文档库 最新最全的文档下载
当前位置:文档库 › Strongart数学笔记:从单复变函数到多复变函数

Strongart数学笔记:从单复变函数到多复变函数

Strongart数学笔记:从单复变函数到多复变函数
Strongart数学笔记:从单复变函数到多复变函数

从单复变函数到多复变函数

复变函数论的高维推广似乎并不像实变函数论那样为人所熟知,但我想其基本思想应该是一致的:以单复变函数理论作为基础模型,看看哪些理论是可以自然推广的,哪些理论推广时会遇到困难,这样的困难只是因为高维运算过于繁琐呢,还是有本质性的因素使之不能成立,既然现有的理论不能够成立,那又会出现什么新的构造呢?

一般而言,分析方面结论大都可以自然推广。最基本的恐怕要数幂级数了,幂级数的收敛不仅有相应的命题推广,而且还是一种重要的讨论方法,在证明全纯域与全纯凸域等价的过程中起着基础性的作用。此外还有Cauchy-Riemann equation,在多复变理论中,我们经常使用的是共轭导数为零的形式。值得注意的是,在n维复空间中这样的方程有n^2个,这就暗示着在高维(即n>1)复空间中对单复变几何理论至关重要的Riemann mapping theorem不再成立。

一旦涉及到几何,单复变理论的推广就会受到限制。先来看最基本的几何图形,复变函数中的圆在多复变理论中有两种常见的对应物,一种是无差别对称的球,另一种则是融合了复结构的多圆盘。当我们推广Cauchy integral formula时,原本的积分圆周就会自然转化为多圆盘。值得注意的是,这里被积分的并不是多圆盘的边界,而只是其边界的一部分,被称为骨架,这是积(带边)流形的边界并不

等于流形边界的积的一个自然实例。幸运的是,利用Cauchy integral formula,我们可以得到与单复变理论中类似的Cauchy inequality、唯一性定理、最大模原理、(球或多圆盘上的)Schwarz lemma等重要定理,而由Schwarz lemma可以证明高维球与多圆盘并不是双全纯等价的,因此高维Riemann mapping theorem不成立。

利用Cauchy integral formula,我们还可以通过积分定义全纯函数,这也是可以推广至多复分析的常用技术。它的一个成果就是可以轻松得到连续性假设下的Hartogs theorem,更精密的分析证明了这里的连续性假设是可以省略的,n元复函数全纯iff其各分量全纯,这就是多复变理论中著名的Hartogs theorem.与之相关的一个现象就是所谓的Hartogs phenomenon,它是说高维全纯函数不存在孤立奇点。考虑零点的情形(仅差一个倒数而已),这个结论也不难理解,n维(复)空间中的一个(复)方程的零点通常是n-1维的,只有在n=1的情形时才会出现孤立点!

在高维复空间中,并不是任意一点都可以作为全纯函数的零点,因此我们考虑怎样区域边界恰好能作为零点集,于是便得到所谓全纯域的概念,它可定义为某个全纯函数的极大定义域(沙巴特的《复分析导论第2卷:多复变函数》中还强调要排除多值性,这里暂时不考虑那么精致)。然而,零点的思想方法还是被保留了下来,得到所谓边界上的障碍(无界点)判据:边界上存在稠密障碍的区域必为全纯域。在一维情形中,任意点w都可以作为障碍(考虑f(z)=1/(z-w)),

因此任意区域都是全纯域,可见全纯域只有高维复空间中才有其价值。利用这里的障碍判据,还可以证明欧式凸域比为全纯域,但反之如何呢?

这里处理欧式凸域需要一个视角转化,把欧式凸域视为线性凸包。对此转化其重要作用是单复变理论中的Runge theorem,它暗示着多项式凸包的概念。因此,我们完全可以仿照定义全纯凸包,它要弱于前两种凸包。还是沙巴特的那本书中给了个非常有趣的直观解释:区域多项式凸包填满了内部的“洞”,而欧式凸包则进一步填满了边界的“坑”。借助于幂级数的讨论,可以得到全纯凸性的同步延拓引理:在多圆盘度量的意义上可延拓紧集的全纯凸包也是可延拓的。全纯凸包等于自身的区域称为全纯凸域,先用全纯凸域在内部穷竭,再构造收敛幂级数可以证明全纯凸域必为全纯域;而利用同步延拓引理则可以证明全纯域必为全纯凸域,也就是说全纯域与全纯凸域这两者是等价的。

还有一个与全纯域等价的概念称为伪凸域。它的一个优点就是可以局部判定,伪凸域等价于局部伪凸域,这与全纯域的边界障碍不谋而合。伪凸域的一个动机是实空间中可微函数的凸性判定,即对边界(二阶)光滑的区域而言,它是欧式凸域等价于其定义函数的Hessian 限制在切平面上半正定。类似推广到复Hessian与全纯切空间就得到了边界光滑情形的伪凸域,这里的Hessian则密切联系着多次调和函数的概念,后者的均值不等式性质是讨论的重要工具。这里最关键的函数是-ln d(Z),其中d(Z)是复空间中点Z到区域的距离,这个

函数对于全纯域是多次调和函数,而当它是多次调和函数时,又等价于局部的伪凸性。

然而,我们还需要去掉边界光滑的限制,为此定义伪凸域是可被多次调和函数穷竭的。事实上,这里的多次调和函数还可以被光滑化与严格化,加强为光滑的强多次调和函数,甚至还能再要求其Hessian 在对角线上有给定的下界,这一点在证明Levi conjecture时是非常有用的。显然,只要在上述-ln d(Z)稍加修改,补充一下相应平凡的情形,就可以使其定义的伪凸域与光滑情形一致。对于全纯域的情形也有类似处理,这样就得到全纯域必为伪凸域的结论,而伪凸域是否一定为全纯域就是所谓的Levi conjecture.在Levi conjecture 的证明中,其中间环节就是复微分形式共轭导数方程的可解性,用同调论的语言来说就是其Dolbeault homology group H(p,q)=0,q≥1,在其证明中L^2不等式估计是非常关键的,但其中有不少繁琐的计算,因此我就不再继续详述了。

最后稍微说明一下,对高维复空间中特例的理解,实际上有一个认识在先与逻辑在先的差异。一般人总先学单复分析,然后再进入高维理论的,因此以前的观点忽然改变,总是觉得不容易接受。但要是先接受n维理论甚至于复流形,然后再考虑n=1的特例,很多类似问题就自然而然呈现出来了,大概这也算是未来复分析教材的一个改革方向。

本文作者Strongart是一位自学数学的牛人,现在他依然努力坚持自学数学,似乎又有了新的突破,还录了一些数学专业教学视频放在网上。然而,他却一直没有收到专业人士的邀请,至今只能依靠网络书店购买书籍,无法获取海量的论文资料,也没有机会和一流的学者们交流,最后只能走上娱乐拯救学术的道路,这不论对他自己还是对中国的数学事业都将是一个损失。这里我希望一些有识之士能够用自己的实际行动支持一下!

欢迎大家二次分享此文档,请注明文档作者Strongart,欢迎访问Strongart 的新浪博客。

复变函数总结

第一章 复数的运算与复平面上的拓扑 1.复数的定义 一对有序实数(x,y )构成复数z x iy =+,其中()()Re ,Im x z y z ==.21i =-, X 称为复数的实部,y 称为复数的虚部。 复数的表示方法 1) 模: z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与 arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

4)若 12 1122,i i z z e z z e θθ==, 则 () 121212i z z z z e θθ+=; ()121122 i z z e z z θθ-= 5.无穷远点得扩充与扩充复平面 复平面对内任一点z , 用直线将z 与N 相连, 与球面相交于P 点, 则球面上除N 点外的所有点和复平面上的所有点有一一对应的关系, 而N 点本身可代表无穷远点, 记作∞.这样的球面称作复球面 这样的球面称作复球面. 扩充复平面---引进一个“理想点”: 无穷远点 ∞ 复平面的开集与闭集 复平面中领域,内点,外点,边界点,聚点,闭集等概念 复数序列的极限和复数域的完备性 复数的极限,,柯西收敛定理,魏尔斯特拉斯定理,聚点定理等从实数域里的推广,可以结合实数域中的形式来理解。 第二章 复变量函数 1.复变量函数的定义 1)复变函数的反演变换(了解) 2)复变函数性质 反函数 有界性 周期性, 3)极限与连续性 极限: 连续性 2.复变量函数的形式偏导 1)复初等函数 ). ( ),( , , , , . z f w z w iv u w z G iy x z G =+=+=记作复变函数简称的函数是复变数那末称复变数之对应与就有一个或几个复数每一个复数中的对于集合按这个法则个确定的法则存在如果有一的集合是一个复数设. )( )(,)0(0 )( ,0 , , 0 )( 0000时的极限趋向于当为那末称有时使得当相应地必有一正数对于任意给定的存在如果有一确定的数内的去心邻域定义在设函数z z z f A A z f z z A z z z z f w ερδδεδερ<-≤<<-<><-<= . )( , )( . )( ),()(lim 000 内连续在我们说内处处连续在区域如果处连续在那末我们就说如果D z f D z f z z f z f z f z z =→

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

复变函数学习指导书

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

《复变函数》总结

复变小结 1.幅角(不赞成死记,学会分析) .2 argtg 20,0,0,0,arctg 0,0,20,arctg arg ππ πππ<<-???? ?????=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏

b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式: (向量) OC=tOA+(1-t )OB=OB+tBA c.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。 d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.8 4.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程 a.在某个区域内可导与解析是等价的。但在某一点解析一定可导,可导不一定解析。 b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加) c.指数函数:复数转换成三角的定义。 d.只需记住:Lnz=ln[z]+i(argz+2k π) e.幂函数:底数为e 时直接运算(一般转换成三角形式) 当底数不为e 时,w= z a = e aLnz (幂指数为Ln 而非ln) 能够区分: 的计算。 f.三角函数和双曲函数: 只需记住: 及 其他可自己试着去推导一下。 反三角中前三个最好自己记住,特别 iz iz i z -+-=11Ln 2Arctg 因为下一章求积分会用到 11)(arctan ,2+=z z (如第三章的习题9) 5.复变函数的积分 ,,,i e e i i e i ππ+)15.2(.2e e sin ,2e e cos i z z iz iz iz iz ---=+=???????=-==+=--y i i iy y iy y y y y sh 2e e sin ch 2e e cos

(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数 1.(定理6.1 柯西留数定理): ∫f(z)dz=2πi∑Res(f(z),a k) n k=1 C 2.(定理6.2):设a为f(z)的m阶极点, f(z)= φ(z) (z?a)n , 其中φ(z)在点a解析,φ(a)≠0,则 Res(f(z),a)=φ(n?1)(a) (n?1)! 3.(推论6.3):设a为f(z)的一阶极点, φ(z)=(z?a)f(z),则 Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点 φ(z)=(z?a)2f(z)则 Res(f(z),a)=φ′(a) 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数: Res(f(z),∞)= 1 2πi ∫f(z)dz Γ? =?c?1 即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1 z 这一项系数的反号 7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。 8.计算留数的另一公式:

Res (f (z ),∞)=?Res (f (1t )1t 2,0) §2.用留数定理计算实积分 一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ 注:注意偶函数 二.∫P(x)Q(x)dx +∞?∞型积分 1.(引理6.1 大弧引理):S R 上 lim R→+∞zf (z )=λ 则 lim R→+∞∫f(z)dz S R =i(θ2?θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中 P (z )=c 0z m +c 1z m?1+?+c m (c 0≠0) Q (z )=b 0z n +b 1z n?1+?+b n (b 0≠0) 为互质多项式,且符合条件: (1)n-m ≥2; (2)Q(z)没有实零点 于是有 ∫ f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0 +∞ ?∞ 注:lim R→R+∞ ∫f(x)dx +R ?R 可记为P.V.∫f(x)dx +∞?∞ 三. ∫P(x)Q(x)e imx dx +∞?∞ 型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且 lim R→+∞g (z )=0 在ΓR 上一致成立。则 lim R→+∞ ∫g(z)e imz dz ΓR =0 4.(定理6.8):设g (z )=P (z )Q (z ),其中P(z)及Q(z)为互质多项式,且符合条件:

(完整版)【工程数学】复变函数复习重点

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1) 模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数); 主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

(完整版)《复变函数》教学大纲

《复变函数》教学大纲 说明 1.本大纲适用数学与应用数学本科教学 2.学科性质: 复变函数论是成人高等师范数学专业基础课程之一,它在微分方程、概率论、力学等学科中都有应用,复变函数论方法是工程、科技的常用方法之一。复变函数论主要研究解析函数。解析函数定义的几种等价形式,表现了解析函数这一概念在不同方面的特性。复变函数论的基本理论以柯西定理为主要定理,柯西公式为重要公式,留数基本定理是柯西定理的推广。保形映照是复变函数几何理论的基本概念。;留数理论和保形映照也为实际应用提供了特有的复变函数论方法。 3.教学目的: 复变函数论是微积分学在复数域上的推广和发展,通过复变函数论的学习能使学生对微积分学的某些内容加深理解,提高认识。复变函数论在联系和指导中学数学教学方面也有重要的作用,学生通过复变函数论的学习对中学数学的某些知识有比较透彻的理解与认识,从而增加做好中学数学教育工作的能力。 4.教学基本要求: 通过本课程的学习,要求学生达到: 1.握基本概念和基本理论; 2.熟练的引进基本计算(复数、判断可导性及解析性、复积分、函数 的展式、孤立奇点的判断、留数的计算及应用、求线性映照及简单映 照等); 2.固和加深理解微积分学的有关知识。 5.教学时数分配: 本课程共讲授72学时(包括习题课),学时分配如下表: 教学时数分配表

以上是二年制脱产数学本科的教学时数。函授面授学时不低于脱产的40%,可安排28~30学时。 教学内容 第一章复数与复变函数 复变函数的自变量和因变量都是复数,因此,复数和平面点集是研究复变函数的基础。复变函数及其极限理论与微积分学的相应内容类似,但因复变函数是研究平面上的问题,因此有其新的含义与特点。 (一)教学内容

复变函数考试试题与答案各种总结

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. = )0,(Re n z z e s ,其中n 为自然数.

1-2复变函数基本概念

§1.2 复数函数 授课要点:区域的概念,闭区域,复变函数的极限,连续的概念。 难点:极限概念及其与实变函数中相关概念的区别 1、 邻域:以0z 为圆心,以任意小ε半径作圆,则圆内所有点的集合称为0z 的邻域。 注意,这里说的是“圆内”,“圆边”上的不算。 内点、外点和边界点: 设有一个点集E ,若0z 及其领域均属于点集E ,则称0z 为E 的“内” ,若0z 及其邻域均不属于E ,则0z 为外点,若0z 的每个领域内,既有属于E 的点,也有不属于E 的点,则称0z 为E 的边界点,边界点的全体称为E 的边界线。 区域:(1)全由内点组成 (2)具有连通性,即点集中任意两点都可以用一条折线连起来,且折线上的点全都 属于该点集。 闭区域:区域B 及其边界线所组成的点集称为闭区域,用B 表示。 练习: 下面几个图所示的,哪个是区域? 答:(a),(b)皆为区域,(a)为单通区域,(b)为复连通区域,(c)不是区域. 例子: ||z r <代表一个圆内区域 ||z r <代表一个圆外区域 12||r z r <<代表一个圆环区域 将上面三个式中的 < 换成 ≤, > 换成 ≥,则变成闭区域。 注意:区域的边界并不属于区域,闭区域和区域是两个概念 2、复变函数 定义:形式和实变函数一样,()w f z =

复变函数的定义域不再限于实轴上某个区间,而是复平面上的某个区域. 函数的值域也可以对应复平面上的某个区域(也可能不是): 变量:z x iy =+ 函数:()(,)(,,)w f z u x y iv x y ==+ 复变函数的实部和虚部都是一个二元函数(实函数),关于二元实变函数的很多理论都可用于复变函数中(形式可能有所变化) 极限: 设函数f (z )在0z 点的领域内有定义,如果存在复数A ,对于任意的0ε>,总能找到一个()0δε>,使得:当0||z z δ-<时,恒有|()|f z A ε-<,则称0z z →时f (z )的极限为A ,即 0lim ()z z f z A →= 对于非数学专业的学生而言,这段话略显晦涩,一个不太严格但直观的表述是: 当z 以任意方式逼近0z ,()f z 都逼近A 不会因为z 逼近方式之不同,而导致()f z 逼近不同的值,或者发散 举例:(1)222()()xy f z i x y x y =+++ 222(,)xy u x y x y =+ 2222 lim 22(,)010 kx k u x y x x ky k y ==→++→ 结果将因k 之不同而不同,故极限不存在. (2)实变函数例子1()f x x = 0lim ()x f x +→=+∞, lim ()x x f x -→=-∞ 连续:0 0lim ()()z z f z A f z →== 因为()(,)(,)f z u x y iv x y =+,所以,复变函数的连续问题,可以归结为两个二元实变函数的连续问题。 几个简单的复变函数 (1) 多项式:2012n n a a z a z a z +++ (其中n 为整数) (2) 有理分式:20122012n n n n a a z a z a z b b z b z b z ++++++

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知 识点归纳 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,

z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点?k并作和式S n=?(z k-z k-1)=??z k记?z k= z k- z k-1,弧段z k-1 z k的长度 ={?S k}(k=1,2…,n),当0时,不论对c的分发即?k的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =??z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向) 例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=?(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设?k=z k-1,则 ∑1= ()(z k-z k-1) 有可设?k=z k,则 ∑2= ()(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得:

【华南师范大学】复变函数(级数、留数)含答案

2011/2012学年(一)学期月考试卷 《复变函数》试卷参考答案 专业 电子信息工程 年级2010班级 姓名 学号 一、填空题(每小题3分,共15分): 1、设),2)(32(i i z +--=则arg z =8arctan -π 2、设C 为正向圆周2ξ=,3sin() () C f z d z π ζζζ=-?,其中2z <,则1'()f =i 32π 3、积分 ||7 11cos z z dz z =+=-? .12i π 解: 11cos z z +-在圆周7z =内部有三个孤立奇点1230,2,2z z z ππ===- 24222111111 11cos () 1(1)2!4!2!4! z z z z z z z z z z z ?++++= =?=?---++-+ 因为2 12!4! z -+ 为复平面内的收敛幂级数,和函数()z ?是解析的,并且在0z =处 不等于零,所以 1 () z ?在0z =处解析,可以展开为0z =处的泰勒级数。又因为它是偶函数,泰勒级数中必不含z 的奇次幂项,所以可以写成24242c z c z +++ ,故 242422221122(2)1cos z z c z c z c c z z z z z ++=?+++=++++- , 1Re [,0]21cos z s z +=- 242 22211111 (2)(2)1(2)1cos 1cos(2) (2)1[1]2!4!2!4! 1112(2)1(2)(2)(2)(2) z z z z z z z z z z z z z z z z ππππππππ?ππ?π++++== =? ---------++-++++-=?=?----

复变函数与实变函数微积分理论的比较与应用

复变函数与实变函数微积分理论的比较与 应用 众所周知复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数,本学期我们数学专业的学生开始学习这门课程。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 这里先略微简述一下复变函数的历史。复数起源于求代数方程的根。复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 下面我将对已学的复变函数微积分的相关知识做以总结和归纳。

⒈复变函数的微积分理论 ㈠复变函数的微分性质 我们知道函数的导数是由极限来定义的,所以我先把复变函数的极限理论做以梳理。 ①复变函数极限的概念: 函数ω=f(z)定义在z0的去心邻域0<│z-z0│<ρ内,如果有一确定的数A存在,对于任给的ε>0,相应的必有一个正数δ(ε)使得当0<│z-z0│<δ(0<δ≤ρ)时,有│f(z) -A│<ε。即称z→z0是的极限,记为另外复变函数的连续性叙述与实变函数中的叙述是相似的,此处不细表在实变函数时另有说明。②复变函数导数的概念:设函数ω= f(z)在包含z0的邻域D内有定义,如果极限存在,那么f(z)在z0处可导(或可微)。该极限成为f(z)在z0的导数,记做f’(z0)=│z=z。 = ③复变函数的求导法则 1,(C)’=0,C为复常数 2,(Z n)’=nZ n-1,n为正整数 3,[f(z)g(z)]’= 4,[f(z)g(z)]’=g(z)+f(z) 5,= 6,{ f[g(z)]}‘=,其中ω=

复变函数与积分变换重要知识点归纳

复变函数与积分变换重 要知识点归纳 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数学习心得体会

复变函数学习心得体会 数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,是19世纪,Cauchy,Riemann,Weierstrass 等数学家分别从不同角度建立了复变函数的系统理论,使复变函数真正成为分析数学的一个重要分支。 复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的! 复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。 由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出现新问题的原因何在。 在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和 分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的教学方法。 难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)的充要条件中,为什么要求函数的实部和虚部必须满足Cauchy-Riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,物理意义不同等等,还讨论了学习Cauchy-Goursat 基本定理应当注意的几个问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和

复变函数总结完整版

第一章 复数 1 2i =-1 1-=i 欧拉公式 z=x+iy 实部Re z 虚部 Im z 2运算 ① 2121Re Re z z z z =?≡ 21Im Im z z = ②()()()()()2121212121Im Im Re Re Im Re z z z z z z z z z z ++±=±+±=± ③ ()()()() 122121212112212122112 1y x y x i y y x x y y y ix y ix x x iy x iy x z z ++-=-++=++=? ④ ()()()()2 2 222 1212222212122222211222121y x y x x y i y x y y x x iy x iy x iy x iy x z z z z z z +-+++=-+-+== ⑤iy x z -= 共轭复数 ()() 22y x iy x iy x z z +=-+=? 共轭技巧 运算律 P1页 3代数,几何表示 iy x z += z 与平面点()y x ,一一对应,与向量一一对应 辐角 当z ≠0时,向量z 和x 轴正向之间的夹角θ,记作θ=Arg z=πθk 20+ k=±1±2±3… 把位于-π<0θ≤π的0θ叫做Arg z 辐角主值 记作0θ=0arg z 4如何寻找arg z 例:z=1-i 4 π - z=i 2π z=1+i 4 π z=-1 π 5 极坐标: θcos r x =, θsin r y = ()θθsin cos i r iy x z +=+= 利用欧拉公式 θθθ sin cos i e i +=

复变函数科普知识

复变函数科普知识 1.简介复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现 了负数开平方的情况。在复变函数 复变函数很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 2.历史复变函数 复变函数复变函数论产生于十八世纪。1774年,欧拉在他 的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为

复变函数与实变函数的联系与区别

复变函数与实变函数的联系与区别 华中师范大学物理学院 2008213421 路丽珍 摘要: 数的扩展:正数→负数→实数→…在实数范围内:方程当 042<-=?ac b 时,没有实根。→扩大数域,引进复数,由实变函数学习到复变函数,它们有着紧密的联系,也有着巨大的区别。 关键词: 复变函数 实变函数 联系与区别 正文: 在中学我们主要了解学习了实变函数,与大学期间,我们又更加深入的学习研究了实变函数,与此同时,也开始复变函数的学习。由此我们看到了:“数的扩展:正数→负数→实数→…在实数范围内:方程当 042<-=?ac b 时,没有实根。→扩大数域,引进复数”。这样容易给人一种由浅入深、由简入繁、由特殊到一般的感觉,他们有很深的联系,然而事实上,他们有很大的不同,有很大的区别。下面我们从几个方面来说明实变函数与复变函数的联系与区别。 1. 自变量的不同 以实数作为自变量的函数就做实变函数;即实数→实变量→实变函数。 以复数作为自变量的函数就叫做复变函数;即复数→复变量→复变函数。 2. 实变函数与复变函数的联系区别 (1)因为z=x+yi,所以复变函数y=f(z)的实部与虚部都是x,y 的函数,即w= f(z)=u(x,y)+iv(x,y),由此可以看成:一个复变函数是两个实变函数的有序组合。这样,实变函数的许多定义、公式,定理可直接移植

到复变函数中。然而同时,由于复变函数的虚部,实变函数的许多定义、公式,定理也不再是用于复变函数。 (2)对于复变函数与实变函数,我们分别学习了两者的点集、序列、极限、连续性、可微性、积分等性质与应用。然而同时,由于复变函数的虚部,所要求的点集、序列、极限、连续性、可微性、积分等性质与应用的定义也不尽相同。

复变函数积分方法总结

复变函数积分方法总结标准化管理部编码-[99968T-6889628-J68568-1689N]

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作 x=Re(z),y=Im(z)。 arg z=θ θ称为主值 -π<θ≤π, Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0, z1,…,z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点k并作

和式S n =∑f (?k )n k ?1(z k -z k-1)= ∑f (?k )n k ?1z k 记z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑f (?k )n k ?1z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以 S n = (∑1+∑2)= ∑k ?1n z k (z k 2?z k ?12)=b 2-a 2 ∴ ∫2zdz c =b 2-a 2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy 带入∫f (z )dz c 得: ∫f (z )dz c = ∫udx c - vdy + i ∫vdx c + udy

相关文档
相关文档 最新文档