文档库 最新最全的文档下载
当前位置:文档库 › 饱和食盐水比热容的测量

饱和食盐水比热容的测量

饱和食盐水比热容的测量
饱和食盐水比热容的测量

电解饱和食盐水实验报告

探究饱和食盐水的电解 【实验目的】1、巩固、加深对电解原理的理解 2、练习电解操作 3、培养学生的分析、推理能力和实验能力 4、培养学生严谨求实的科学品质 5、培养学生的实验室安全意识 【实验猜想】以铜丝或铁钉为阴极,碳棒为阳极,饱和食盐水为电解液,最终会生成H2 和Cl2 【仪器和试剂】 仪器:具支U型管、玻璃棒、铁架台2个、碳棒、粗铁钉或铜丝、导线、直流电源、玻璃导管、试管、酒精灯、橡胶管、烧杯等。 试剂:饱和食盐水、淀粉碘化钾试纸、酚酞试液、NaOH溶液等。 【看现象得结论】 现象结论 阴极(铜丝/铁钉)有大量气泡生成; 阴极附近溶液变红; 收集的气体,在酒精灯处 点燃,发出爆鸣声。 2H++2e-===H 2 ↑ (2H 2 O+2e-===2OH-+H 2 ↑) 由于该反应使溶液变为碱 性,使酚酞变红 阳极(碳棒)有大量气泡生成; 生成的气体有刺激性气 味; 生成气体使湿润淀粉碘 化钾试纸变蓝; 2Cl--2e-===Cl 2 ↑(部分Cl 2 溶于水中,水呈现出黄绿色) 2I-+Cl 2 ===I 2 +2Cl-

以上说明实验猜想是正确的 【实验原理】 1、常见阳离子放电顺序: K+、Ca2+、Na+、Mg2+、Al3+、Zn2+、Fe2+、Sn2+、Pb2+、(H+),Cu2+、Ag+、Au2+———————————————————————————→ 逐渐增强 常见阴离子放电顺序: SO42-、NO3-、OH-、Cl-、Br-、I-、S2- ————————————————→ 逐渐增强 饱和食盐水中的离子有Na+ 、Cl-、H+、OH-,按照放电顺序,阳离子应该是H +先放电,被还原为H 2 ,阴离子应该是Cl- 先放电,被氧化为Cl 2 。 电池总反应: 通电 2NaCl+2H2O —→ 2NaOH + Cl2↑+ H2↑ 2、由于H 2 密度比空气小,则用向上排空气法收集,并用爆鸣法验证 Cl 2 为黄绿色气体,有刺鼻性气味,有毒,且由于2I-+Cl 2 ===I 2 +2Cl-,I 2 遇 淀粉后,显紫色,则用湿润的淀粉碘化钾试纸检验,检验结果为湿润的淀粉碘化钾试纸变蓝。该气体为污染性酸性气体,则用NaOH吸收尾气。 【实验步骤】 取药品—→组装仪器—→检查装置气密性(检查方法如下)—→装药品(取70—80ml饱和食盐水,滴加2-3D酚酞,在烧杯混匀后再倒入U形管中)—→检查气密性—→通电开始反应(20-30V)—→检验产物 具支U形管检查气密性方法: 1、U形管上面一个大口和左右两端的两个小口塞紧,从另一个大口向U形管里 面加水,若水面在另一端缓慢上升,最后两边液面相平,则漏气;如果两边的液面始终不能在同一水平线上,则说明不漏气。这是物理上的“连通器” 原理。 2、或者将U形管内倒入适量水,上面两个大口塞住,左右两个小口连接导管, 其中一端堵住,另一端导管上下移动,若U形管内液面上下浮动,则说明气

固体比热容的测量

固体比热容的测量 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

固体比热容的测量 一、实验目的 1、掌握基本的量热方法——混合法; 2、测定金属的比热容; 3、学习一种修正散热的方法。 二、实验仪器 量热器、温度计( 0C 和 0C 各一支)、物理天平、待测金属粒、冰、停表、加热器、量筒等。 三、实验原理 1、 混合法测比热容 依据热平衡原理,温度不同的物体混合后,热量将由高温物体传给低温物体,如果在混合过程中和外界无热量交换,最后达到均匀稳定的平衡温度。根据能量守恒定律,高温物体放出的热量就应等于低温物体吸收的热量,即: 本实验即根据热平衡原理用混合法测定固体的比热。设量热器(包括搅拌器和温度计插入水中部分)的热容为C ,实验时,量热器内先盛以质量为0m ,温度为1t 的冷水,之后,把加热到温度为2t 质量为m 的待测金属块投入量热器中,经过热交换后,水量热器与金属块达到共同的末温θ,依热平衡方程有: ))(()(1002t C c m t mc -+=-θθ (1) 即 ) ())((2100θθ--+=t m t C c m c (2) 量热器的热容C 可以根据其质量和比热容算出。设量热器筒和搅拌器由相同的物质制成,其质量为1m ,比热容为1c ,则

(3) = + C' c m C 1 1 式中C'为温度计插入水中部分的热容。C'的值可由下式求出: C表示C'以J·0C-1为单位时的数值,而式中V为温度计插入水中部分的体积。{}10-?'C J {}3 V表示V以cm3为单位时的数值。 cm 2、系统误差的修正 上述讨论是在假定量热器与外界没有热交换时的结论。实际上只要有温度差异就必然会有热交换存在,因此实验结果总是存在系统误差,有时甚至很大,以至无法得到正确结果。所以,校正系统误差是量热学实验中很突出的问题。为此可采取如下措施:1)要尽量减少与外界的热量交换,使系统近似孤立体系。此外,量热器不要放在电炉旁和太阳光下,实验也不要在空气流通太快的地方进行。 2)采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但避免在两热器外生成凝结水滴。先估算,使初始温度与室温的温差与混合后末温高出室温的温度大体相等。这样混合前量热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。 3)缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失。 4)严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。 5)沸点的校正。在实验中,我们是取水的沸点为被测物体加热后的温度,但压强不同,水的沸点也有所不同。为此需用大气压强计测出当时的气压,再由气压与沸点的关系通过查表查出沸点的温度。 采取以上措施后,散热的影响仍难以完全避免。被测物体放入量热器后,水温达到最高温度前,整个系统还会向外散热。所以理论上的末温是无法得到的。这就需要通过

示范教案一实验三 电解饱和食盐水

实验三电解饱和食盐水 ●实验目的 1.巩固、加深对电解原理的理解。 2.练习电解操作。 3.培养学生的分析、推理能力和实验能力。 4.培养学生严谨求实的科学品质。 5.培养学生综合运用所学知识的能力。 ●教学重点 1.用实验巩固有关电解原理的知识。 2.培养学生的分析、逻辑推理能力和学生思维的灵活性。 ●教学方法 实验、启发、讨论、探究、对比、实践等。 ●教学用具 投影仪 实验用品 小烧杯(或U型管)两个、玻璃棒、铁架台、碳棒、粗铁钉、导线、电流表、直流电源。 饱和食盐水、淀粉碘化钾试纸、酚酞试液、蒸馏水。 ●教学过程 [导入]上节课,我们重点学习了电解饱和食盐水的原理。但“纸上得来终觉浅,绝知此事须躬行”。本节课,我们就来亲自做一下电解饱和食盐水的实验。 [板书]实验三电解饱和食盐水。 [师]请大家按以下步骤进行操作,并注意观察实验现象。 [投影展示实验步骤] 在小烧杯(或U型管)里装入饱和食盐水,滴入几滴酚酞试液。用导线把碳棒、电池、电流表和铁钉相连(如右图)。接通直流电源后,注意观察电流表的指针是否偏转,以及小烧杯内发生的现象,并用湿润的碘化钾淀粉试纸检验阳极放出的气体。 电解饱和食盐水 注:粗铁钉要与直流电源的阴极相连,碳棒与阳极相连。 用玻璃棒沾湿润的KI淀粉试纸检验阳极气体。 [学生操作,教师巡视指导] [学生实验完毕] [请一位同学回答实验现象] [生]饱和食盐水电解时,电流表指针发生偏转,阴、阳极均有气体放出,阳极气体有刺激性气味,并能使湿润的KI淀粉试纸变蓝,且阴极区溶液变红。 [师]很好!请大家写出两根电极上所发生的电极反应式和电解饱和食盐水的总反应式。 [学生书写,请一位同学上黑板写出] [学生板书]阳极:2Cl--2e-===Cl2↑ 阴极:2H++2e-===H2↑(或2H2O+2e-===2OH-+H2↑) 总反应式:2NaCl+2H2O 电解 2NaOH+H2↑+Cl2↑

电解饱和食盐水的原理

电解饱和食盐水的原理 盐水相关内容整理 1.盐水的水源。 主要为电解槽回来的淡盐水,再加上离子交换塔再生时产生的水,以及其他一些杂水。 2.目前国内常见的盐水除硫酸根工艺有以下几种: 1、氯化钡法; 2、SRS除硫酸根; 3、凯膜公司新出的CIM法。除硫酸根后,产生的硫酸钠通过冷冻回收,副产芒硝。除硫酸根的方法都是成熟工艺,但冷冻法生产芒硝工艺还不够完善。 3.化盐工段的主要中间控制工艺指标有那些? 应该最主要的是钙镁离子和SS 4.游离氯对过碱量的分析影响? 无影响。在有游离氯存在(几十PPM),过碱性可以分析。如果你的游离氯高到盐水不能分析过碱性,盐水就不能进槽了。 5.1次盐水过碱量如何实现自动分析\控制? 目前是通过PH计来监控的,对于游离氯是通过ORP来进行的。实际运用中存在1.PH计经常会结晶或因其他问题不准确;2、国产小流量调节阀质量不行;3、来料淡盐水过碱量不稳定。有企业通过实验室分析控制的,分析过碱量和PH值。 6.原盐中的钙镁比? 最好是钙镁比为2:1 7.盐水Fe离子超标原因? 1).Fecl3做絮凝剂2.)管道腐蚀3).原盐中防结块剂亚铁氰化物中的铁 8.盐水中的有机物对离子膜烧碱装置的影响 1、阴极的加水量下降; 2、槽电压上升; 3、氯气纯度下降; 4、树脂塔出现树脂结块; 5、离子膜出现溶胀现象。6.附在膜过滤器上,造成反洗时间短,降低膜的使用性能。 9.一次盐水的T.O.C是什么? “TOC”是指水中的有机碳总量,盐水中的TOC也就是通常讲的有机物含量。电解槽供应商有的要求盐水中的有机物含量小于5mg/l,有的要求盐水中的有机物含量小于10mg/l。10.一次盐水用泵的材质 1、在一次盐水的精制过程中使用的是IHF化工耐腐蚀泵,材质为氟合金,包括向离子膜界区内输送的好是一样的泵型,用的效果不错。 2、在离子膜一次盐水泵出口进入树脂塔的,则是采用钛泵,为保证安全。 2 引起澄清桶反混主要原因大致有以下几点: 1.进出澄清桶的盐水温差过大,造成上层盐水因密度大而下降,下层盐水加速上升使盐水反混. 2.进入澄清桶的盐水流通量过大,使盐水上升速度大于盐水中颗粒沉降速度. 3.澄清桶体积小,反应停留时间不够. 4.对于钡法除硫酸根,要注意控制盐水的PH值,PH值过高会降低硫酸钡的沉降速度. 12.化盐在前反应池盐大量累积问题 1、精制盐加入化盐桶时,盐不能从化盐桶上表面加入,因为精制盐颗粒本身就很细小,要将加料斗深入盐水里面一米左右,增加与盐水的接触时间. 2、化盐桶盐水流量不要过大,最好在设计流量以下,流量过大,流速增加,减少了精制盐的停留时间. 3、化盐桶盐水温度要保证在50~~60之间.

固体比热容的测量

固体比热容的测量 一、 实验目的 1、 掌握基本的量热方法——混合法; 2、 测定金属的比热容; 3、 学习一种修正散热的方法。 二、 实验仪器 量热器、温度计(0、00-50、00 0C 与0、0-100、0 0C 各一支)、物理天平、待测金属粒、冰、停表、加热器、量筒等。 三、 实验原理 1、 混合法测比热容 依据热平衡原理,温度不同的物体混合后,热量将由高温物体传给低温物体,如果在混合过程中与外界无热量交换,最后达到均匀稳定的平衡温度。根据能量守恒定律,高温物体放出的热量就应等于低温物体吸收的热量,即: 本实验即根据热平衡原理用混合法测定固体的比热。设量热器(包括搅拌器与温度计插入水中部分)的热容为C,实验时,量热器内先盛以质量为0m ,温度为1t 的冷水,之后,把加热到温度为2t 质量为m 的待测金属块投入量热器中,经过热交换后,水量热器与金属块达到共同的末温θ,依热平衡方程有: ))(()(1002t C c m t mc -+=-θθ (1) 即 ) ())((2100θθ--+=t m t C c m c (2) 量热器的热容C 可以根据其质量与比热容算出。设量热器筒与搅拌器由相同的物质制成,其质量为1m ,比热容为1c ,则 C c m C '+=11 (3) 式中C '为温度计插入水中部分的热容。C '的值可由下式求出:

{}{ }3109.1cm C J V C ='-? 式中V 为温度计插入水中部分的体积。{}10-?'C J C 表示C '以J ·0 C -1为单位时的数值,而{}3cm V 表示V 以cm 3为单位时的数值。 2、 系统误差的修正 上述讨论就是在假定量热器与外界没有热交换时的结论。实际上只要有温度差异就必然会有热交换存在,因此实验结果总就是存在系统误差,有时甚至很大,以至无法得到正确结果。所以,校正系统误差就是量热学实验中很突出的问题。为此可采取如下措施: 1)要尽量减少与外界的热量交换,使系统近似孤立体系。此外,量热器不要放在电炉旁与太阳光下,实验也不要在空气流通太快的地方进行。 2)采取补偿措施,就就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但避免在两热器外生成凝结水滴。先估算,使初始温度与室温的温差与混合后末温高出室温的温度大体相等。这样混合前量热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。 3)缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失。 4)严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。 5)沸点的校正。在实验中,我们就是取水的沸点为被测物体加热后的温度,但压强不同,水的沸点也有所不同。为此需用大气压强计测出当时的气压,再由气压与沸点的关系通过查表查出沸点的温度。 采取以上措施后,散热的影响仍难以完全避免。被测物体放入量热器后,水温达到最高温度前,整个系统还会向外散热。所以理论上的末温就是无法得到的。这就需要通过实验的方法进行修正:在被测物体放入量热器前4-5min 就开始测度量热器中水的温度,每隔1min 读一次。当被测物体放入后,温度迅速上升,此时应每隔0、5min 测读一次。直到升温停止后,温度由最高温度均匀下降时,恢复每分钟记一次温度,直到第15min 截止。由实验数据作出温度与时间的关系t T -曲线,如图1所示。

浅谈电解饱和食盐水电极方程式

浅谈电解饱和食盐水电极方程式 修改理由及教学建议 作者:周仰楠作者单位:运城市教研室,山西运城 044000 中图分类号:G632.0 文献标识码:A 文章编号:JZ007-JYXSW201210A-004 一、电解饱和食盐水阴极电极方程式存在的问题 人民教育出版社普通高中课程标准实验教科书《化学·选修4·化学反应原理》第81 页对电解饱和食盐水制烧碱、氯气和氢气的电极反应是这样表述的:“阳极2C1-+2e- =C12 ↑(氧化反应);阴极2H++2e- =H2↑(还原反应);总反应为2NaCl+2H2O=2NaOH+H2↑+Cl2↑。”总反应方程式中生成物出现氢氧化钠,而阴、阳电极反应方程式中则没有出现这一物质。对于这一问题,课本是这样解释的:“因为阴极反应中,氢离子是由水电离出来的。”而教师是这样解释的:“由于大量的氢离子放电变成氢气,在水的电离平衡中,氢离子浓度不断减小,水的平衡强烈向右移动,因而在阴极附近产生了大量氢氧根离子。”这就使得学生在具体的学习实践中感到困惑。笔者认为,产生困惑的根源在于阴极电极反应方程式不妥,如果将 2H++2e- =H2↑改为2H2O+2e- =H2↑+2OH-,问题便会迎刃而解。 二、电解饱和食盐水阴极电极方程式修改的理由 1.准确地表述电解饱和食盐水阴极及其附近的变化情况 将电解饱和食盐水阴极电极反应方程式写为2H++2e-=H2↑,不能反应事物变化的本来面貌,不能把水的电离平衡强烈移动包含进去,也就是说,电极反应方程式无法解决在阴极附近产生氢氧化钠这一问题。在电解饱和食盐水中,阴极上放电的固然是氢离子,但该氢离子是由水电离而生成的,从严格意义上讲,是水参与了反应,即水是反应物。因此,将电解饱和食盐水阴极电极方程式2H++2e-=H2↑改为2H2O+2e- =H2↑+2OH-,能更加客观、科学、合理、准确地表述电解饱和食盐水阴极及其附近的变化情况。 2.较好地解释了在阴极附近产生大量氢氧化钠溶液的现象 将电解饱和食盐水阴极电极方程式2H++2e- =H2↑改为2H2O+2e- =H2↑+2OH-之后,学生从 电极反应的本身就可以知道氢氧化钠溶液是在阴极附近出现的,教师根本不需要做过多解释。在具体的实验操作中,修改后的方程会引导学生在阴极区域寻找氢氧化钠溶液,或寻找氢氧化钠溶液与其他物质(如酚酞)反应产生的一些现象。这样,学生容易把阴、阳两极各自出现

金属比热容测定

热学实验论文 。混合法测定金属的比热容 物质比热容的测量属于量热学范围,由于量热实验的误差一般较大,所以要做好量热实验必须仔细分析产生各种误差的原因,并采取相应措施设法减小误差。 测定固体或液体的比热容,在温度变化不太大时常用混合量热法、冷却法、电流量热器法。本实验用混合法测定金属的比热容。 一、实验目的 1. 学习热学实验的基本知识,掌握用混合法测定金属的比热容的方法; 2. 学习一种修正系统散热的方法。 二、仪器及用具 量热器,水银温度计,物理天平,待测金属粒,停表,量筒,烧杯及电加热器等。 三、实验原理 1. 用热平衡原理侧比热容 在一个与环境没有热交换的孤立系统中,质量为m 的物体,当它的温度由最初平衡态0θ变化到新的平衡态i θ时,所吸收(或放出)的热量Q 为 )(0θθ-=i mc Q (1) 式中mc 称为该物体的热容,c 称为物体的比热容,单位为J/(kg·K )。 用混合法测定固体比热容的原理是热平衡原理。把不同温度的物体混合在一起时,高温物体向低温物体传递热量,如果与外界没有任何热交换,则他们最终达到均匀、稳定的平衡温度,这时称系统达到了热平衡。高温物体放出的热量1Q 与低温物体吸收的热量2Q 相等,即 1Q =2Q (2) 本实验的高温部分由量热器内筒、搅拌器、水银温度计和热水等组成,而处于室温的金属粒为系统的低温部分。设量热器内筒和搅拌器(二者为同种材料制成)的质量为1m ,比热容为1c ;热水质量为2m ,比热容为2c ;水银温度计的质量为3m ,比热容为3c ,它们的共同

温度为1θ。待测金属粒的质量为M ,比热容为c ,温度与室温0θ相同。将适量金属粒倒入量热器内筒中,经过搅拌后,系统达到热平衡时的温度为2θ。假设系统与外界没有任何热交换,则根据式(2)可知,实验系统的热平衡方程为 )())((022*******θθθθ-=-++Mc c m c m c m (3) 式中33c m 为温度计的热容,其值用1.92V(J/K)表示,这里的V 表示温度计浸入水中部分的 体积,单位用3cm 。于是,式(3)可写成 )())(92.1(02212211θθθθ-=-++Mc V c m c m 则金属粒的比热容c 为 )() )(92.1(02212211θθθθ--++=M V c m c m c (4) 式中M 、1m 、2m 均可由天平称衡;V 可用量筒采用排水法测出;1c 、2c 查书后附录二或由实验室给出,0θ为室温。若能知道1θ和2θ的值,便可计算出金属粒的比热容c 。下面通过修正系统散热误差的方法求出1θ和2θ的值。 2. 系统散热误差的修正(面积补偿法) 在热学实验中,系统不可能完全绝热,必然存在着散热现象,因此,必须对系统的散热进行修正。修正散热的方法之一就是对温度进行修正,其方法是通过作图用外推法求出实验系统的高温部分(量热器内筒、热水、搅拌器、水银温度计等)混合前的温度1θ以及混合后系统达到热平衡时的温度2θ。图2-25所示的是实验系统的温度随时间变化的曲线。图 中AB 段是未投入金属粒前系统的散热温度变化曲线; B 点对应的时刻为金属粒投入热水中的时刻。B C 段是金属粒投入量热器热水中以后,系统进行热交换过程的散热曲线;C D 段是系统内热交换达到热平衡后的散热温度变化曲线。在BC 段实际上同时进行着两个过程,一是由于系统向空气散热而导致热水温度下降,二是由于金属粒投入后的吸热效应而使热水温度下降。现在就来考虑在有热量损失的情况下,应用面积补偿法,求出由于投入金属粒而使水温降低的实际数值。其具体做法是:在曲线上过对应于室温0θ的点G 作垂直横轴的直线,然后延长AB 到 E ,延长DC 到 F ,使BE G 面积等于GFC 面积,这样在BEGFC 和BGC 这两条图线各自相应的过程中所损失的热量是相等的,因而可将原来的BGC 过程等

(fb212型气体比热容比的测定)实验讲义

(FB212型气体比热容比测定仪)实验讲义 气体比热容比的测定 比热容是物质的重要参量,在研究物质结构、确定相变、鉴定物质纯度等方面起着重要 的作用。本实验将介绍一种较新颖的测量气体比热容的方法。 【实验目的】 测定空气分子的定压比热容与定容比热容之比γ值。 【实验原理】 气体的定压比热容P C 与定容比热容V C 之比 V P C /C =γ,在热力学过程特别是绝热过程中是一个 很重要的参数,测定的方法有好多种。这里介绍一种较新颖的方法,通过测定物体在特定容器中的振动周期来计算γ值。实验基本装置如图1所示,振动物体小球D 的直径比玻璃諧振腔E 直径仅小mm 02.0~01.0 。它能在此精密的玻璃諧振腔E 中上下移动,在储气瓶A 的壁上有一充气孔B ,并插入一根细管,通过它各种气体可 以注入到储气瓶A 中。 钢球D 的质量为m ,半径为 r (直径为d ),当瓶子内压力P 满足下面条件时,钢球 D 处于力平衡状态,这时2 L m g P P r π?=+ ?,式中L P 为大气压强 。为了补偿由于空气阻尼引起振动物体D 振幅的衰减,通过B 管不断注入一个小气压的气流,在精密玻璃諧振腔E 的中央开设有一个小孔C 。当振动物体A 处于小孔下方的半个振动周期时,注入气体使储气瓶A 内压力增大,引起物体D 向上移动,而当物体D 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使储气瓶A 内压力减小从而使物体D 下沉。以后重复上述过程,只要适当控制注入气体的流量,物体D 能在玻璃諧振腔E 的小孔C 上下作简谐振动,振动周 期可利用光电计时装置来测得。 若物体偏离平衡位置一个较小距离dx ,则容器内的压力变化dp ,物体的运动方程为:

实验五 固体比热容的测量(电热法)

实验五 固体比热容的测量(电热法) 金属是重要的固态物质,本文对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本文重点介绍电热法测量固体比热容。 【实验目的】 1、掌握基本的量热方法——用量热器测热量法。 2、学习用电热法测固体的比热容。 【实验仪器】 热学综合实验平台、量热器、待测钢球、测温探头 【实验原理】 固体比热容指单位质量的热容量,也是特定粒子电子、原子、分子等结构及其运动特性的宏观表现。测量固体物质比热容对于了解固体物质性质,物质内部结构等都具有重要的意义,常用于测量固体物质比热容的方法有动态法、混合法、冷却法等。 金属是重要的固态物质,本书对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本实验重点介绍电热法测量固体比热容。 在量热器中加入质量为m 的待测物,并加入质量为0m 的水,如果加在加热器两端的电压为U ,通过电阻的电流为I ,通电时间为t ,则电流作功为: UIt A = (5-1) 如果这些功全部转化为热能,使量热器系统的温度从1T ℃升高至2T ℃,则下式成立 ()()1201100T T c c m c m mc UIt -+++=ω (5-2) c 为待测物的比热容,0c 为水的比热热容,1m 为量热器内筒的质量,1c 为量热器内筒的比热容, 2m 为铜电极和铜搅拌器总质量,2c 为铜比热容。 由(5-2)式得 ()[]m c c m c m T T UIt c //0110012ω----= (5-3) 为了尽可能使系统与外界交换的热量达到最小,在实验的操作过程中就应注意以下几点: 1、不应当直接用手去把握量热筒的任何部分,不应当在阳光直接照射下进行实验。

一气体定压比热容测定

工程热力学实验 指导书 哈尔滨理工大学 热能与动力工程实验室

实验一 气体定压比热容测定实验 一.实验目的 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二.实验原理 引用热力学第一定律解析式,对可逆过程有: pdv du q +=δ 和 vdp dh q -=δ 定压时0=dp p p T h dT vdp dh dT q c ??? ????=??? ??-=??? ??=δ 此式直接由p c 的定义导出,故适用于一切工质。 在没有对外界作功的气体的等压流动过程中: p Q m dh δ1= 则气体的定压比热容可以表示为: ()122 1t t m Q c p t t pm -= kJ/kg ?℃ 式中:m ——气体的质量流量,kg/s ; p Q ——气体在等压流动过程中的吸热量,kJ/s 。 由于气体的实际定压比热是随温度的升高而增大,它是温度的复杂函数。实验表明,理想气体的比热与温度之间的函数关系甚为复杂,但总可表达为: +++=2et bt a c p 式中a 、b 、e 等是与气体性质有关的常数。在离开室温不很远的温度范围内,空气的定压比热容与温度的关系可近似认为是线形的,假定在0-300℃之间,空气真实定压比热与温度之间进似地有线性关系: bt a c p += 则温度由1t 至2t 的过程中所需要的热量可表示为:

()dt bt a q t t ?+=2 1 由1t 加热到2t 的平均定压比热容则可表示为: ()2211 22121t t b a t t dt bt a c t t t t pm ++=-+=? 若以(t 1+t 2)/2为横坐标,21t t pm c 为纵坐标(如下图所示),则可根据不同温度范 围的平均比热确定截距a 和斜率b,从而得出比热随温度变化的计算式bt a +。 大气是含有水蒸气的湿空气。当湿空气气流由温度1t 加热到2t 时,其中水蒸气的吸热量可用式下式计算: ()dt t m Q t t w w ?+=2 10001172.0844.1 式中:w m ——气流中水蒸气质量,kg/s 。 则干空气的平均定压比热容由下式确定: ()()1212)(')(21t t m m Q Q t t m m Q c w w p w p t t pm ---=--= 式中:'p Q ——为湿空气气流的吸热量。 三.实验设备

电解饱和食盐水实验报告

实验6 饱和氯化钠溶液的电解 一、目的与要求 掌握演示电解饱和食盐水实验操作技能; 初步掌握电解饱和食盐水实验的讲解方法。 二、实验原理 饱和NaCl 溶液的电解: 阴极反应: ↑→++2H 2e H 2 阳极反应:↑→2-Cl 2e - 2Cl 总反应:2NaOH Cl H O 2H 2NaCl 222+↑+↑+通电 三、实验装置 电解饱和氯化钠及产物检验装置 四、主要仪器、材料与药品 直流低压电源、具支U 形管、石墨电极、铁电极、导线、浓42SO H 、固体NaOH 、酚酞试剂、淀粉KI 试纸、橡胶管、玻璃管、饱和NaCl 溶液、KSCN 试剂、稀42SO H 、镊子。 五、实验内容 1.饱和NaCl 溶液的电解 向具支U 形管中滴加饱和NaCl 溶液至支管以下约2cm 处,并从两管口各滴加2滴酚酞试液,装上铁阴极和石墨阳极,接通低压直流电源(24V),观察实验现象。 实验现象:可看到两个电极附近都有大量气泡。在阴极区,溶液变红,在阳极区具支U 形管口用润湿的淀粉KI 试纸试之,变蓝。阴极区的气体点燃有黄色火焰并伴有微弱爆鸣声。

反应本质:2NaOH Cl H O 2H 2NaCl 222+↑+↑+通电 -22-Cl 2I Cl 2I +=+ O 2H O 2H 222点燃+ 2.不换溶液在上述实验基础上反接阴极和阳极。 接通电源,观察实验现象,并检验反应产物。关闭电源,将具支管内的灰绿色沉淀倒入试管,加入几滴稀42SO H ,震荡至沉淀溶解,滴加KSCN 试剂,振荡,观察溶液颜色变化。 实验现象:发现在铁电极的一侧出现白色絮状沉淀,并且沉淀向下移动,在具支U 型管底部慢慢变为灰绿色,将具支管内的灰绿色沉淀倒入试管,加入几滴稀42SO H ,震荡至沉淀溶解,此时溶液为黄色,滴加KSCN 试剂,振荡,溶液由黄色变为血红色。阴极产生气泡,点燃火焰为黄色并伴有微弱的爆鸣声。 反应本质:+→2Fe 2e - Fe ↓=++ Fe(OH)OH 2 Fe 2-2 32Fe(OH) Fe(OH)????→?氧化性物质 O H 3 Fe H 3 Fe(OH)233+=+++ 3-3S CN Fe S CN Fe )(=++ ↑→++2H 2e H 2 O 2H O 2H 222点燃+ 3.更换新的饱和NaCl 溶液,并从两管口各滴加2滴酚酞试液,反接(铁电极做阳极,石墨电极做阴极)。接通电源,观察实验现象。 实验现象:铁电极附近溶液变黄,且黄色渐渐向下移动,在具支U 形管底部生成灰绿色沉淀。用湿润的淀粉KI 试纸在Fe 电极具支U 型管口检验,未变色。在石墨电极上有气泡产生,经点燃,有黄色火焰并伴有轻微的爆鸣声。 反应本质:+→2Fe 2e - Fe ↓=++ Fe(OH)OH 2 Fe 2-2 32Fe(OH) Fe(OH)????→?氧化性物质 O H 3 Fe H 3 Fe(OH)233+=+++ 3-3S CN Fe S CN Fe )(=++ ↑→++2H 2e H 2 O 2H O 2H 222点燃+ 4.更换新的饱和NaCl 溶液,并从两管口各滴加2滴酚酞试液,石墨电极做阳极并将石墨电极连有的铁丝一并浸入电解质溶液中,铁电极做阴极。接通电源,观察实验现象。 实验现象:电解时发现石墨电极上有气泡产生,用湿润的淀粉KI 试纸检验

冷却法测量金属比热容

冷却法测量金属比热容 一 实验目的 1 掌握用冷却法测定金属的比热容,测量金属在室温至200℃温度时的比热容。 2 了解金属的冷却速率与环境之间的温差关系,以及进行测量的实验条件。 二 实验原理 单位质量的物质,其温度升高或降低1K (1℃)所需的热量,叫做该物质的比热容,其值随温度而变化。根据牛顿冷却定律,用冷却法测定金属的比热容是量热学常用方法之一。若已知标准样品在不同温度的比热容,通过作冷却曲线可测量各种金属在不同温度时的比热容。本实验以铜为标准样品,测定铁、铝样品在100℃或200℃时的比热容。 冷却法测定金属的比热容测量仪装置 (实验装置由加热仪和测试仪组成。加热仪的加热装置可通过调节手轮自由升降。被测样品安放在有较大容量的防风圆筒即样品室内的底座上,测温热电偶放置于被测样品内的小孔中。当加热装置向下移动到底后,对被测样品进行加热;样品需要降温时则将加热装置移上。仪器内设有自动控制限温装置,防止因长期不切断加热电源而引起温度不断升高。) 将质量为1M 的金属样品加热后,放到较低温度的介质(例如室温的空气)中,样品将会逐渐冷却。其单位时间的热量损失(t Q ??/)与温度下降的速率成正比,于是得到 下述关系式: t M C t Q ??=??1 1 1θ (1)

式中1C 为该金属样品在温度1θ时的比热容,t ??1θ为金属样品在1θ的温度下降速率, 根据冷却定律有: m s a t Q ) (0111θθ-=?? (2) 式中1a 为热交换系数1S 为该样品外表面的面积,m 为常数,1θ为金属样品的温度, θ 为周围介质的温度。由式(1)和(2),可得 m s a t M C ) (01111 1 1θθθ-=?? (3) 同理对质量为2M ,比热容为2C 的另一种金属样品,可有同样的表达式: m s a t M C ) (02222 2 2θθθ-=?? (4) 由(3)和(4)式,可得: m m s a s a t M C t M C )()(1011102221 12 2 2θθθθθθ--=???? (5) 所以 m s a t M s a t M C C m ) (01112 2 ) (1 2 02221 1 θθθθθθ-??=-?? (6) 如果两样品的形状尺寸都相同,即2 1 s s =;两样品的表面状况也相同(如涂层、色 泽等),而周围介质(空气)的性质当然也不变,则有2 1a a =。于是当周围介质温度不 变(即室温0θ恒定而样品又处于相同温度θ θθ=-21 )时,上式可以简化为: 1 22 11 2 ??? ????? ?? ????=t M t M C C θθ (7) 如果已知标准金属样品的比热容1C 质量1M ;待测样品的质量2M 及两样品在温度θ时冷却速率之比,就可以求出待测的金属材料的比热容2C 。

饱和食盐水的精制

20度下,36g/100gH20 饱和食盐水的质量分数为 36 ------------- * 100% = 26.47% 100+36 则配制500g饱和食盐水需要食盐500*26.47%=132.35g 饱和食盐水的精制 由原盐在化盐桶中所制得粗盐水后,其中含有 ①钙盐和镁盐等杂质,含量虽然不大,但在后续盐水吸氨及碳酸化过程中能和NH3及CO2作用生成沉淀或复盐[Mg(OH)2 、NaCl·MgCO3·Na2CO3、MgCO3·Na2CO3等],不仅会使设备和管道结垢甚至堵塞,同时还会造成氨及食盐的损失。在碳化之前若不将这些杂质除去,便会影响纯碱的质量。 ②若采用含SO42- 较高的地下卤水制碱,硫酸根虽然不会进入纯碱之中,但会在蒸馏塔中与氯化钙反应生成石膏沉淀,使蒸馏塔严重结疤,缩短塔的生产周期。因此,粗盐水必须经过精制才能用于制碱。那么我们用什么方法来除去Ca2+、Mg2+呢?(提问)使之转化成沉淀。 除去粗盐水中的Ca2+、Mg2+可以添加沉淀剂使之沉淀除去。加入什么沉淀剂最好呢?(提问)提示:我们加入的沉淀剂最好是氨碱法过程中用到的或产生的,这样可以不引人其它离子。 由于CaCO3和Mg(OH)2的溶解度都很小,因此氨碱厂都使之生成这两种沉淀物来精制盐水。镁离子的沉淀剂可以用NH3、Ca(OH)2等碱性物质,但用NH3时生成的Mg(OH)2不易沉降,最便宜的沉降剂是Ca(OH)2,它是氨碱厂中自己生产的。(请同学们写出反应方程式) 用石灰乳除Mg2+反应为:Mg2++Ca(OH)2→Mg(OH)2↓+Ca2+(1-2-12) Ca2+的沉淀剂有(NH4)2CO3和Na 2CO3,也是氨碱厂自身生产的: Ca2++Na 2CO3→CaCO3↓+2Na+(1-2-13) Ca2++(NH4)2CO3→CaCO3↓+2NH4+(1-2-14) 我们根据除钙方法的不同将盐水精制的方法分为两种:石灰一纯碱法和石灰一

大学物理实验教案8-固体比热容的测量

实验名称: 固体比热容的测量 实验目的: 1、进一步熟悉量热方法及散热修正。 2、用混合法测定金属的比热容。 3、熟练掌握混合法的操作技巧,以减少量热器的散热。 实验仪器: 量热器 电子天平 温度计(0.1℃、50℃和1℃、100℃各一支) 停表 电水壶 小量筒 铝圆柱 实验原理: 根据热平衡原理,用混合法测定铝圆柱的比热。 质量m 、温度2t 的铝圆柱投入量热器的水中,设量热器及搅拌器质量为1m ,(比热容铜 31110.38510c J kg C --=???),水的质量为 0m (比热容取3 1 10 4.18710c J kg C --=???) ,温度计修正热容为1.9V (V 取3cm ),则 200111()( 1.9)()mc t m c m c V t θθ-=++- 即 001112( 1.9)() () m c m c V t c m t θθ++-= - 对1t 、θ须作散热修正,投物前5、6分钟开始测水温(30s 测一次),记下 投物前的时刻与温度,水温达到最高点后继续测5、6分钟,前图为温度——时间曲线。 吸热面积BOE S ;散热面积COF S 。当B O E S =COF S ,实验不受散热影响。应控制水温低于室温2~3度,可先粗测,后细测。 实验内容:

1.用天平分别测出量热器内筒和搅拌器的质量1m 、以及被测物铝圆柱的质量m 。 2.将量热器的内筒注入一定质量的水(适当加一点冰水),要求保证金属块放入后能完全被水浸没。称量出量热器内筒及水的总质量。计算出水的质量0m 。 3. 盖好胶木盖,用搅拌器上下轻轻搅拌,当从温度计上读出量热器及水的温度比室温低3~4度时,开始每隔30〞记录一次温度。 4.将铝块放入电水壶用水煮沸,确切测量出铝块的温度1t (与水温相同)。 5. 当量热器及水的温度比室温低2~3度时将铝属块迅速取出放入量热器的内筒中,盖好胶木盖,用搅拌器上下轻轻搅拌。同时每隔30〞记录一次温度t 。持续5~10分钟。 6.取出温度计处理温度计浸在水中的体积。 7. 绘制τ-t 图,求出混合前的初温1t 和混合温度θ。计算被测物的比热容及其标准不确定度。 实验数据处理 铝圆柱 质量59.73m g = 温度 299.5t =℃ 量热器 质量170.40m g = 比热容 31110.38510c J kg K --=??? 水 质量0204.42m g = 比热容 3110 4.18710c J kg K --=??? 室温 t =_24.75_℃ 温度计插入水中部分的体积 31.9V cm = 初温 t 1=22.21℃ 混合温度 26.52θ=℃ 铝的比热容为:

气体比热容比的测定实验报告及数据

气体比热容比的测定实验报告及数据课气体比热容比的测定 1、学习测定空气比热容比的方法。题 教学目 2、熟练掌握物理天平和螺旋测微器的使用方的 法。 3、熟练掌握直接测量值和间接测量值不确定度 重难 1、物理天平的调节和使用。的计算。 点 2、各物理量不确定度的计算。 教学方讲授、演示、提问、讨论、操作相结合。 学 3学时。法 时 一、前言 气体的定压比热容和定体比热容的比值称为比热容比。气体的值在许多热力学过程特别是绝热过程中是一个很重要的参数。由气体动理论可知,理想气体的值为: (1) 式中为气体分子的自由度,对于单原子分子 ;对于双原子刚性分子, ;对于多原子刚性分子,。实验中气体的比热容比常通过绝热膨胀法、绝热压缩法等方法来测定。本实验将采用一种比较新颖的方法,即通过测定小球在储气瓶玻璃管中的振动周期来计算空气的值。 二、实验仪器 FB212型气体比热容比测定仪、支撑架、小型气泵、TW-1型物理天平、0-25mm 外径千分尺等。

三、实验原理 如图1所示,钢球A位于精密细玻璃管B中,其直径仅仅比玻璃管直径小 0.01-0.02mm,使之能在玻璃管中上下移动,瓶上有一小孔C,可以通过导管将 待测气体注入到玻璃瓶中。 图1 设小球质量为m,半径为r,当瓶内气压P满足下式时,小球处于平衡位置: (2) 设小球从平衡位置出发,向上产生微小正位移x,则瓶内气体的体积有一 微小增量: (3) 与此同时瓶内气体压强将降低一微小值,此时小球所受合外力为: (4) 小球在玻璃管中运动时,瓶内气体将进行一准静态绝热过程,有绝热方程: (5) 两边微分,得 (6) 将(3)、(4)两式代入(6)式,得: (7) 由牛顿第二定律,可得小球的运动方程为: (8) 可知小球在玻璃管中作简谐振动,其振动周期为: (9) 最后得气体的值为: (10)

DSC测定比热容

比热容的测定 如前所述DSC测量的是试样吸热或放热速率,纵坐标为dH/dt。在比热容测定中直接测定纵坐标的位移。因为热容C p=dH/dT,与吸热或放热速率之间的关系可注下式表示: 式中dH/dt=β是升温速率. 根据物理化学原理,在不作非体积功的等压过程中,在没有物态变化和化学组成变化时,等压热客为 而比热容为 变换(1.44)和(1.45)式,得到结果和(1.41)式一样.即 由(1.41)式可见,dH/dt为热焓变化速率。正是DSC曲线中的纵坐标。dH/dt为升温速率β,m为试洋质量,C是比热容[单位为J/(g·K)].因此,用DSC测定比热容是非常方便

的.测定方法有直接法和间接法(比例法)两种。直接的方法就是在DSC曲线上,直接读取纵坐标dH/dt数值和升温速率β,一同代人(1.41)或(1.42)式,求山比热容C.但是这种方法往往引起很大的误差,这些误差主要是由于仪器造成的,包括以下几方面:第一,在测定的温度范围内,dH/dt不是绝对线性的;第二,仪器校正常数在整个测定区不是一个恒定值;第三,在整个测定范场内,基线不可能完全平直.为了减少这些误差,一般采用间接法测定比热率. 间接法是用试样和一标准物质在其他条件相同下进行扫描,然后量出二者的纵坐标进行计算.标准物要求在所测温度范围内没有化学的和物理的变化,并且比热容已知.常用的标准物是蓝宝石(要求不高时也可用α—A12O3).具体作法是在DSC仪器上,先用两个空样品皿,以一定的升温速度作一条基线,然后放入标进物蓝宝石样品在用同样条件作一条DSC 曲线,再用同样条件,作未知试样的DSC曲线,如图1.33所示.根据(1.41)式,在某一温度下,试样的热始变化率为 蓝宝石热焓变化率为 两式相除得 所以,试样的比热容C为 式中C为试样的比热容[J/(mg·K)],C’为标准物(蓝宝石)的比热容[J/(mg·K)], m为试样重量(mg),m’为标准物(蓝宝石)重量(mg),y为试样在纵坐标上的角高.y’为标准物(蓝宝石)在纵坐标上的偏离. 从图1.33上量取y’,y的长度,代入(1.47)式,就可计算出试样的比热容.

实验六 固体比热容的测量(混合法)

实验六固体比热容的测量(混合法) 固体比热容指单位质量的热容量,也是特定粒子电子、原子、分子等结构及其运动特性的宏观表现。测量固体物质比热容对于了解固体物质性质,物质内部结构等都具有重要的意义,常用于测量固体物质比热容的方法有动态法、混合法、冷却法等。 【实验目的】 1、掌握基本的量热方法——混合法。 2、测固体的比热容。 【实验仪器】 热学综合实验平台、量热器、加热井装置 【实验原理】 金属是重要的固态物质,本书对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本实验重点介绍混合法测量金属比热容。 温度不同的物体混合后,热量将由高温物体传递给低温物体。如果在混合过程中和外界没有热交换,最后将达到均匀稳定的平衡温度,在这过程中,高温物体放出的热量等于低温物体所吸收的热量,此称为热平衡原理。本实验即根据热平衡原理用混合法测定固体的比热。 将质量为m、温度为T1 的金属块投入量热器的水中。设金属块、水、量热器内筒、搅拌器和温度计的比热分别为c、c0、c1和c2,质量分别为m、m0、m1和m2,待测物投入水中之前的水温为T2 。在待测物投入水中以后,其混合温度为θ,则在不计量热器与外界的热交换的情况下,将存在下列关系: mc (T1 ?θ ) = ( m0c0 + m1c1 + m2c2 ) (θ?T2 ) 即: )-( ) - )( + + ( = 1 1 2 2 2 1 1 θ T m T θ c m c m c m c 上述讨论是在假定量热器与外界没有热交换时的结论。实际上,只要有温度差异就必然会有热交换存在,因此,必须防止或进行修正热散失的影响。热散失的途径主要有三:第一是加热后的物体在投入量热器水中之前散失的热量,这部分热量不易修正,应尽量缩短投放时间。第二是在投下待测物后,在混合由外部吸热和高于室温后向外散失的热量。在本实验中,由于测量的是导热良好的金属,从投下物体到达混合温度所需时间较短,可以采用热量

相关文档
相关文档 最新文档