其大小为 M c=P c?l c?cosφc 框架振动的合力矩为 M=M o=M c=P o??l?cosφ-P c?l c?cosφc 如果合力为零,则框架静止不动。此时 M=P o??l?cosφ-P c?l c?cosφc=0 满足上式条件为 G o?r o?=G c r c?l c/l(1) φo=φc(2)在平衡机的补偿装置中G c、r c是已知的,试件的两平衡平面是预先选定的,因而两平衡平面间的距离l也是一定的,因此(1)式可以写成 G o?r o?=A?l c(3)其中A=G c?r c/l 为便于观察和提高测量精度,在框架上装有重块19,移动19,可改变整个振动系统的自振频率,使框架接近共振,即振幅放大。 通过调节手轮17和18,使框架静止不动,读出l c和φc的数值,由公式(3)即可计算出不平衡重量G o?的大小为 G o?=A?l c?r o? 其相位可以这样确定,停车后,使指针15转到图8-2所示与OX轴垂直的虚线位置,此时G o?的位置就在平面T?内回转中心的铅直上方。 测量另一个平衡平面T?上的不平衡重径积,只需将试件调头,使平面T?通过OX轴,测量方法与上述相同。 四、实验步骤 1.在被平衡试件上机以前,先开动电机,调节手轮18,使圆盘8与7的重块G c产生的离心力在一直线上,这时力矩M c=0,从主轴下的指针可看出框架是静止状态,此时标尺16所示的读数为l c的零点位置。 2.装上试件,试件的一端联轴节应与带轮接好,以免开动电机时发生冲击。 3.移动重块19以改变框架的自振频率,使框架接近共振状态,这时框架振幅放大,以提高平衡精度,调共振后锁紧。 4.先调节手轮17,即加一定的补偿力矩(将圆盘7、8分开一定距离),然后调节手轮18,即移动齿轮6,使齿轮5与圆盘7、8得到附加转动,当调节到框架振动的振幅最小时不平衡重量相位已找到。然后再调节手轮18,即调节l c,使框架最后振动消除,振动系统

刚性转动零件的静平衡与动平衡试验的概述

刚性转动零件的静平衡与动平衡试验的概述1. 基本概念: 1.1不平衡离心力基本公式: 具有一定转速的刚性转动件(或称转子),由于材料组织不均匀、加工外形的误差、装配误差以及结构形状局部不对称(如键槽)等原因,使通过转子重心的主惯性轴与旋转轴线不相重合,因而旋转时,转子产生不平衡离心力,其值由下式计算: 式中:G------转子的重量(公斤) e-------转子的重心对旋转轴线的偏心量(毫米) n-------转子的转速(转/分) ω------转子的角速度(弧度/秒) g-------重力加速度9800(毫米/秒2) 由上式可知,当重型或高转速的转子,即使具有很小的偏心量,也会引起非常大的不平衡的离心力,成为轴或轴承的磨损、机器或基础振动的主要原由之一.所以零件在加工和装配时,转子必须进行平衡. 1.2转子不平衡类别: 1.2.1转子的惯性轴与旋转轴线不相重合,但相互平行,即转子重心不在旋转轴 线上,如图1a所示.当转子旋转时,将产生不平衡的离心力. 1.2.2转子的主惯性轴与旋转轴线主交错将产生不平衡的离心力,且相交于转 子的重心上,即转子重心在旋转轴线上,如图1b所示.这时转子虽处于平衡状态,但转子旋转时将产生一不平衡力矩. 1.2.3大多数情况下,转子既存在静不平衡,又存在动不平衡,这种情况称静 动不平衡.即转子的主惯性轴与旋转轴线既不重合,又不平行,而相交于转子旋转轴线中非重心的任何一点,如图1c所示.当转子旋转时,将产生一个不平衡的离心力和一个力矩. 1.2.4 转子静不平衡只须在一个平面上(即校正平面)安放一个平衡重量,就可以使转子达 到平衡,故又称单面平衡.平面的重量的数值和位置,在转子静力状态下确定,即将转 子的轴颈放置在水平刀刃支承上,加以观察,就可以看出其不平衡状态,较重部份会 向下转动,这种方法叫静平衡.

全息动平衡实验报告

柔性转子全息现场动平衡实验报告 一、实验目的 ◆巩固转子动平衡知识,加深转子动平衡概念的理解; ◆掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备及工具 柔性转子现场动平衡实验台,其中包括PC机及其相关采集分析软件,数据采集箱,试重 块若干,传感器信号连接线等 三、实验原理步骤与方法 本实验应用西安交通大学智能仪器与监测诊断研究所自行研制的对称转子全息动平衡系统对平衡转子实验台进行现场数据采集的基础上,进行试重的添加,测试和计算得出不平衡位置所要求添加的不平衡质量和加重位置,然后通过添加配重完成转子动平衡的实验过程。实验步骤如下: 1.在平衡转速下测量原始失衡状态的转子振动,获取振动的原始数据及信息; 2.停车后在转子左右加重盘上添加试重质量,启动转子到平衡转速,测量并获取添加试重后转子的振动数据及信息; 3.停车后除去添加的试重; 4.根据前两步测量的振动数据和添加试重大小、方位等信息,计算转子实际平衡配重的大小和方位; 5.按照计算结果分别在左右平衡盘上添加平衡配重; 6.启动转子到平衡转速,验证平衡效果。 注:试验截图便于叙述的情况下,请酌情加入截图在本报告后面给出! 结果简要分析及结论: 本实验将影响系数法和全息动平衡法相结合,在原始平衡转速下,由不平衡质量产生的离心力引起较强烈的强迫振动响应,基于原始振动数据和初次添加的振动质量,进行影响系数法计算后,再次配重结果如下图所示: 1测量面X、Y振动峰峰值配重前后比分别为1.90:1,1.99:1; 2测量面X、Y振动峰峰值配重前后比分别为3.91:1,2.12:1。

说明合理配重后,转子不平衡振动情况得到了明显改善。同时,采用影响系数法进行计算分析,可以以较少的试重起车次数获得较好的配重结果。 另外,采用全息动平衡法,消除了信号中的噪音,轴心轨迹较为清晰。同时,我们观察到轨迹上有许多突变的尖点,说明有可能存在动静碰面。 实验注意事项: 1)检验传感器安装和数据线是否正确,以及所有电源是否已经打开。 2)检验加重块是否安置正确,加重用的螺丝刀是否放置完好。 3)启车时,首先启动右侧的启车按钮,然后再选择升速,注意,右侧有三个档位依次: 盘车、启车和停车。 4)升速和减速时,速率不能过小,以便与快速冲过临界转速; 5)本转子的临界转速为2000r/min,实验转速不宜选择太接近; 6)停车时,先减速至盘车转速,再停车,不能直接停车。 7)加重时,必须带上手套,并在转子平衡后添加,注意加重块的角度和质量; 8)实验完成后,检验加重块是否取下,放置好加重块。清洁好实验台,盖好台布。 三、试验记录及结果 试验记录及分析结果: 1

动平衡测量原理

动平衡测量原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

刚性转子的平衡条件及平衡校正 回转体的不平衡---回转体的惯性主轴与回转轴不相一致; 刚性转子的不平衡振动,是由于质量分布的不均衡,使转子上受到的所有离心惯性力的合力及所有惯性力偶矩之和不等于零引起的。 如果设法修正转子的质量分布,保证转子旋转时的惯性主轴和旋转轴相一致,转子重心偏移重新回到转轴中心上来,消除由于质量偏心而产生的离心惯性力和惯性力偶矩,使转子的惯性力系达到平衡校正或叫做动平衡试验。 动平衡试验机的组成及其工作原理 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备。一般由机座部套,左右支承架,圈带驱动装置,计算机显示系统,传感器限位支架,光电头等部套组成。 当刚性转子转动时,若转子存在不平衡质量,将产生惯性力,其水平分量将在左右两个支撑上分别产生振动,只要拾取左右两个支撑上的水平振动信号,经过一定的转换,就可以获得转子左右两个校正平面上应增加或减少的质量大小与相位。 在动平衡以前,必须首先解决两校正平面不平衡的相互影响是通过两个校正平面间距b,校正平面到左,右支承间距a, c,而a, b, c 几何参数可以很方便地由被平衡转子确定。 F1, F2: 左右支承上的动压力;P1, P2 : 左右校正平面上不平衡质量的离心力。m1, m2 : 左右校正平面上的不平衡量;a, c : 左右校正平面至支承间的距离 b : 左右校正平面之间距离;R1 R2: 左右校正平面的校正半径 ω:旋转角速度 单缸曲柄连杆机构惯性力测量方法 活塞的速度为 活塞的加速度为 我的论文中的对应表达式与以上两个式子不同: 测量系统机械结构 惯性力测量机的机械系统主要包括驱动机构、摆架。驱动机构通过联轴节带动曲轴达到额定测量转速。摆架支承测量曲柄连杆机构,使之在惯性力作用下产生振动。

刚性转子动平衡实验实验报告

实验刚性转子动平衡实验任务书 一、 实验目的: 1. 掌握刚性转子动平衡的基本原理和步骤; 2. 掌握虚拟基频检测仪和相关测试仪器的使用; 3. 了解动静法的工程应用。 二、 实验内容 采用两平面影响系数法对一多圆盘刚性转子进行动平衡 三、 实验原理 工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子。本实验采取一种刚性转子动平衡常用的方法—两平面影响系数法。该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行平衡作业。 根据理论力学的动静法原理,一匀速旋转的长转子,其连续分布的离心惯性力系,可向质心C 简化为过质心的一个力R (大小和方向同力系的主向量∑=i S R )和一个 力偶M (等于力系对质心C 的主矩()∑== c i c m S m M )。如果转子的质心在转轴上且 转轴恰好是转子的惯性主轴,即转轴是转子的中心惯性主轴,则力R 和力偶矩M 的值均为零。这种情况称转子是平衡的;反之,不满足上述条件的转子是不平衡的。不平衡转子的轴与轴承之间产生交变的作用力和反作用力,可引起轴承座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。 刚性转子动平衡的目标是使离心惯性力系的主向量和主矩的值同时趋近于零。为此,先在转子上任意选定两个截面I 、II (称校正平面),在离轴线一定距离r 1、r 2(称校正半径),与转子上某一参考标记成夹角θ1、θ2处,分别附加一块质量为m 1、m 2的重块(称校正质量)。如能使两质量m 1和m 2的离心惯性力(其大小分别为m 1r 1ω2和m 2r 2ω2,ω为转动角速度)正好与原不平衡转子的离心惯性力系相平衡,那么就实现了刚性转子的动平衡。 两平面影响系数法的过程如下: (1)在额定的工作转速或任选的平衡转速下,检测原始不平衡引起的轴承或轴颈A 、B 在某方位的振动量11010V ψ∠=V 和22020V ψ∠=V ,其中V 10和V 20是振动位移(也可以是

转子试验台振动噪声测试综合实验

——转子实验台振动和噪声测试综合实验 机自22班第3组 组长:王蒙 组员:万旭任勇 邢欢李聪明 转子实验台振动和噪声测试综合实验 转子实验台振动和噪声测试综合实验 (1) 转子实验台振动和噪声测试综合实验 (1) 一、实验简介 (1) 1. 1 实验目的 (3) 1.2 实验仪器与设备 (3)

1.3 实验要求 (3) 二实验方案 (4) 1、准备阶段: (4) 2、实验阶段: (4) 3、总结分析及报告准备阶段: (5) 4、注意事项: (5) 三、测试系统搭建 (6) 3.1测试系统框架图 (6) 3.2 传感器的位置选择与搭建 (6) 3. 3 传感器通道连接 (9) 四、信号采集与分析 (10) 4.1 信号采集 (10) 4.2通道的连接、选择与初始化 (10) 4.3 转子轴心轨迹的测量 (12) 4.4 不同转速下转子振动的时域分析 (13) 4.5 不同转速下转子振动的频域分析 (17) 4.6 不同转速下噪声的时域分析 (21) 4.7 不同转速下噪声的频域分析 (23) 4.8 转子振动与噪声相干分析 (26) 4.9动平衡实验 (27) 五、实验总结 (37) 5. 1 实验结论 (37) 5.2 实验心得 (38)

一、实验简介 1. 1 实验目的 针对机械转子实验台,能够较熟练地掌握机械动态信号如振动、噪声等的测试系统设计、测试系统搭建、数据采集及信号处理的方法和技术。 1.2 实验仪器与设备 1.3 实验要求 1.针对转子实验台对象,按照机械动态特性测试要求,完成机械振动和噪声的计 算机测试系统设计。 2.选用合适的振动和噪声测试传感器及其信号调理装置 : 3. 构建计算机测试系统,掌握振动和噪声信号分析软件使用方法 : 4. 自主完成转子实验台振动和噪声的测量、信号采集 : 5. 通过信号分析,得出转子实验台在不同转速下的振动和噪声的时域波形、

机械动平衡

机械动平衡 一、实验目的 1.了解转子不平衡的危害。 2.巩固转子动平衡的理论知识。 3.掌握动平衡机的基本工作原理及动平衡机进行刚性转子动平衡的方法。 二、实验设备 实验设备为DPH-I型智能动平衡机,如图6-1所示,测试系统由计算机、数据采集器、高灵敏度有源压电力传感器和光电相位传感器等组成。当被测转子在部件上被拖动旋转后,由于转子的中心惯性主轴与其旋转轴线存在偏移而产生不平衡离心力,迫使支承做强迫震动,安装在左右两个硬支撑机架上的两个有源压电力传感器感受此力而发生机电换能,产生两路包含有不平衡信息的电信号输出到数据采集装置的两个信号输入端;与此同时,安装在转子上方的光电相位传感器产生与转子旋转同频同相的参考信号,通过数据采集器输入到计算机。 图 6-1 DPH-I型智能动平衡机结构简图 计算机通过采集器采集此三路信号,由虚拟仪器进行前置处理,跟踪滤波,幅度调整,相关处理,FFT变换,校正面之间的分离解算,最小二乘加权处理等。最终算出左右两面的不平衡量(g),校正角(°),以及实测转速(r/min)。 DPH-I型智能动平衡机有关内容简介见附录Ⅲ。 三、实验原理 由于转子结构不对称、材质不均匀或制造和安装不准确等原因,有可能会造成转子的质心偏离回转轴线。当其转动时,会产生离心惯性力。惯性力将在构件运动副中引起附加动压力,使机械效率、工作精度和可靠性下降,加速零件的损坏。当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音。因此,在高速、重载、精密机械中,为了消除或减少惯性力的不良影响,必须对转子进行平衡。 转子平衡问题可分为静平衡和动平衡两类。 对于轴向尺寸b 与径向尺寸D 的比值b/D ≤ 0.2,即轴向尺寸相对很小的回转构件(如砂轮、叶轮、飞轮等),常常可以认为不平衡质量近似的分布在同一回转平面内。因此只要在这个一回转面内加上或减去一定的质量,便可使转子达到静平衡。 当转子的b/D≥0.2(如电机转子、机床主轴等),或工作转速超过1000 r/min时,应考虑

转子动平衡技术实验报告

广州大学学生实验报告 开课学院及实验室:526室2015年12月26日 学院 机械与电气 工程 年级、专 业、班 机械121姓名吴海明学号1207200014 实验课程名称机械故障诊断技术成绩 实验项目名称转子动平衡技术 指导 老师 郑文 一、实验目的 1、掌握振动幅值及相位测量方法,熟悉相关测量仪器; 2、掌握旋转机械动平衡的基本步骤及方法。 通过运用振动监测手段,完成转子不平衡特征的测量,从而提高学生进行数据采集、 转子振动分析及状态评估、动平衡校正等方面的能力。 二、实验设备 1、列出所用振动分析仪器、软件、传感器的名称、型号、用途等; 加速度传感器 光电式传感器,用于测量振动的相位 数据采集器 质量块、天平 2、振动试验台 实验台配有两个质量盘(如图所示),可以在轴的任意位置固定安装。本实验 要求完成单面动平衡试验,把两个质量盘分开安装,并且在某个质量盘上加上一个 M5的螺钉作为质量块,使得转子不平衡。 1、质量盘 2、夹紧法兰 3、转轴备用螺纹孔(16个)5、夹紧法兰螺钉孔

图质量盘结构示意图 三、实验要求 1.熟悉实验的整个过程 2.实验过程要注意安全,防止转子高速时质量块脱落伤人。 3.正确布置质量块位置,并要记下各个具体位置。 4.实验后分析各频谱图以及参数与转子动平衡的关系。 5、绘出振动试验台的结构简图,列出主要结构参数,如电机参数、传动比、转速等。 6、画出测试系统的连接框图。 7、绘出振动试验台测点布置图,说明测量的位置、方向及传感器安装方法等。 8、描述不平衡质量的施加方法。 四、实验操作过程 1、仪器连接,传感器安装; 2、贴反光带,启动试验台; 3、开始动平衡测量及校正过程,完成转子台初始振动测量、试重、校正重量计算及施 加等工作; 4、评价动平衡后的效果; 5、填写附表。 要求学生绘出测量对象的结构简图,列出主要结构参数;计算不平衡的特征频率;选择测试参数;测量各测点的时域波形、频谱等数据;参照有关标准,判断各点的测量值是否在正常范围内;分析频谱图中的主要频率成分,解释频谱峰值的来源及其与转子不平衡的对应关系;综合判断机器的运行状态及存在的不平衡问题; 完成转子现场动平衡测量与校正。五、实验结果及分析 下表是实验过程中测出的实验数据 动平衡数据表 振动值 Vibration μm(p-p) 相位 Phase 度(°) 重量 Weight 克g 角度 Angel 度(°)初始振动测量值 Initial Vibration 17 80 动平衡试重 Trial Weight 8 45 加试重后的振动值 Trail Running Vibration 15 60 第一次动平衡配重 1st Correcting Weight 8 135 第一次加配重后的振动值 1st Residual Vibration 7 50 第二次动平衡配重 2nd Correcting Weight 7 135 第二次加配重后的振动值 2nd Residual Vibration 2 200 转子转速n=800r/min 以下是实验结果频谱图 初始振动测量值频谱图 (a)在转盘外圆贴有一反光带作为起始原点,并在外缘随意安装一质量块(相对原点逆时针旋转45°的位置加上8克重物),使转盘存在偏心量,并记录频谱图

刚性转子动平衡实验实验报告

实验刚性转子动平衡实验任务书 实验目的: 1.掌握刚性转子动平衡的基本原理和步骤; 2.掌握虚拟基频检测仪和相关测试仪器的使用; 3.了解动静法的工程应用。 实验内容 采用两平面影响系数法对一多圆盘刚性转子进行动平衡 三、实验原理 工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子。本实验采取一种刚性转子动平衡常用的方法—两平面影响系数法。该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行平衡作业。 根据理论力学的动静法原理,一匀速旋转的长转子,其连续分布的离心惯性力系, 可向质心C简化为过质心的一个力R (大小和方向同力系的主向量R S i )和一个力偶M(等于力系对质心C的主矩M m c S i m.)。如果转子的质心在转轴上 且转轴恰好是转子的惯性主轴,即转轴是转子的中心惯性主轴,则力R和力偶矩M的 值均为零。这种情况称转子是平衡的;反之,不满足上述条件的转子是不平衡的。不平

衡转子的轴与轴承之间产生交变的作用力和反作用力,可引起轴承座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。 刚性转子动平衡的目标是使离心惯性力系的主向量和主矩的值同时趋近于零。为此, 先在转子上任意选定两个截面I、II (称校正平面),在离轴线一定距离r i、「2 (称校正半径),与转子上某一参考标记成夹角B仆敗处,分别附加一块质量为m i、m2的重块(称校正质量)。如能使两质量m i和m2的离心惯性力(其大小分别为m i r i ?2和m2「2 w2,w 为转动角速度)正好与原不平衡转子的离心惯性力系相平衡,那么就实现了刚性转子的动平衡。 两平面影响系数法的过程如下: (i )在额定的工作转速或任选的平衡转速下,检测原始不平衡引起的轴承或轴颈A、B 在某方位的振动量V i。V io i和V20 V20 2,其中V io和V20是振动位移(也可以 是速度或加速度)的幅值,? i和? 2是振动信号对于转子上参考标记有关的参考脉冲的相位角。(2)根据转子的结构,选定两个校正面I、II并确定校正半径r i、「2。先在平面I上加一“试重"(试质量)Q i = mt i Z(3,其中m t i为试重质量,卩i为试重相对参考标记的方位角,以顺转向为正。在相同转速下测量轴承A、B的振动量V ii和V2i。

相关文档