文档库 最新最全的文档下载
当前位置:文档库 › 发电厂电气课程设计

发电厂电气课程设计

发电厂电气课程设计
发电厂电气课程设计

正文

第一章设计依据和基本资料结合范文

第二章电气主接线设计

2.1 主接线基本要求以书本为纲P100 结合范文

2.2主及接线设计范文厂用电及接线方案范文接线原则P136

第三章主变压器选择

3.1 设计概念

变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节。它起着变换和分配电能的作用。

变电站的设计必须从全局利益出发,正确处理安全与经济基本建设与生产运行。近期需要与今后发展等方面的联系,从实际出发,结合国情采用中等适用水平的建设标准,有步骤的推广国内外先进技术并采用经验鉴定合格的新设备、新材料、新结构。根据需要与可能逐步提高自动化水平。

变电站电气主接线指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务,变电所的主接线是电力系统接线组成中的一个重要组成部分。

一次主接线的设计将直接影响各个不同电压侧电气设备的总体布局,并影响各进出线的安装间隔分配,同时还对变电所的供电可靠性和电气设备运行、维护的方便性产生很大的影响。主接线方案一旦确定,各进出线间和电气设备的相对位置便固定下来,所以变电所的一次主接线是电气设计的首要部分。

3.11主变选择

主变压器是变电站(所)中的主要电气设备之一,它的主要作用是变换电压以利于功率的传输,电压经升压变压器升压后,可以减少线路损耗,提高了经济效益,达到远距离送电的目的。而降压变压器则将高电压降低为用户所需要的各级使用电压,以满足用户的需要。主变压器的容量、台数直接影响主接线的形式和配电装置的结构。因此,主变的选择除依据基础资料外,还取决于输送功率的大小,与系统的紧密程度,同时兼顾负荷性质等方面,综合分析,合理选择。

第一节主变压器台数的选择

由原始资料可知,我们本次设计的江西洪都钢厂厂用电变电站,主要是接受由220kV双港变110kV的功率和220KV盘龙山变供110kV的功率,通过主变向10kV线路输送。由于厂区主要为I类负荷,停电会对生产造成重大的影响。因此选择主变台数时,要确保供电的可靠性。

第二节主变压器容量的选择

主变压器容量一般按变电站建成后5--10年规划负荷选择,并适当考虑到远期10--20年的负荷发展,对于城郊变电站主变压器容量应与城市规划相结合,该变电站近期和远期负荷都已给定,所以,应接近期和远期总负荷来选择主变容量。根据变电站所带负荷的性质和电网的结构来确定主变压器的容量,对于有重要负荷的变电站应考虑当一台主变压器停用时,其余变压器容量在计及过负荷能力的允许时间内,应保证用户的一级和二级负荷,对一般性变电站当一台主变压器停用时,其余变压器容量应能保证全部负荷的70--80%。该变电站的主变压器是按全部负荷的70%来选择,因此装设两台变压器后的总的容量为ΣSe=2×0.7×Pm=1.4Pm。当一台变压器停运时,可保证对70%负荷的供电

剩下的结合范文 此段加在3.32(2)容量的确定

根据电力系统规划中的要求:按一台变压器故障或检修切除,另一台过负荷30%能满足最大负荷选择。

∑=+S S S N T N T 3.0 ……○

1 ∑∑==S S S N T 77.03.1/ ……○

2 N N S KS S 85.0==∑ ……○

3 K …………………………………同时系数

当5S S N =时,由式○2○3可得585.077.0S S TN ??=

第三章 短路电流计算

4.1 短路电流计算的目的

在发电厂和变电所电气设计中,短路电流计算是其中的一个重要环节。其计算的目的的主要有以下几个方面:

1)在选择电气主接线时,为了比较各种接线方案,或确定某一接线是否需要采用限制短路电流的措施,均需进行必要的短路电流计算。

2)在选择电气设备时,为了保证设备在正常运行和故障状况下都能安全、可靠的工作。同时又力求节约资金,这就需要按短路情况进行全面校验。

3)在设计屋外高压配电装置时,需按短路条件校验软导线相间和相对地安全距离。

4)在选择继电保护方式和进行整定计算,需以各种短路时的短路电流为依据。

5)接地装置的设计,也需用短路电流。

4.2 短路电流计算条件

1、基本假定:

1)正常工作时,三项系统对称运行

2)所有电流的电功势相位角相同

3)电力系统中所有电源均在额定负荷下运行

4)短路发生在短路电流为最大值的瞬间

5)不考虑短路点的衰减时间常数和低压网络的短路电流外,元件的电阻都略去不计

6)不考虑短路点的电流阻抗和变压器的励磁电流

7)元件的技术参数均取额定值,不考虑参数的误差和调整范围

8)输电线路的电容略去不计

2、一般规定

1)验算导体的电器动稳定、热稳定以及电器开断电流所用的短路电流,应按本工程设计规划容量计算,并考虑电力系统远景的发展计划。

2)选择导体和电器用的短路电流,在电器连接的网络中,应考虑具有反馈作用的异步电动机的影响和电容补偿装置放电电流影响。

3)选择导体和电器时,对不带电抗回路的计算短路点,应选择在正常接线方式时短路电流最大地点

4)导体和电器的动稳定、热稳定和以及电器的开断电流,一般按三相短路计算。

第四章电气设备的选择

第一节导体和电气设备选择的一般条件

正确地选择设备是使电气主接线和配电装置达到安全、经济运行的重要条件。在进行设备选择时,应根据工程实际情况,在保证安全、可靠的前提下,积极而稳妥地采用新技术,并注意节约投资,选择合适的电气设备。

尽管电力系统中电气设备的作用和条件不一样,具体选择方法也不相同,但对它们的具体要求是一样的。电气设备要能可靠的工作,必须按正常工作条件选择,并按短路状态来校验热稳定和动稳定。

一、一般原则

1、应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展的需要;

2、应按当地环境条件校验;

3、应力求技术先进和经济合理;

4、选择导体时应尽量减少品种;

5、扩建工程应尽量使新老电器型号一致;

6、选用的新产品,均应具有可靠的试验数据,并经正式鉴定合格。

二、技术条件

选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。1.长期工作条件

(1)电压

选用电器允许最高工作电压Uymax不得低于该回路的最高运行电压Ugmax,即:Uymax≥Ugmax

(2)电流

选用的电器额定电流Ie不得低于所在回路在各种可能运行方式下的持续工作电流Ig,即:Ie

≥Ig

由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。

高压电器没有明确的过载能力,所以在选择额定电流时,应满足各种可能运行方式下回路持续工作电流的要求。

2.短路稳定条件

(1)校验的一般原则

①、电气设备在选定后按最大可能通过的短路电流进行动、热稳定校验,校验的短路电流一般取三相短路时的短路电流。

②、用熔断器保护的电器可不验算热稳定。

③、短路的热稳定条件

Qr≥Qd 或I2rt≥I2∞tdz

式中Qd--在计算时间tjs秒内,短路电流的热效应(k2A?s)

Ir--t秒内设备允许通过的热稳定电流有效值(kA)

t--设备允许通过的热稳定电流时间(s)

校验短路热稳定所用的计算时间tjs按下式计算:

tjs=tb+td

式中tb--继电保护装置后备保护动作时间(s)

td--断路器全分闸时间(s)

④、短路动稳定条件

ich≤idf

Ich≤Idf

式中ich--短路冲击电流峰值(kA)

idf--短路全电流有效值(kA)

Ich--电器允许的极限通过电流有效值(kA)

3.绝缘水平

在工作电压和过电压的作用下,电器内、外绝缘保证必要的可靠性。电器的绝缘水平,应按电网中出现的各种过电压和保护设备相应的保护水平来确定。当所选电器的绝缘水平低于国家规定的标准数值时,应通过绝缘配合计算,选用适当的过电压保护设备。

三、环境条件

环境条件主要有温度、日照、风速、冰雪、温度、污秽、海拔、地震。由于设计时间仓促,所以在设计中主要考虑温度条件。

按照规程规定,普通高压电器在环境最高温度为+40℃时,允许按照额定电流长期工作。当电器安装点的环境温度高于+40℃时,每增加1℃建议额定电流减少1.8%;当低于+40℃时,每降低1℃,建议额定电流增加0.5%,但总的增加值不得超过额定电流的20%。

第二节断路器的选择

电力系统中,断路器具有完善的灭弧性能,正常情况下,用来接通和开断负荷电流,在某些电器主接线中,还担任改变主接线的运行方式的任务,故障时,断路器还常在继电保护的配合使用下,断开短路电流,切断故障部分,保证非故障部分的正常运行。

由于SF6断路器灭弧性能可靠,维护工作量小,故110kV一般采用SF6短路器。

1.按开断电流选择。高压断路器的额定开断电流Iekd≥Iz(高压断路器触头实际开断瞬间的短路电流周期分量有效值)。

2.短路关合电流的选择。断路器的额定关合电流ieg应不小于短路电流最大冲击值iej。即ieg ≥icj

3.开关合闸时间的选择。开关合分闸时间,对于110kV以上的电网,当电力系统稳定要求快速切除故障,分闸时间不宜大于0.04--0.06s。

[计算过程见计算说明书附录3 ]

第三节隔离开关的选择

隔离开关配置在主接线上,保证了线路及设备检修时形成明显的断开点与带电部分隔离,由于隔离开关没有灭弧装置及开断能力低,所以操作隔离开关时,必须遵守倒闸操作顺序,即送电时,首先合上母线侧隔离开关,其次合上线路侧隔离开关,最后合上断路器,停电顺序则与上述相反。

隔离开关的配置:

1.断路器的两侧均应配置隔离开关,以便在断路器检修时形成明显的断口与电源隔离。2.中性点直接接地的普通变压器,均应通过隔离开关接地。

3.在母线上的避雷器和电压互感器,宜合用一组隔离开关,为了保证电器和母线的检修安全,每段母线上宜装设1--2组接地刀闸。

4.接在变压器引出线或中性点的避雷器可不装设隔离开关。

5.当馈电线路的用户侧没有电源时,断路器通往用户的那一侧可以不装设隔离开关。但为了防止雷电过电压,也可以装设。

[计算过程见计算说明书附录4 ]

第四节高压熔断器的选择

熔断器是最简单的保护电器。它用来保护电器免受过载和短路电流的损害。屋内型高压熔断器在变电所中常用于保护电力电器,配电线路和配电变压器,而在电厂中多用于保护电压互感器。

1.额定电压选择。对于一般高压熔断器,其额定电压要大于或等于电网额定电压,另外,对于填充石英沙用限流作用的熔断器,则只能用于其额定电网电压中,因为这种类型的熔断器能在电流达到最大值之前就将电流切断,致使熔断器熔断时产生过电压。

2.额定电流选择。熔断器的额定电流选择,为了保证熔断器不致损坏,高压熔断器的熔断额定电流Ierg应大于或等于熔体的额定电流Iert

3.熔断器开断电流检验,Iekd≥Icj

对于保护电力互感器的高压熔断器只需按规定电压及断流量来选择。

第五节互感器的选择

互感器是变换电压、电流的电气设备。它包括电压互感器和电流互感器,是一次系统和二次系统间的联络元件,分别向两侧提供电压、电流信号以及反映一次系统中电气设备的正常运行和故障情况。

互感器作用:

1.将一次回路的高电压和大电流变为二次回路的标准的低电压和小电流。

2.将二次设备和高压部分隔离,且互感器二次侧均接地,从而保证了设备和人生安全。电流互感器的特点:

1.一次绕组串联在电路中,并且匝数少,故一次绕组中的电流完全取决于被测电路的负荷电流,而与二次电流大小无关。

2.互感器二次绕组所接仪表的电流线圈阻抗很小,所以在正常情况下,电流互感器在近于短路的状态下运行。

电压互感器的特点:

1.容量很小,结构上要求有较高的安全系数。

2.二次侧所接仪表和继电器的电压线圈阻抗很小,互感器在近于空载状态下运行。电压互感器的配置原则:应满足测量、保护、同期和自动装置的要求;保证在运行方式改变时,保

护装置不失压,同期两侧都能方便的取压。电流互感器的配置原则:每条支路的电源都应装设足够数量的电流互感器,供支路测量、保护使用。

一、电流互感器的选择

1.电流互感器由于本身存在励磁损耗和磁饱和等影响,使一次电流I1与-I2在数字和相伴上都有差异,即测量结果有误差,所以选择电流互感器,应根据测量时误差的大小和标准度来选择。

2.额定容量。保证互感器的准确级,互感器二次侧所接负荷S2应不大于该准确级所规定的额定容量Se2,即:

Se2≥S2=I2e2Z2f Z2f=rg+rj+rd+re(Ω)

ry--测量仪表电流线圈电阻rj--继电器电阻

rd--连接导线电阻re--接触电阻,一般取0.1Ω

3.按一次回路额定电压和电流选择

当电流互感器用于测量时,其一次额定电流应尽量选择比回路中正常工作电流大1/3左右,以保证测量仪表得到最佳工作,并在过负荷时使仪表有适当的指示。

电流互感器的一次额定电流和电压必须满足:

Ue≥Uew Iel≥Igmax

为了确保所供仪表的准确度,互感器的工作电流应尽量接近此额定电流。

Uew--电流互感器的一次所在的电网额定电压

Ue、Ie1电流互感器的一次额定回路最大动作电流

4.热稳定校验。电流互感器常以允许通过一次额定电流Ie1的倍数Kr故热稳定应按下式校验:(KrIe1)2≥I2∞tdz

5.动稳定校验。电流互感器常以允许通过一次额定电流最大值(

Iel)的倍数Kd--动力稳定电流倍数,表示其内部稳定能力,故内部稳定可按下式校验:。短路电流不仅在电流互感器内部产生作用力,而且由于其相邻之间电流的相互作用使绝缘瓷帽受到力的作用。

在满足额定容量的情况下,选择二次连接导线的允许最小截面为:

[计算过程见计算说明书附录5 ]

二、电压互感器的选择

1.一次回路电压选择。为了确保电压互感器安全和在规定的准确级下运行,电压互感器一次绕组所接电网电压应在(1.1-0.9)Ue范围内变动.

2.按二次回路电压选择。电压互感器的二次侧额定电压应满足保护和测量使用标准,仪表的要求.

3.按容量的选择.互感器的二次容量(对应所要求的准确级)Se2应不小于互感器的二次负荷S2,即:Se2≥S2。

电压互感器应接一次回路电压、二次回路,安装地点和使用条件,二次负荷及准确级要求进行选择。

1.110kV侧电压互感器

(1)母线侧电压互感器选用JDCF-110型电压互感器,它是单相、四绕组、串级式绝缘、陶瓷、“分”列式(有测量和保护“分”开的二次绕组)户外安装油浸式全密封型互感器,适用于交流50HZ有效接地电力系统,作电压、电能测量和继电保护用。其初级绕组额定电压为110/kV,次级绕组额定电压为0.1/kV,剩余电压绕组100V。测量用准确级为0.2级,额定二次负荷100V A,保护用准确级为0.5级,额定二次负荷250V A。

(2)110kV输电线路侧电压互感器,采用TYD型单相电容式电压互感器,其初级绕组额定电压为,次级绕组额定电压为,二次绕组准确级为0.5级,额定二次负荷150V A。

2、10kV侧电压互感器

10kV侧电压互感器采用JDZXF-12型电压互感器,它是单相、四绕组、浇注式、分列式(有测量和保护“分”开的二次绕组)户内型电压互感器,具有三组次级,其中有0.2计量用,0.5级监控用。其初级绕组额定电压为10/kV,次级绕组额定电压为0.1/ kV,额定二次负荷100V A。

[计算过程见计算说明书附录6 ]

第六节母线的选择

在电力系统中,母线主要承担传输功率的重要任务,电力系统的主接线也需要用母线来汇集和分配功率,在发电厂、变电站及输电线路中,所用导线有裸导线、硬铝母排及电力电缆等,由于电压等级要求不同,所用导线的类型也不相同,裸露母线一般按下类各项进行选择和校验:

(1)导线材料、类型和敷设方式(2)导线截面

(3)电晕(4)热稳定(5)动稳定(6)共振频率

[计算过程祥见计算说明书附录7 ]

第七节限流电抗器的选择

限流电抗器是输配电设备中用以增加电路的短路阻抗,从而达到限制短路电流的目的。限制变电站10kV侧短路电流不超过16-31.5kA,以便采用ZN28型真空断路器,并且使用的电缆截面不至于过大,一般采用下列措施之一:

(1)变压器分列运行;

(2)在变压器回路装设电抗器或分裂电抗器;

(3)采用分裂变压器;

(4)出线上装设电抗器(10kV侧短路电流很大,采用其他限流措施不能满足要求时)

普通电抗器的额定电流选择:

电抗器几乎没有过负荷能力,所以主变压器或出线回路的电抗器应按回路最大工作电流选择,而不能用正常持续工作电流选择。对于变电站母线分段回路的电抗器应满足用户的一级负荷和大部分二级负荷的要求。

第八节站用变压器的台数及容量的选择

站用电接线一般原则:低压10kV母线采用分段母线分别向两台所用变压器提供电源,一般采用一台工作变压器接一段母线,两台站用工作变压器互为备用(每台变压器容量及型号相同),以获得较高的可靠性。

站用变压器容量的选择:

站用变压器负荷计算采用核算系数法,不经常运行及不经常连续运行的负荷均可不列入计算负荷,当有备用站用变压器时,其容量应与工作站用变压器相同。

第一节断路器和隔离开关的选择

断路器的选择,除满足各项技术条件和环境条件外,还应考虑到要便于安装调试和运行维护,并经济技术方面都比较后才能确定。根据目前我国断路器的生产情况,电压等级在10KV~220KV的电网一般选用少油断路器,而当少油断路器不能满足要求时,可以选用SF6断路器。

断路器选择的具体技术条件如下:

1)额定电压校验:

2)

3)开断电流(或开断容量):

其中:Idt——断路器开断时间t秒时的断路电流周期分量

Ikd——断路器的额定开断电流

Sdt——断路器t秒开断时的容量

Skt——断路器的额定开断容量

注:断路器的实际开短时间t,为继电保护动作时间与断路器固有分闸时间之和。4)动稳定

其中,ich——三项短路电流冲击值.

Imax——断路器极限通过电流峰值

5)热稳定

其中:I∞——稳态三项短路电流

tdz——短路电流发热等值时间

It——断路器t秒热稳定电流

同样,隔离开关的选择校验条件与断路器相同,并可以适当降低要求。

5.1.1 220kv侧断路器和隔离开关的选择

1、主变220kv侧

1)流过断路器的最大持续工作电流

第四部分参考文献

[1] 《工厂常用电气设备手册》(上册、下册补充本)水利电力出版社

[2] 《常用供配电设备选型手册》王子午徐泽植主编

1998年7月第1版煤炭工业出版社

[3] 《工厂配电设计手册》航空工业部第四规划设计研究院等编

水利电力出版社

[4] 《电力系统继电保护》天津大学编水利电力出版社

[5] 《工厂供电》陕西机械学院苏方成主编机械工业出版社

[6] 《电力系统课程设计及毕业设计参考资料》曹绳敏

1995年5月第一版水利电力出版社

[7] 《工厂供电设计》李宗纲等编著吉林科学技术出版社

[8] 《发电厂电气部分》华中工学院范锡普主编水利电力出版社

第六章配电装置

配电装置是发电厂和变电所的重要组成部分,它是根据主接线的联结方式,由开关电器、保护和测量电器,母线和必要的辅助设备组建而成,用来接受和分配电能的装置。

配电装置按电器装设地点不同,可分为屋内和屋外配电装置。

屋内配电装置的特点:

1、由于允许安全净距小河可以分层布置而使占地面积较小

2、维修,巡视和操作在室内进行,不受气候影响

3、外界污秽空气对电器影响较小,可减少维护工作量

4、房屋建筑投资较大

屋外配电装置的特点:

1、土建工作量和费用较少,建设周期短

2、扩建比较方便

3、相邻设备之间距离大,便于带电作业

4、占地面积大

5、受外界环境影响,设备运行条件差,须加强绝缘

6、不良气候对设备维修和操作有影响

配电装置的型式选择,应考虑所在地区的地理情况及环境条件。因地制宜,节约用地,并结合运行和检修要求,通过技术经济性比较后确定。一般情况下配电装置宜外用屋内式。

普通中型配电装置,国内采用较多,已有丰富的经验,施工、检修和运行都比较方便,抗震能力较好,造价比较低,缺点是占地面积较多。

根据配电原则如下:

220KV 屋外式大中型配电装置

110KV 屋外市中型配电装置

10KV 屋内二层配电装置

第七章继电保护的配备

7.1 变压器继电保护配置

电力变压器是电力系统的重要电气设备之一,它的安全运行直接关系到电力系统的连续稳定运行,特别是大型电力变压器,由于其造价昂贵,结构复杂,一旦因故障而遭到损坏,其修复难度大,时间也很长,必然造成很大的经济损失。所以,本设计中主变保护配置如下:

1、纵联差动保护

2、非电量保护

3、过电流保护

4、过负荷保护和零序过流保护

7.2 220KV线路保护

220KV线路的安全运行,对整个电力系统有着相当重要的影响,所以,本工程为220KV

线路配置的保护如下:

1、光纤纵联差动保护

2、距离保护

3、零序过流保护

4、过电流保护

7.3 10KV母线保护

对于10KV母线接线方式为单母线分段,可以配置的保护主要有:过流保护,带时限跳分段开关,并利用装在变压器,断路器的后备保护来切除故障。

7.4 110KV线路保护

110KV由于直接连接在两个工厂,输电距离较短,但稳定性同样要求较高,所以,110KV 线路保护配置如下:

1、距离保护

2、零序方向保护

3、过电流保护

7.5 10KV出线保护

1、电流保护:线路故障瞬时跳开所在线路的断路器

2、过电流保护

3、过负荷保护

中型水力发电厂电气部分初步设计

专业 班级 学生姓名 指导教师 课程设计任务书

目录 1.前言 (2)

1.1.变电站设计原则………………………………………………(2 1.2.对电气主接线的基本要求………………………………………) 2 1.3.主接线的设计依据……………………………………………(3 1.4.设计题目 (3) 1.5.设计内容 (3) 2.课程设计的任务要求 (4) 2.1.原始资料分析 (4) 2.2.主接线方案的拟定 (5) 2.3. 厂用电的设计…………………………………………() 8 2.4.1.发电机的选择及参数…………………………………() 8 2.4.2.变压器的选择及参数…………………………………() 9 2.4. 3.厂用变的选择及参数…………………………()9 2.5.短路电流计算………………………………()10 2.6.主要电气设备的选择…………………………()11 2.7.配电装置的选择……………………………()13 3.设计总结 (15) 参考文献 (15) 附录A………………………………………………………() 16 附录B……………………………………………………() 17 附录C……………………………………………………………() 22

1.前言 变电所是接受电能、变换电压、分配电能的环节,是供配电系统的重要组成部分,它直接影响整个电力系统的安全与经济运行。电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机),变换(变压器,整流器,逆变器),输送和分配(电力传输线,配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 1.1变电站设计原则 1. 必须严格遵守国家的法律、法规、标准和规范,执行国家经济建设的方针、政策和基本建设程序,特别是应贯彻执行提高综合经济效益和促进技术进步的方针。 2.必须从全局出发,按照负荷的等级、用电容量、工程特点和地区供电规划统筹规划,合理确定整体设计方案。 3.应做到供电可靠、保证人身和设备安全。要求供电电能质量合格、优质、技术先进和经济合理。设计应采用符合国家现行标准的效率高、能耗低、性能先进的设备。 1.2.对电气主接线的基本要求 变电站的电气主接线应满足供电可靠、调度灵活、运行,检修方便且具有经济性和扩建的可能性等基本要求。 1.供电可靠性:如何保证可靠地(不断地)向用户供给符合质量的电能是发电厂和变电站的首要任务,尽量避免发电厂、变电所全部停运的可能性。防止系统因为某设备出现故障而导致系统解裂,这是第一个基本要求。 2.灵活性:其含义是电气主接线能适应各种运行方式(包括正常、事故和检修运行方式)并能方便地通过操作实现运行方式的变换而且在基本一回路检修时,不影响其他回路继续运行,灵活性还应包括将来扩建的可能性。

发电厂电气部分课程设计题目

发电厂电气部分课程设计题目 题目: 300MW 火力发电厂电气部分设计 原始资料: 1. 发电厂情况 装机四台,容量2 x 100MW ,2x50MW, 发电机额定电压10.5KV ,功率因数分别为cos φ=0.85,cos φ=0.8,机组年利用小时数4800h ,厂用电率7%,发电机主保护时间0.05s ,后备保护时间3.9s ,环境条件可不考虑。 2. 接入电力系统情况 (1)、 10.5KV 电压等级最大负荷10MW ,最小负荷8MW ,cos φ=0.8,架空线路6回,二级负荷。通过发电机出口断路器的最大短路电流:''40.2I KA = 238.6S I KA = 438.1S I KA = (2)、 剩余功率送入220KV 电力系统,,架空线路4回,系统容量1800MW ,通过并网断路器的最大短路电流:''17.6I KA = 216.5S I KA = 416.1S I KA = , 题目:400MW 火力发电厂电气部分设计 原始资料: 1. 发电厂情况 装机两台,容量2x200MW ,发电机额定电压15.75KV ,cos φ=0.85,机组年利用小时数5500h ,厂用电率5.5% ,发电机主保护时间0.05s ,后备保护时间3.9s ,环境条件可不考虑。 2. 接入电力系统情况 发电厂除厂用电外, 剩余功率送入220V 电力系统,架空线路4回,系统容量2500MW ,通过并网断路器的最大短路电流:''26.5I KA = 229.1S I KA = 429.3S I KA = 3、厂用电采用6kv 及380/220三级电压

题目: 500MW 火力发电厂电气部分设计 原始资料: 1. 发电厂情况 装机四台,容量2 x 50MW ,2x200MW ,发电机额定电压分别为10.5KV 、15.75KV ,功率因数分别为cos φ=0.8,cos φ=0.85,机组年利用小时数5800h ,厂用电率6% 发电机主保护时间0.05s ,后备保护时间3,8s ,环境条件可不考虑。 2. 接入电力系统情况 (1) 10.5kv 电压等级最大负荷12MW, 最小负荷10MW ,cos φ=0.8,电缆馈线4回,二级 负荷。 通过发电机出口断路器的最大短路电流:''39.1I KA = 236.5S I KA = 435.8S I KA = ( 2) 剩余功率送入220KV 电力系统,架空线路4回,系统容量3500MW ,通过并网断路器的最大短路电流:''21.3I KA = 219.8S I KA = 418.5S I KA = 3、厂用电采用6kv 及380/220三级电压 题目:600MW 火力发电厂电气部分设计 原始资料: 1. 发电厂情况 装机两台,容量2 x 300MW ,发电机额定电压20KV ,cos φ=0.85,机组年利用小时数6000h ,厂用电率5%,发电机主保护时间0.05s ,后备保护时间3.9s ,环境条件可不考虑。 2. 接入电力系统情况 发电厂除厂用电外,全部送入220KV 电力系统,,架空线路4回,系统容量4000MW , 通过并网断路器的最大短路电流:''31.2I KA = 229.1S I KA = 428.2KA S I = 3、厂用电采用6kv 及380/220三级电压

热力发电厂课程设计说明书(国产600MW凝汽式机组全厂原则性热力系统设计计算)

国产600MW 凝汽式机组全厂原则性热力系统设计计算 1 课程设计的目的及意义: 电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据。 2 课程设计的题目及任务: 设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算。 计算任务: ㈠ 根据给定的热力系统数据,在h - s 图上绘出蒸汽的汽态膨胀线 ㈡ 计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D ㈢ 计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、 绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率) ㈣ 按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图 3 已知数据: 汽轮机型式及参数

锅炉型式及参数 锅炉型式英国三井2027-17.3/541/541 额定蒸发量Db:2027t/h 额定过热蒸汽压力P b17.3MPa 额定再热蒸汽压力 3.734MPa 额定过热蒸汽温度541℃ 额定再热蒸汽温度541℃ 汽包压力:P du18.44MP 锅炉热效率92.5% 汽轮机进汽节流损失4% 中压缸进汽节流损失2% 轴封加热器压力P T98kPa 疏水比焓415kJ/kg 汽轮机机械效率98.5% 发电机效率99% 补充水温度20℃ 厂用电率0.07 4 计算过程汇总: ㈠原始资料整理:

水力发电机组辅助设备课程设计报告

xx工程大学 水力发电机组辅助设备 课程设计 设计说明书 学院: 班级: 姓名: 学号: 指导老师:

目录 第一部分设计原始资料 (3) 第二部课程设计的任务和要求 (5) 第三部计算书和说明书 (7) 一、主阀 (7) 二、油系统 (7) 三、压缩空气系统 (14) 四、技术供水系统 (20) 五、排水系统 (22) 六、结束语 (25) 七、参考文献 (26)

第一部分:设计原始资料 一、水电站概况: 该水电厂位于海河流域,布置形式为坝后式水电站,坝型为土石坝,坝顶高程60.0m,水库调节库容2.6×108m3,属于不完全年调节水库。安装有1?~6?共6台轴流转桨式机组,其中1?机组在系统中承担调相任务。 二、水电站主要参数 1、电站水头H max=37.30m,H min=31.20m;H pj=34.50m 2、正常高水位:54.00m;正常尾水位:20.50m;最高尾水位20.9m;最低尾水位20.0m 3、装机容量N=6*17000KW 4、电站采用岔管引水方式,布置有三条引水总管,引水总管长度210m 三、水轮机和发电机技术资料

机型: ZZ440-LJ-330 SF17-28/550 额定出力: N r=17750KW; P r=17000KW 额定转速: n r=214.3r/min 水轮机安装安程:18.6m 水轮机导叶中心线D0=3.85m;导叶高度1.20m; 转轮标称直径D1=3.3m;尾水管直锥段上端直径3.5m,下端直径4.2m,直锥段高度6.6m;转轮占用体积6.76 m3;弯肘及扩散段体积27.52m3;检修时最低尾水位蜗壳残余水量15.0 m3 机组采用机械制动,制动耗气流量q z=65L/s 空气冷却器压力降△h=3-5m水柱 空气冷却器Q空=120m3/h 推力轴承及导轴承冷却器耗水量:26m3/h 四、调速器及油压装置 调速器型号: SDT-100 油压装置型号: YZ-2.5 -推力、上导轴承油槽的充油量3.0m3; 下导轴承油槽充油量1.5 m3 导水机构接力器充油量2×1.6 m3 水轮机转轮浆叶接力器充油量2.0 m3 主阀接力器充油量1.5m3 五、配电装置 主变: 3*40000KVA,冷却方式:风冷

发电厂电气部分课程设计

目录摘要……………………………………………...................... 第1章设计任务……………………………..................... 第2章电气主接线图………………………........................ 2.1 电气主接线的叙述…………………………….. 2.2 电气主接线方案的拟定..................................... 2.3 电气主接线的评定.................................................. 第3章短路电流计算………………………..................... 3.1 概述.................................................................. 3.2 系统电气设备电抗标要值的计算................. 3.3 短路电流计算.................................................. 第4章电气设备选择………………………..................... 4.1电气设备选择的一般规则………………………. 4.2 电气选择的技术条件……………………………. 4.2.1 按正常情况选择电器………………………....... 4.2.2 按短路情况校验……………………………........ 4.3 电气设备的选择…………………………………. 4.3.1 断路器的选择………………………………. 4.3.2 隔离开关的选择……………………………. 第5章设计体会及以后改进意见…………........................ 参考文献………………………………………....................... 摘要

热力发电厂课程设计

学校机械工程系课程设计说明书热力发电厂课程设计 专业班级: 学生姓名: 指导教师: 完成日期:

学校机械工程系 课程设计评定意见 设计题目:国产660MW凝汽式机组全厂原则性热力系统计算 学生姓名:专业班级 评定意见: 评定成绩: 指导教师(签名): 2010年 12 月9日 评定意见参考提纲: 1.学生完成的工作量与内容是否符合任务书的要求。 2.学生的勤勉态度。 3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

《热力发电厂》课程设计任务书 一、课程设计的目的(综合训练) 1、综合运用热能动力专业基础课及其它先修课程的理论和生产实际知识进行某660MW凝气式机组的全厂原则性热力系统的设计计算,使理论和生产实际知识密切的结合起来,从而使《热力发电厂》课堂上所学知识得到进一步巩固、加深和扩展。 2、学习和掌握热力系统各汽水流量、机组的全厂热经济指标的计算,以及汽轮机热力过程线的计算与绘制方法,培养学生工程设计能力和分析问题、解决问题的能力。 3、《热力发电厂》是热能动力设备及应用专业学生对专业基础课、专业课的综合学习与运用,亲自参与设计计算为学生今后进行毕业设计工作奠定基础,是热能动力设备及应用专业技术人员必要的专业训练。 二、课程设计的要求 1、明确学习目的,端正学习态度 2、在教师的指导下,由学生独立完成 3、正确理解全厂原则性热力系统图 4、正确运用物质平衡与能量守恒原理 5、合理准确的列表格,分析处理数据 三、课程设计内容 1. 设计题目 国产660MW凝汽式机组全厂原则性热力系统计算(设计计算) 2. 设计任务 (1)根据给定的热力系统原始数据,计算汽轮机热力过程线上各计算点的参数,并在h-s图上绘出热力过程线; (2)计算额定功率下的汽轮机进汽量Do,热力系统各汽水流量Dj、Gj; (3)计算机组和全厂的热经济性指标; (4)绘出全厂原则性热力系统图,并将所计算的全部汽水参数详细标在图中(要求计算机绘图)。 3. 计算类型 定功率计算 4. 热力系统简介 某火力发电厂二期工程准备上两套660MW燃煤气轮发电机组,采用一炉一机的单元制配置。其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;汽轮机为Geg公司的亚临界压力、一次中间再热660MW凝汽式汽轮机。 全厂的原则性热力系统如图1-1所示。该系统共有八级不调节抽汽。其中第一、第二、第三级抽汽分别供高压加热器,第五、六、七、八级抽汽分别供低压加热器,第四级抽汽作为0.9161Mpa压力除氧器的加热汽源。 第一、二、三级高压加热器均安装了留置式蒸汽冷却器,上端差分别为-1.7oC、0oC、-1.7oC。第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为5.5oC。

水力发电厂电气一次部分设计罗开元

发电厂电气部分电气设计报告 题目:水力发电厂电气一次部分设计 班级:K0312417 姓名:罗开元 学号:K031241723 老师:高仕红 2015年 07 月 06 日

信息工程学院课程设计任务书 学号K031241711 学生姓名崔明专业(班级)电气工程及其 自动化 学号K031241723 学生姓名罗开元专业(班级)电气工程及其自动化 设计技术参数 1、电气主接线方案的拟定与方案确定; 2、主要设备的选择:主变压器的选择,变压器的选型,变压器容量的确定与计算,厂用电接线的设计; 3、短路点短路电流的计算所需的部分参数都已经标注在电路图中,本组成员计算所需的线路长度数据为(40 140 80 70 30)(单位:KM); 发电机:电压标幺值E=1.0,近似计算短路电流。 4、高压电气设备选择,断路器的选择,隔离开关的选择,电压互感器的选择,电流互感器的选择,母线选择; 5、屋内屋外配电装置的选择。 工 作 量所有工作由2人集体完成。

摘要 本文为4×15MW水力发电厂电气一次部分设计。通过对原始资料的详细分析,根据设计任务书的要求,进行了电气主接线方案的经济技术比较,厂用电设计,短路电流计算和电气设备的选择和校验,配电装置设计。编制了设计说明书,绘制了主接线图,厂用电接线图。 关键字:主接线、短路计算、设备选择、配电装置、设计说明书、主接线图、厂用电

Abstract This article is 4 x 15 mw hydropower plant electrical part design at a time. Through detailed analysis of original data, according to the requirements of the design plan descriptions of the economic and technical comparison, the main electrical wiring scheme design of auxiliary power, short circuit current calculation and selection of electrical equipment and calibration, power distribution equipment design. Compiled the design specification, draw the main wiring diagram, auxiliary power wiring diagram. The keyword :The main connection, short circuit calculation, equipment selection, power distribution equipment, design specifications, main wiring diagram, auxiliary power

130449649460562396发电厂电气部分课程设计

《发电厂电气部分课程设计》任务书 一、课题名称及原始资料 课题名称:某火力发电厂主接线的初步设计 原始资料如下: 1.火电厂的规模 1)装机容量 装机2台,容量分别为 2×300MW, U N =15.75kV cos ?=0.85 0.185d x =(以额定容量为基准的标幺值) 2)机组年利用小时 取h T 6000max =; 3)厂用电率按6%考虑。 2.电力负荷及电力系统连接情况 1)220kV 电压等级 架空线5回,最大负荷为250MW ,最小负荷为200MW ,cos ?=0.85, T max =4500h ; 2)500kV 电压等级 架空线4回,备用线1回,500kV 与电力系统连接,接受该发电厂的剩余功率。电力系统容量为3500MW ,系统等值电抗0.03(基准容量100MVA )。 3.其他的环境条件均处在额定环境下。 二、课程设计内容要求: 1. 对原始资料进行分析,初选两套主接线方案; 2. 定性的对两套主接线的可靠性和经济性进行分析,确定最终的主接线方案; 3. 选择主变压器及联络变压器的容量和型号; 4. 进行短路电流计算; 5. 选择主变压器后的断路器、隔离开关(后备保护动作时间为2.4s ,主保护的动作时间为 0.05s ),并进行校验。 三、课程设计任务要求: 1. 编写设计说明书,包括设计所需要的基本知识,对原始资料的分析、主接线方案的确定 依据以及主要电气设备的选择等。 2. 编写设计计算书,包括需要的各点的短路电流的计算过程。

3.绘图:拟定的主接线图。 四、变压器型号如下表: 其它变压器型号可在百度中输入GBT6451查询

热力发电厂课程设计报告dc系统

东南大学 热力发电厂课程设计报告 题目:日立250MW机组原则性热力系统设计、计算和改进 能源与环境学院热能与动力工程专业 学号 姓名 指导教师 起讫日期 2015年3月2日~3月13日 设计地点中山院501 2015年3月2日

目录 1 本课程设计任务 (1) 2 ******原则性热力系统的拟定 (2) 3 原则性热力系统原始参数的整理 (2) 4 原则性热力系统的计算 (3) 5 局部热力系统的改进及其计算 (6) 6 小结 (8) 致谢 (9) 参考文献 (9) 附件:原则性热力系统图

一本课程设计任务 1.1 设计题目 日立250MW凝汽机组热力系统及疏水热量(DC系统)利用效果分析。 1.2 计算任务 1、整理机组的参数和假设条件,并拟定出原则性热力系统图。 2、根据给定热力系统数据,计算气态膨胀线上各计算点的参数, 并在h-s 图上绘出蒸汽的气态膨胀线。 3、对原始热力系统计算其机组内效率,并校核。 4、确定原则性热力系统的改进方案,并对改进后的原则性热力系 统计算其机组内效率。 5、将改进后和改进前的系统进行对比分析,并作出结论。 1.3设计任务说明 对日立MW凝汽机组热力系统及疏水热量(DC系统)利用效果分析,我的任务是先在有DC系统情况下通过对抽汽放热量,疏水放热量,给水吸热量等的计算,求出抽汽份额,从而用热量法计算出此情况下的汽机绝对内效率(分别从正平衡和反平衡计算对比,分析误差)。然后再在去除DC系统的情况下再通过以上参量计算出汽轮机绝对内效率(也是正平衡计算,反平衡校核对比)。最后就是对两种情况下的绝对内效率进行对比,看去除DC系统后对效率有无下降,下降多少。

发电厂电气部分课程设计

《发电厂电气部分》课程设计100MW火力发电厂电气部分 学院:交通学院 姓名:高广胜 学号:1214010004 专业:13能源与动力工程 指导老师:马万伟 时间:2015年12月

课程设计任务书 一、设计题目 100MW火力发电厂电气部分设计 二.设计内容 1. 对发电厂在系统中的地位和作用及所供用户的分析; 2. 选择发电厂主变压器的台数、容量、型式; 3. 分析确定各电压侧主接线形式; 4. 分析确定厂用电接线形式; 5. 进行选择设备和导体所必须的载流导体的选择; 6. 选择变压器高、中、低压侧的断路器、隔离开关; 7. 选择配电装置型式及设计; 8. 用AutoCAD绘制发电厂电气主接线图。 三、课程设计的要求与数据 1、根据电力系统的发展规划,拟在某地区新建一座装机容量为100MW的凝汽式火力发电厂,发电厂安装1台100MW机组,发电机端电压为10.5kV。电厂建成后以10kV电压供给本地区负荷,其中有钢厂、毛纺厂等,最大负荷为68MW,最小负荷为34MW,最大负荷利用小时数为4200小时,全部用电缆供电,每回负荷不等,但平均在4MW左右,送电距离为3~6km。并以35kV电压供给附近的水泥厂用电,其最大负荷为58MW,最小负荷为32MW,最大负荷利用小时数为4500小时。负荷中I类负荷比例为30%,II类负荷为40%,III类负荷为30%。 2、计划安装两台100MW的汽轮发电机组,功率因数为0.85,厂用电率为6%,机组年利用小时Tmax=5800小时。 5、气象条件:绝对最高温度为35℃;最高月平均温度为25℃;年平均温度为12.7℃;风向以西北风为主. =165kA2s,未知系数0.8-1.2., 6、以100MVA为基准值,母线上阻抗为1.95,Q k 三相短路电流=4.5kA,短路电压=6KV,Sj=100MV.A,Uj=10.5kv. 四、课程设计应完成的工作 1、设计说明书、计算书一份; 2、主接线图一张;

水力发电厂电力一次系统设计

信息工程学院课程设计报告书 题目: 水力发电厂电气一次系统设计 专业:电气工程及其自动化 班级: 17 学号: 学生姓名: 指导教师: 2015年 7月 12 日

综合课程设计任务 1、题目 水力发电厂电气一次系统设计 2、原始资料 1、发电厂的建设规模 1:待设计发电厂类型(水利发电厂)。 2:发电厂一次设计并建成,计划安装(4 15MW)的水力发电机组,最大利用小时数(5000小时/年)。 2、发电厂与电力系统连接情况 1:待设计发电厂接入系统电压等级为(110kv),出线回路为(3回),其中一回线供20MW的一类负荷,水电站附近负荷3MW。 2:电力系统的总装机容量为(396MVA),全系统最大负荷340MW,最小负荷225MW。 3、环境条件 最热月地面下0.8m土壤平均温度28.6 C,多年最低气温-4 C;室内最热月平均温度34.1 C,户外最低气温40.1 C。 4、水电站位置和发展 水电站位于某河流上游,附近有城镇5座,各城镇发展远景如下: 5、系统连接图如下:

3、设计任务 1:电气主接线设计 2:厂用电设计 3:短路电流计算和电气设备选择 4:配电装置设计 4、设计成果 1:设计说明书一份 2:图纸3张(电气主接线图、屋内配电装置图、屋外配电装置图)

摘要 本文为4×15MW水力发电厂电气一次部分设计。通过对原始资料的详细分析,根据设计任务书的要求,进行了电气主接线方案的经济技术比较,厂用电设计,短路电流计算和电气设备的选择和校验,配电装置设计。编制了设计说明书,绘制了主接线图,厂用电接线图。 关键字:主接线、短路计算、设备选择、配电装置、设计说明书、主接线图、厂用电 Abstract This article is 4 x 15 mw hydropower plant electrical part design at a time. Through detailed analysis of original data, according to the requirements of the design plan descriptions of the economic and technical comparison, the main electrical wiring scheme design of auxiliary power, short circuit current calculation and selection of electrical equipment and calibration, power distribution equipment design. Compiled the design specification, draw the main wiring diagram, auxiliary power wiring diagram. The keyword :The main connection, short circuit calculation, equipment selection, power distribution equipment, design specifications, main wiring diagram, auxiliary power

发电厂电气部分课程设计剖析

1 火力发电厂电气部分设计 1.1设计的原始资料 凝汽式发电厂: (1)凝汽式发电组3台:3*125MW,出口电压:15.75KV,发电厂次暂态电抗:0.12;额定功率因数:0.8 (2)机组年利用小时: T=6000小时;厂用电率:8%。发电机主保护动 max 作时间0.1秒,环境温度40度,年平均气温为20度。 电力负荷: 送入220KV系统容量260MW,剩余容量送入110KV系统。 发电厂出线: 220KV出线4回; 110KV出线4回(10KM),无近区负荷。 电力系统情况: 220KV系统的容量为无穷大,选基准容量100MVA归算到发电厂220KV 母线短路容量为3400MVA,110KV系统容量为500MVA。 1.2设计的任务与要求 (1)发电机和变压器的选择 表1.1 汽轮发电机的规格参数 型号额定电压额定容量功率因数接线方式次暂态电抗QFS-125-2 15.75KV 125MW 0.8 YY 0.12 注:发电及参数如上表,要求选择发电厂的主变,联络110KV和220KV的联络变压器的型号。 (2) 电气主接线选择 注:火力发电厂的发电机-变压器接线方式通常采用单元接线的方式,注意主变容量应与发电机容量相配套。110KV和220KV电压级用自耦变压器联接,相互交换功率,我们的两电压等级母线选用的接线方式为:220KV采用双母三分段接线,110KV采用双母线接线。 (3) 短路电流的计算 在满足工程要求的前提下,为了简化计算,对短路电流进行近似计算法。 结合电气设备选择选择短路电流计算点求出各电源提供的起始次暂态电流

''I,冲击电流 I,及计算短路电流热效应所需不同时刻的电流。 sh (4) 主要电气设备的选择 要求选择:110KV侧出线断路器、隔离开关、电流互感器。

热力发电厂课程设计计算书详解

热力发电厂课程设计

指导老师:连佳 姓名:陈阔 班级:12-1 600MW 凝汽式机组原则性热力系统热经济性计算 计算数据选择为A3,B2,C1 1.整理原始数据的计算点汽水焓值 已知高压缸汽轮机高压缸进汽节流损失:δp 1=4%,中低压连通管压损δp 3=2%, 则 )(MPa 232.232.24)04.01('p 0=?-=; p ’4=(1-0.02)x0.9405=0.92169; 由主蒸汽参数:p 0=24.2MPa ,t 0=566℃,可得h0=3367.6kJ/kg; 由再热蒸汽参数:热段: p rh =3.602MPa ,t rh =556℃, 冷段:p 'rh =4.002MPa ,t 'rh =301.9℃, 可知h rh =3577.6kJ/kg ,h'rh =2966.9kJ/kg ,q rh =610.7kJ/kg 。 1.2编制汽轮机组各计算点的汽水参数(如表4所示)

1.1绘制汽轮机的汽态线,如图2所示。

1.3计算给水泵焓升: 1.假设给水泵加压过程为等熵过程; 2.给水泵入口处水的温度和密度与除氧器的出 口水的温度和密度相等; 3.给水泵入口压力为除氧器出口压力与高度差产生的静压之和。 2.全厂物质平衡计算 已知全厂汽水损失:D l =0.015D b (锅炉蒸发量),锅炉为直流锅炉,无汽包排污。 则计算结果如下表:(表5) 3.计算汽轮机各级回热 抽汽量 假设加热器的效率η=1

(1)高压加热器组的计算 由H1,H2,H3的热平衡求α1,α2,α3 063788.0) 3.11068.3051()10791.1203(111fw 1=--?==ητααq 09067.06 .9044.2967)6.9043.1106(063788.0/1)1.8791079(1h h -212fw 221=--?--?=-=q d w d w )(αηταα154458 .009067.0063788.0212=+=+=αααs 045924 .02.7825.3375) 2.7826.904(154458.0/1)1.7411.879(h h -332s23fw 3=--?--=-=q d d w w )(αηταα200382 .0154458.0045924.02s 33=+=+=αααs (2)除氧器H4的计算 进除氧器的份额为α4’;176 404.0587.43187.6) 587.4782.2(200382.0/1)587.4741.3(h h -453s34fw 4=--?--=-=q w w d )(’αηταα 进小汽机的份额为αt 根据水泵的能量平衡计算小汽机的用汽份额αt

课程设计发电厂

专业模块课程设计任务书 课程设计目的和要求 1.课程设计的目的: 专业模块课程设计是在学习电力系统基础课程后的一次综合性训练,通过课程设计的实践达到: (1)巩固“发电厂电气部分”、“电力系统分析”等课程的理论知识。 (2)熟悉国家能源开发策略和有关的技术规范、规定、导则等。 (3)掌握发电厂(或变电所)电气部分设计的基本方法和内容。 (4)学习工程设计说明书的撰写。 (5)培养学生独立分析问题、解决问题的工作能力和实际工程设计的基本技能。 2.课程设计的任务要求: (1)分析原始资料(每个原始资料最多两人使用) (2)设计主接线 (3)设计厂用电(所用电)接线 (4)主变压器(或发电机)的选择 3.设计成果: (1)主接线图一张、含主变、厂(所)用电 (2)设计说明书一份

专业模块课程设计说明书 摘要,单独一页 目录 1.前言(简要介绍本次设计任务的内容、设计的原则、依据和要求) 2.原始资料分析 3.主接线方案确定 3.1 主接线方案拟定(2~3个,小图) 3.2 主接线方案评定(可靠、灵活、经济) (本章要求在说明书中明确画出方案拟定示意图,针对图示可以从主接线的三个基本要求列表评价所初选的方案,最终得出结论,对可靠性的定量计算评价,不做要求)。 4.厂用电(所用电)接线设计 5.主变压器(或发电机)的确定 (确定主变压器(或发电机)的型号、容量、台数,列出技术参数表,简要说明确定的理由) 6.结论 结论是课程设计的总结,单独作为一章编写,是整个设计的归宿。要求准确阐述自己的创造性工作或新的见解及其意义和作用,还可进一步提出需要讨论的问题和建议。 7.参考文献 附录 附录A 完整的主接线图

发电厂电气部分课程设计报告

《发电厂电气部分》课程设计报告凝气式火力发电厂一次部分设计 班级: 学号: 姓名:

1 引言 近年来,随着国家电网的迅速发展,国内外火电机组的容量也越来越多。人民用电量的日益增加促使发电量的不断增加。在世界的能源不断消耗,促进了新能源的发展,但是目前新能源还不能完全代替传统一次能源的发电,在我国火力发电任然占据主导地位。 火力发电厂简称火电厂,是利用煤炭、石油或天然气作为燃料生产电能的工厂,其能量的转换过程是由燃料的化学能到热能再到机械能最后转换为电能。本设计是凝气式火电厂一次部分的设计。通过对电气主接线的设计和短路电流的计算。更加经济可靠的选用相关的一次设备,做到更好利用一次能源,与故障时对电力系统的保护。

2 主接线方案设计 2.1 原始资料分析 2.1.1 原始资料 发电机组4100?,85.0cos =?,U=10.5KV ,次暂态电抗为0.12,年利用率为5000小时以上,厂用电率6%,高压侧为220kv 、110KV ,其中110V 出线短有5回出线与系统相连接输送的功率为120MW ,220KV 的出线有5回与系统相连接输送的功率为200MW 。中压侧35KV,3回出线将功率送至5KM 内的用户综合负荷40MW ,。发电厂处于北方平原地带,防雷按当地平均雷暴日考虑,土壤为普通沙土。系统容量取3500MVA 。 2.1.2资料分析 根据设计任务书所提供的资料可知,该火电厂为中型火电站,由于其年利用率在5000小时以上,所以该发电厂一般给I ,II 类负荷供电,必须采用供电较为可靠的接线形式。其地形条件限制不严格,但从节省用地考虑,尽可能使其布置紧凑,便于运行管理。发电厂的总容量与系统容量之比相对较小,所以对于35KV 及110KV 可以采取相对简单的接线方式。 2.2 电气主接线设计的依据 电气主接线设计是火电厂电气设计的主体。它与电力系统、枢纽条件、电站动能参数以及电站运行的可靠性、经济性等密切相关,并对电气布置、设备选择、继电保护和控制方式等都有较大的影响,必须紧密结合所在电力系统和电站的具体情况,全面地分析有关影响因素,正确处理它们之间的关系,通过技术经济比较,合理地选定接线方案。 电气主接线的主要要求为: 1、可靠性:衡量可靠性的指标,一般是根据主接线型式及主要设备操作的可能方式,按一定的规律计算出“不允许”事件的规律,停运的持续时间期望值等指标,对几种接线形式的择优。 2、灵活性:投切发电机、变压器、线路断路器的操作要可靠方便、调度灵活。 3、经济性:通过优化比选,工程设计应尽力做到投资省、占地面积小、电能损耗小。 2.3主接线的方案拟定 方案一:根据对原始资料的分析可知系统有4个电压等级分别是发电厂到母线的10KV 电压和经过升压给周边用户使用的35KV 的电压以及提供给系统的110KV 和

热力发电厂课程设计

1000 MW凝汽式发电机组全厂原则性热力系统的设计 学院:交通学院 专业:热能与动力工程 姓名:高广胜 学号: 1214010004 指导教师:李生山 2015年 12月

1000MW 热力发电厂课程设计任务书 1.2设计原始资料 1.2.1汽轮机形式及参数 机组型式:N1000-26.25/600/600(TC4F ) 超超临界、一次中间再热、四缸四排气、单轴凝汽式、双背压 额定功率:P e =1000MW 主蒸汽参数:P 0=26.25MPa ,t 0=600℃ 高压缸排气:P rh 。i =6.393MPa ,t rh 。I =377.8℃ 再热器及管道阻力损失为高压缸排气压力的8%左右。 MPa 5114.0MPa 393.608.0p rh =?=? 中压缸进气参数:p rh =5.746MPa ,t rh =600℃ 汽轮机排气压力:P c =0.0049MPa 给水温度:t fw =252℃ 给水泵为汽动式,小汽轮机汽源采用第四段抽汽,排气进入主凝汽器;补充水经软化处理后引入主凝汽器。 1.2.2锅炉型式及参数 锅炉型式:HG2953/27.46YM1型变压运行直流燃煤锅炉 过热蒸汽参数:p b =27.56MPa ,t b =605℃ 汽包压力:P drum =15.69MPa 额定蒸发量:D b =2909.03t/h 再热蒸汽出口温度:603t 0 .rh b =℃ 锅炉效率:%8.93b =η 1.2.3回热系统 本热力系统共有八级抽汽,其中第一、二、三级抽汽分别供给三台高压加热器,第五、六、七、八级分别供给四台低压加热器,第四级抽汽作为高压除氧器的气源。七级回热加热器均设置了疏水冷却器,以充分利用本机疏水热量来加热本级主凝结水。三级高压加热器和低压加热器H5分别都设置内置式蒸汽冷却器,为保证安全性三台高压加热器的疏水均采用逐级自流至除氧器,四台低压加热器是疏水逐级自流至凝汽器。 汽轮机的主凝结水经凝结水泵送出,依次流过轴封加热器、四台低压加热器、除氧器,然后由汽动给水泵升压,在经过三级加热器加热,最终给水温度为252℃。 1.2.4其它小汽水流量参数 高压轴封漏气量:0.01D 0,送到除氧器; 中压轴封漏气量:0.003D 0,送到第七级加热器; 低压轴封漏气量:0.0014D 0,送到轴封加热器; 锅炉连续排污量:0.005D b 。 其它数据参考教材或其它同等级汽轮机参数选取。 1.3设计说明书中所包括的内容 1.原则性热力系统的拟定及热力计算; 2.全面性热力系统设计过程中局部热力系统的设计图及其说明; 3.全面性热力系统过程中管道的压力、工质的压力、温度、管道的大小、壁厚的计算; 4.全面性热力系统的总体说明。

电大水利水电 —水电站__课程设计 (本科)汇编

《某小型水电站设计》 课程设计 学生姓名: 学号: 专业:水利水电 指导教师:

第一章内容简介 内容摘要 本设计为一座引水式径流开发的水电站。 拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。整个设计根据地形及地质条件和相关资料、规格等要求,进行全面结合考虑,力图合理、科学,有较强的实用性。 关键词:引水式径流水电站设计规划

第二章有关设计资料 2.1 厂区地形和地质条件 水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。 2.2 水电站尾水位 厂址一般水位10.0米。 厂址调查洪水痕迹水位18.42米。 2.3 对外交通 厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。 2.4 地震烈度 本地区地震烈度为六度,故设计时不考虑地震影响。

长沙理工大学《发电厂电气部分》课程设计

目录 摘要............................................................................ - 0 -引言............................................................................ - 2 -第一篇设计说明书..................................................... - 4 -第一节变电站主接线选定方案................................................... - 4 -第二节变压器选定方案.............................................................. - 5 -第三节断路器与隔离开关选定方案....................................... - 6 -第四节母线选定方案.................................................................. - 7 -第二篇设计计算书 ................................................. - 8 -第一节电气主接线........................................................................ - 8 -第二节主变压器选择.................................................................. - 18 -第三节设备型号选择.................................................................. - 21 -断路器与隔离开关的选择 ..................................................... - 24 - 母线的选择 .............................................................................. - 29 -设计心得体会............................................................ - 33 -

相关文档
相关文档 最新文档