文档库 最新最全的文档下载
当前位置:文档库 › 光敏电阻实验报告

光敏电阻实验报告

光敏电阻实验报告
光敏电阻实验报告

实验报告

姓名:高阳班级:F0703028 学号:5070309013 实验成绩:

同组姓名:实验日期:08/4/14 指导老师:助教15 批阅日期:

光敏电阻基本特性的测量

【实验目的】

1.了解光敏电阻的工作原理及相关的特性。

2.了解非电量转化为电量进行动态测量的方法。

3.了解简单光路的调整原则和方法.

4.在一定照度下,测量光敏电阻的电压与光电流的关系。

5.在一定电压下,测量光敏电阻的照度与光电流的关系。

【实验原理】

1 光敏电阻的工作原理

在光照作用下能使物体的电导率改变的现象称为内光电效应。本实验所用的光敏电阻就是基于内光电效的光电元件。当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。这样由于材料中载流子个数增加,使材料的电导率增加。电导率的改变量为:

(1) 式中e为电荷电量;为空穴浓度的改变量;为电子浓度的改变量;为空穴的迁移率;为电子的迁移率。当光敏电阻两端加上电压U后,光电流为(2) 式中A为与电流垂直的截面积,d为电极间的距离。

用于制造光敏电阻的材料主要有金属的硫化物、硒化物和锑化物等半导体材料.目前生产的光敏电阻主要是硫化镉.光敏电阻具有灵敏度高、光谱特性好、使用寿命长、稳定性能高、体积小以及制造工艺简单等特点,

被广泛地用于自动化技术中.

本实验光敏电阻得到的光照由一对偏振片来控制。当两偏振片之间的夹角为时,光照为,其中:为不加偏振片时的光照,D为当量偏振片平行时的透明度。

2 光敏电阻的基本特性

光敏电阻的基本特性包括伏-安特性、光照特性、光电灵敏度、光谱特性、频率特性和温度特性等。本实验主要研究光敏电阻的伏-安特性和光照特性。3.附上实验中的光路图:

【实验数据记录、实验结果计算】

1测量光敏电阻的电压与光电流的关系

在调整好光路后,就可以做这一个内容的实验了。下面附上这个实验内容的电路图:

表中记录的数据为的值,单位为

U(V)

00.00.00.000.000

1 2.7 2.

2 1.280.065

2 5.4 4.5 2.580.138

38.27.0 3.770.201

411.09.5 5.050.271 513.812.0 6.260.339 616.814.67.510.407 719.817.28.750.484 822.819.910.010.551 925.922.611.320.619 1029.025.412.630.687 1132.128.213.930.757 1235.231.015.350.836

下面绘出各个照度对应的曲线

时:

线性拟合结果如下:

Y = A + B * X

Parameter Value Error

A 0.17952 0.05409

B 0.33977 0.00266

------------------------------------------------------------R SD N P

0.99966 0.10544 3 <0.0001

所以此时339

时:

线性拟合结果如下:

Y = A + B * X

Parameter Value Error

A 0.25369 0.0669

B 0.38486 0.00376

R SD N P

0.99948 0.13157 13 <0.0001

所以此时

线性拟合结果如下:

Y = A + B * X Parameter Value Error

A 0.0252 0.03197

B 0.78903 0.00358

R SD N P

0.99989 0.06117 13 <0.0001

------------------------------------------------------------所以此时

线性拟合结果如下:

Y = A + B * X

Parameter Value Error

A 0.06568 0.02854

B 14.40637 0.05862

R SD N P

0.99991 0.05489 13 <0.0001

所以此时

对上面实验结果的一点分析:

1. 可以发现,当时,即光照最弱时,光敏电阻的阻值很大,可达一万四千多欧姆,随着光照的加强时,光敏电阻的阻值在不断减小,在时,即在当时的最强光照时,光敏电阻的阻值已经降到了三百余欧姆,可见其变化幅度很大。据查资料显示,在完全黑暗时,光敏电阻的阻值甚至可达几兆欧姆,而在更强的光下,其阻值会更小。

2. 还有重要的一点是,我们从“马吕斯定律”知道,这里光照强度与成正比,所以根据这几个数据点可以发现光敏电阻的阻值随光照强度的变化“似乎”不是线性的,这也是这个实验下面将要验证的内容。

2测量光敏电阻的照度与光电流的关系

首先调整好光路与电路,便可开始测量,整张数据表格将在下一页中显示。

表中记录的数据为的值,单位为

.

下面是作图结果:

U=1V 时:

U(V)

3

2.62 7.91 1

3.26 3

4.8 2.59 7.76 12.94 34.1 2.41 7.37 11.94 32.5 2.20 6.72 10.66 29.3 1.87

5.85 9.39 24.8 1.65 4.81 7.98 20.5 1.26 3.69

6.13 15.4 0.86 2.54 4.22 9.8 0.49 1.36 2.42 5.2

0.05

0.15

0.31

0.8

首先需要说明的是几个公式的推导:

由马吕斯定律:(为光电流强度)

由本节公式: (R为光敏电阻阻值)

我们要研究和R的关系,所以

而图中斜率代表,所以图中曲线的上升表示光敏电阻阻值的下降,而阻值导函数的变化趋势则不变。

从这个图中可以看出,光敏电阻的光照特性曲线确实不是线性

的。而且容易发现:阻值在附近变化很快,而随着的减小,阻值的变化则趋于平缓,曲线也趋于线性。结合前面实验的4个数据

来看,也确实符合这一点,这也印证了前面的想法,前后实验结果也很符合。

从前面的实验结果,我们也知道当照度固定时,光敏电阻的电压与光电流是成线性关系的,所以此表中同一行数据应是与电压成线性关系的,观察表中数据,也可印证这一结论.这样一来下面的三幅关系图应与上面这一幅图形状类似,那么我们就先做出这三幅图:

U=3V时:

U=5V时:

U=12V时:

观察这几幅图,也可以看出刚才的判断是正确的,这几幅图基本一致,只有第3幅有些细节上的偏差。

至此本实验的所有数据均处理完毕,结果也很理想。

【分析讨论】

1.在这个实验中,前期的准备工作其实是重中之重。调整光路是首先要做的,接下来重要的一点就是找到光电流最大值点。这个点的确定对下面实验至关重要。我在这个环节上进行了仔细的调整,确保准确后才开始下面的实验。从测得的结果来看,数据还是很满意的。

【思考题解答】

1.在利用数字万用表作为测量仪器时,是否需要考虑万用表内阻,为什么?

答:不用考虑。因为我们采用电流表外接法,万用表电压档产生的电流不足以影响到实验结果。

2.根据测量结果,总结光敏电阻的伏—安特性和光照特性。

答:从测量结果来看光敏电阻的伏—安特性是线性关系。可以说光敏电阻在照度固定时是线性元件。

而光敏电阻的阻值随光照的增强而减少,而且这个关系不是线性的,随着光照的增强,减少的速率也在减小。

热敏电阻实践报告

黑龙江科技学院 综合性、设计性实验报告 实验项目名称热敏电阻特性实验 所属课程名称传感器工程实践 实验日期2011年3月x日 班级 学号 姓名 成绩 电气与信息工程学院实验室

实验概述: 【实验目的及要求】 【实验目的】 1通过实验使学生掌握各种传感器的工作原理; 2掌握热敏电阻传感器的特性测试方法; 3掌握传感器的特性实验数据处理方法; 4培养和提高学生传感器特性测试系统设计和分析的能力; 5通过该课程的学习扩大学生知识面,为今后的研究和技术工作打下坚实的基础。 【设计要求】 1掌握热敏电阻传感器的工作原理、测量电路的原理; 2通过传感器特性系统的设计,多方面知识综合应用,全面提高能力; 3为今后从事传感器工程方面的工作打下基础。 【实验原理】 传感器特性测试系统框图: 传感器测量电路图: 热敏电阻温度传感器工作原理: 热敏电阻是利用某种半导体材料的电阻率随温度变化而变化的性质制成的。 热敏电阻用于测温是利用了半导体电阻率随温度变化这一特性,对于热敏电阻要求其材料电阻温度系数大、稳定性好、电阻率高,电阻与温度之间最好有线性关系。 热敏电阻采用二线或三线连接法,其中一端接二根引线(三线连接法),主要为了消除引线电阻对测量的影响 【实验环境】(使用的软件) 工具:工程实践台、热敏电阻式传感器、导线、Pt100标准温度传感器、恒温箱。 实验内容: 【实验方案设计】 设计要点: 1)数显电压表分辨率为:1/1999,即:0.5/1000,并存在“〒1”个字的量化误差,在系统精度范围外的数字跳动属正常现象。 2)通用放大器(Ⅰ)调零时数显电压表需从20V档逐步逐步减小。 3)实验中其他单元的电源应关闭,否则有干扰。 4)温度源具有升温快、降温慢的特点,所以在取初始设定值时,应比PV 值略高。 5)插传感器接头时注意对正小方形口。 6)在实验前应先对测量电路进行调零。 7)记录数据时应在温度稳定在某一数值后再记录。 设计方案 (1)由于测量处理电路中存在零位电势,所以在开始实验前先将测量处理

实验报告-光敏电阻基本特性的测量

实验报告 姓名:班级:学号:实验成绩: 同组姓名:实验日期:08/4/14 指导老师:助教15 批阅日期: 光敏电阻基本特性的测量 【实验目的】 1.了解光敏电阻的工作原理及相关的特性。 2.了解非电量转化为电量进行动态测量的方法。 3.了解简单光路的调整原则和方法. 4.在一定照度下,测量光敏电阻的电压与光电流的关系。 5.在一定电压下,测量光敏电阻的照度与光电流的关系。 【实验原理】 1 光敏电阻的工作原理 在光照作用下能使物体的电导率改变的现象称为内光电效应。本实验所用的光敏电阻就是基于内光电效的光电元件。当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。这样由于材料中载流子个数增加,使材料的电导率增加。电导率的改变量为: (1) 式中e为电荷电量;为空穴浓度的改变量;为电子浓度的改变量;为空穴的迁移率;为电子的迁移率。当光敏电阻两端加上电压U后,光电流为 (2) 式中A为与电流垂直的截面积,d为电极间的距离。 用于制造光敏电阻的材料主要有金属的硫化物、硒化物和锑化物等半导体材料.目前生产的光敏电阻主要是硫化镉.光敏电阻具有灵敏度高、光谱特性好、使用寿命长、稳定性能高、体积小以及制造工艺简单等特点,被广泛地用于自动化技术中.

本实验光敏电阻得到的光照由一对偏振片来控制。当两偏振片之间的夹角为时,光照为,其中:为不加偏振片时的光照,D为当量偏振片平行时的透明度。 2 光敏电阻的基本特性 光敏电阻的基本特性包括伏-安特性、光照特性、光电灵敏度、光谱特性、频率特性和温度特性等。本实验主要研究光敏电阻的伏-安特性和光照特性。3.附上实验中的光路图: 【实验数据记录、实验结果计算】 1测量光敏电阻的电压与光电流的关系 在调整好光路后,就可以做这一个内容的实验了。下面附上这个实验内容的电路图:

光敏电阻的物理特性

Ⅰ.光敏电阻的物理特性 光敏电阻:常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻器的阻值迅速下降。Ⅱ.组成特性 光敏电阻器是利用半导体的光电导效应制成的一种电阻值随入射光的强弱而改变的电阻器,又称为光电导探测器;入射光强,电阻减小,入射光弱,电阻增大。还有另一种入射光弱,电阻减小,入射光强,电阻增大。 Ⅲ.作用 光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。常用的光敏电阻器硫化镉光敏电阻器,它是由半导体材料制成的。光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4~0.76)μm的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。设计光控电路时,都用白炽灯泡(小电珠)光线或自然光线作控制光源,使设计大为简化。 根据光敏电阻的光谱特性,可分为三种光敏电阻器:紫外光敏电阻器、红外光敏电阻器、可见光光敏电阻器。 Ⅳ.参数特性 (1)光电流、亮电阻。光敏电阻器在一定的外加电压下,当有光照射时,流过的电流称为光电流,外加电压与光电流之比称为亮电阻,常用“100LX”表示。(2)暗电流、暗电阻。光敏电阻在一定的外加电压下,当没有光照射的时候,流过的电流称为暗电流。外加电压与暗电流之比称为暗电阻,常用“0LX”表示。(3)灵敏度。灵敏度是指光敏电阻不受光照射时的电阻值(暗电阻)与受光照射时的电阻值(亮电阻)的相对变化值。 (4)光谱响应。光谱响应又称光谱灵敏度,是指光敏电阻在不同波长的单色光照射下的灵敏度。若将不同波长下的灵敏度画成曲线,就可以得到光谱响应的曲线。 (5)光照特性。光照特性指光敏电阻输出的电信号随光照度而变化的特性。从光敏电阻的光照特性曲线可以看出,随着的光照强度的增加,光敏电阻的阻值

实验报告 光敏电阻基本特性的测量

告验报实 号:实验成绩:班级:学姓名:同组姓名:实验日期:08/4/14 指导老师:助教15 批阅日期: 光敏电阻基本特性的测量 【实验目的】 1.了解光敏电阻的工作原理及相关的特性。 了解非电量转化为电量进行动态测量的方法。 2.了解简单光路的调整原则和方法. 3.在一定照度下,测量光敏电阻的电压与光电流的关系。4. 在一定电压下,测量光敏电阻的照度与光电流的关系。 5. 【实验原理】 1 光敏电阻的工作原理 在光照作用下能使物体的电导率改变的现象称为内光电效应。本实验所用的光敏 电阻就是基于内光电效的光电元件。当内光电效应发生时,固体材料吸收的能量 使部分价带电子迁移到导带,同时在价带中留下空穴。这样由于材料中载流子个 数增加,使材料的电导率增加。电导率的改变量为: (1) 式中e为电荷电量;为空 为电子的为空穴的迁移率;为电子浓度的改变量;穴浓度的改变量; U后,光电流为 (2) 迁移率。当光敏电阻两端加上电压式中A为与电流垂直的截面积,d为电极间的 距离。 用于制造光敏电阻的材料主要有金属的硫化物、硒化物和锑化物等半导体材料.目前生产的光敏电阻主要是硫化镉.光敏电阻具有灵敏度高、光谱特性好、使用寿命长、稳定性能高、体积小以及制造工艺简单等特点,被广泛地用于自动

化技术 中. 本实验光敏电阻得到的光照由一对偏振片来控制。当两偏振片之间的夹 ,其中:为不加偏振片时的光照,角为D时,光照为为当量偏振片平行时的透明度。 2 光敏电阻的基本特性 光敏电阻的基本特性包括伏-安特性、光照特性、光电灵敏度、光谱特性、频率特性和温度特性等。本实验主要研究光敏电阻的伏-安特性和光照特性。3.附上实验中的光路图: 【实验数据记录、实验结果计算】 1测量光敏电阻的电压与光电流的关系 在调整好光路后,就可以做这一个内容的实验了。下面附上这个实验内容的电路图: 表中记录的数据为的值,单位为

实验10(光敏电阻)实验报告

实验十-光敏电阻及光敏二极管的特性实验 实验1:光敏电阻的特性实验 一、实验目的 了解光敏电阻的光照特性和伏安特性。 二、实验原理 在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照愈强,器件自身的电阻愈小。基于这种效应的光电器件称光敏电阻。光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。实验原理图如图10-1。 三、实验器械 主机箱中的转速调节0~24V 电源、±2V~±10V 步进可调直流稳压电源、电流 表、电压表;光电器件实验(一)模板、光敏电阻、发光二极管、庶光筒。 四、实验接线图 五、实验数据记录和数据处理 1:亮电阻和暗电阻测量

实验数据如下: 2:光照特性测量 实验数据如下: 实验数据拟合图像如下: 3:伏安特性测量 实验数据如下: 实验数据拟合图像如下: 六、实验思考题

1:为什么测光敏电阻亮阻和暗阻要经过10 秒钟后读数,这是光敏电阻的缺点,只能应用于什么状态? 答:稳定态 实验2:光敏二极管的特性实验 一、实验目的 了解光敏二极管工作原理及特性。 二、实验原理 当入射光子在本征半导体的p-n 结及其附近产生电子—空穴对时,光生载流子受势垒区电场作用,电子漂移到n 区,空穴漂移到p 区。电子和空穴分别在n 区和p 区积累,两端便产生电动势,这称为光生伏特效应,简称光伏效应。光敏二极管基于这一原理。如果在外电路中把p-n 短接,就产生反向的短路电流,光照时反向电流会增加,并且光电流和照度基本成线性关系。 三、实验器械 主机箱中的转速调节0~24V 电源、±2V~±10V 步进可调直流稳压电源、电流表、电压表;光电器件实验(一)模板、光敏二极管、发光二极管、庶光筒 四、实验接线图 将上图中的光敏电阻更换成光敏二极管(注意接线孔的颜色相对应即+、-极性),按上图安装接线,测量光敏二极管的暗电流和亮电流。 五、实验数据记录和数据处理 1:光照特性 亮电流测试实验数据如下: 实验数据拟合图像如下:

光电实验报告.

长春理工大学 光电信息综合实验—实验总结 姓名:赵儒桐 学号:S1******* 指导教师:王彩霞 专业:信息与通信工程 学院:电子信息工程 2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当光敏电阻的工作电压(Vcc )为+5V 时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也是增加的。测得实验数据如表2-1: 表2-1 光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 图2.1 光敏电阻光照特性实验曲线 表2-2 光敏电阻伏安特性实验数据

通过实验我们看出光敏电阻的光电流值随外加电压的增大而增大,在光照强度增大的情况下流过光敏电阻的电流值也是增大的,得到数据如表2-2。 得到的伏安特性如下: 图2.2 光敏电阻伏安特性曲线 由光敏电阻的光谱特性可知光敏电阻对不同波长的光,接收的光灵敏度是不一样的,测量对应各种颜色的光透过狭缝时的电流值,得到数据如下表: 得到的光谱特性曲线如图:

实验一光敏电阻特性测量实验

光电子技术基础实验报告 实验题目光敏电阻特性测量实验日期2020.09.04 姓名组别04 班级18B 学号 【实验目的】 1、了解光敏电阻的工作原理和使用方法; 2、掌握光强与光敏电阻电流值关系测试方法; 3、掌握光敏电阻的光电特性及其测试方法; 4、掌握光敏电阻的伏安特性及其测试方法; 5、掌握光敏电阻的光谱响应特性及其测试方法; 6、掌握光敏电阻的时间响应特性及其测试方法。 【实验器材】 光电技术创新综合实验平台一台 特性测试实验模块一块 光源特性测试模块一块 连接导线若干 【实验原理】 光敏电阻在黑暗的室温条件下,由于热激发产生的载流子使它具有一定的电导,该电导称为暗电导,其倒数为暗电阻,一般的暗电导值都很小(或暗电阻阻值都很大)。当有光照射在光敏电阻上时,电导将变大,这时的电导称为光电导。电导随光照量变化越大的光敏电阻,其灵敏度就越高,这个特性就称为光敏电阻的光电特性,也可定义为光电流与照度的关系。 光敏电阻在弱辐射和强辐射作用下表现出不同的光电特性(线性和非线性),实际上,它的光电特性可用在“恒定电压”下流过光敏电阻的电流IP ,与作用到光敏电阻上的光照度 E 的关系曲线来描述,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。光敏电阻的本质是电阻,因此它具有与普通电阻相似的伏安特性。在一定的光照下,加到光敏电阻两端的电压与流过光敏电阻的亮电流之间的关系称为光敏电阻的伏安特性。 光敏电阻的符号和连接

【实验注意事项】 1、打开电源之前,将“电源调节”处旋钮逆时针调至底端; 2、实验操作中不要带电插拔导线,应该在熟悉原理后,按照电路图连接,检查无误后,方可打开电源进行实验; 3、若照度计、电流表或电压表显示为“1_”时说明超出量程,选择合适的量程再测量; 4、严禁将任何电源对地短路。 5、仪器通电测试前,一定要找老师检查后方可通电测试。 【主要实验步骤】 基础实验: 组装好光源、遮光筒和光探结构件,如下图所示: 1、打开台体电源,调节照度计“调零”旋钮,至照度计显示为“000.0”为止。 2、特性测试模块的 0-12V(J5)和 GND 连接到台体的 0-30V 可调电源的 Vout+和 Vout- 上。 3、J5连接电流表+极,电流表-极连接光敏电阻套筒黄色插孔,光敏电阻套筒蓝色插孔连接J6,电压表+极连接光敏电阻套筒黄色插孔,电压表-极连接光敏电阻套筒蓝色插孔。光敏电阻红黑插座与照度计红黑插座相连。(RP1的值可根据器件特性自行选取) 4、将光源特性测试模块+5V,-5V和GND连接到台体的+5V,-5V和GND1上,航空插座FLED-IN与全彩灯光源套筒相连接。打开光源特性测试模块电源开关K101,将S601,S602, S603开关向下拨(OFF档),使光照强度为0,即照度计显示为0。 5、将S601,S602,S603开关向上拨(ON档),将可调电源电压调为5V,光源颜色选为白光,按“照度加”或“照度减”,测量照度为100Lx、150Lx、200Lx、250Lx、300Lx、350Lx、400Lx、450Lx、500Lx、550Lx、600Lx电压表对应的电压值U,电流表对应的电流值I,光敏电阻值 RL=U/I。且将实验数据记录于表1-1中: 6、改变电源供电偏压,分别记录电压为 7V 和 9V 时,不同光照度下对应的电流值,并分别记录于表 1-2 及表 1-3 中: 7、保持照度为 100Lx 不变,调节电源供电偏压,使供电偏压为 1V、2V、3V、4V、5V、 6V、7V、8V、9V、10V,分别记录对应的电流值,并记录表 1-4 中: 8、按“照度加”,调节使光照为 200Lx、400Lx,记录同一光照不同电压下对应的电流值,并分别记录表 1-5 至表 1-9 中: 9、使可调电源偏压调为 5V 分别测量不同颜色光在 200 Lx 光照强度下,光敏电阻的电流值,将各个光源 200 lx 照度下光敏电阻的电流值记录在表 1-10 中: 10、将S601,S602,S603开关向下拨(OFF档),将可调电源电压调为5V。将光源特性测试模块的J701与光源特性测试模块的J601,J602,J603插座相连接。观察光源特性测试模块的J701点波形和特性测试模块J6点波形,分析光敏电阻的时间响应特性。 11、将“电源调节”旋钮逆时针旋至不可调位置,关闭实验台电源。

光敏电阻特性测试实验(精)

光敏电阻特性测试实验 一、实验目的 1、学习掌握光敏电阻工作原理 2、学习掌握光敏电阻的基本特性 3、掌握光敏电阻特性测试的方法 4、了解光敏电阻的基本应用 三、实验内容 1、光敏电阻的暗电阻、暗电流测试实验 2、光敏电阻的亮电阻、亮电流测试实验 3、光敏电阻光电流测试实验; 4、光敏电阻的伏安特性测试实验 5、光敏电阻的光电特性测试实验 6、光敏电阻的光谱特性测试实验 7、光敏电阻的时间响应特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光敏电阻及封装组件 1套 4、光照度计 1台 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1. 光敏电阻的结构与工作原理 光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。 光敏电阻的结构很简单,图1-1(a)为金属封装的硫化镉光敏电阻的结构图。在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最

热敏电阻演示实验

实验三十五 热敏电阻演示实验 一、实验目的: 了解NTC 热敏电阻现象。 二、实验内容: 通过对NTC 热敏电阻加热,了解其特性。 三、实验仪器: 加热器、热敏电阻、可调直流稳压电源、+15V 稳压电源、电压表、主、副电源。 四、实验原理: 热敏电阻的温度系数有正有负,因此分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC 突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,也用于彩电中作自动消磁元件。有些功率PTC 也作为发热元件用。PTC 缓变型热敏电阻可用作温度补偿或作温度测量。 一般的NTC 热敏电阻测温范围为:-50℃~+300℃。热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需考虑引线长度带来的误差,适用于远距离传输等优点。但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。一般只适用于低精度的温度测量。 五、实验注意事项: 加热时间不要超过2分钟,此实验完成后应立即将+15V 电源拆去,以免影响梁上的应变片性能。 六、实验步骤: 1、了解热敏电阻在实验仪的所在位置及符号,它是一个蓝色元件,封装在双平行振动平行梁上片梁的表面。 2、将电压表切换开关置2V 档,直流稳压电源切换开关置±2V 档,按图35接线,开启主、副电源,调整W1(RD)电位器,使电压表指示为100mV 左右。这时电压表的指示值为室温时的Vi 。 3、将+15V 电源接入加热器,加热器的另一端接地。观察电压表的读数变化(注意加热时间不要超过2分钟)。 电压表的输入电压: S IL IH T IL i V ) W W (R W V ?++= 4、由此可见,当温度 时,RT 阻值 ,Vi 。

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

光敏电阻实验报告

实验报告 姓名:高阳班级:F0703028 学号:5070309013 实验成绩: 同组姓名:实验日期:08/4/14 指导老师:助教15 批阅日期: 光敏电阻基本特性的测量 【实验目的】 1.了解光敏电阻的工作原理及相关的特性。 2.了解非电量转化为电量进行动态测量的方法。 3.了解简单光路的调整原则和方法. 4.在一定照度下,测量光敏电阻的电压与光电流的关系。 5.在一定电压下,测量光敏电阻的照度与光电流的关系。 【实验原理】 1 光敏电阻的工作原理 在光照作用下能使物体的电导率改变的现象称为内光电效应。本实验所用的光敏电阻就是基于内光电效的光电元件。当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。这样由于材料中载流子个数增加,使材料的电导率增加。电导率的改变量为: (1) 式中e为电荷电量;为空穴浓度的改变量;为电子浓度的改变量;为空穴的迁移率;为电子的迁移率。当光 敏电阻两端加上电压U后,光电流为(2) 式中A 为与电流垂直的截面积,d为电极间的距离。

用于制造光敏电阻的材料主要有金属的硫化物、硒化物和锑化物等半导体材料.目前生产的光敏电阻主要是硫化镉.光敏电阻具有灵敏度高、光谱特性好、使用寿命长、稳定性能高、体积小以及制造工艺简单等特点,被广泛地用于自动化技术中. 本实验光敏电阻得到的光照由一对偏振片来控制。当两偏振片之间的夹角为时,光照为,其中:为不加偏振片时的光照,D为当量偏振片平行时的透明度。 2 光敏电阻的基本特性 光敏电阻的基本特性包括伏-安特性、光照特性、光电灵敏度、光谱特性、频率特性和温度特性等。本实验主要研究光敏电阻的伏-安特性和光照特性。3.附上实验中的光路图: 【实验数据记录、实验结果计算】 1测量光敏电阻的电压与光电流的关系 在调整好光路后,就可以做这一个内容的实验了。下面附上这个实验内容的电路图:

热敏电阻实验报告模板

实验一温度(热敏电阻)传感器实验 一、实验目的:了解热敏电阻测量温度的原理和工作情况。 二、实验内容: 本实验主要学习以下几方面的内容 1. 了解热敏电阻特性曲线; 2.观察采集到的热信号的实时变化情况。 三、实验仪器、设备和材料: 所需单元和部件:ELVIS,nextboard ,nextsense02 注意事项: 1在插拔实验模块时,尽量做到垂直插拔,避免因为插拔不当而引起的接插件插针弯曲,影响模块使用。 2 禁止弯折实验模块表面插针,防止焊锡脱落而影响使用。 3 更换模块或插槽前应关闭电源。 4 开始实验前,认真检查电阻连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。 5本实验仪采用的热敏电阻为NTC热敏电阻,负温度系数。 四、实验原理:金属的电阻随温度的升高而增大,但半导体却相反,它的电阻随温度的升高而急剧减少,并呈非线性。在温度变化的同时,热敏电阻阻值变化约为铂热电阻的10倍。热敏电阻正是利用半导体电阻值随温度显著变化这一特性制成的热敏元件。热敏电阻在温度变化时阻值发生变化,将变化接入相应的变换电路中,电阻的变化就产生了电压的变化,测量该电压就可以测得温度。 五、实验步骤: 1关闭平台电源(nextboard或者myboard或者ELVISboard),插上热电偶实验模块。开启平台电源,此时可以看到模块左上角电源指示灯亮。 2运行热敏电阻实验应用程序 3传感器介绍、对热敏电阻的原理、分类以及温度计算公式进行了说明。在实验开始前,请仔细阅读传感器介绍。 4特性曲线、根据温度计算公式描绘了热敏电阻以及温度的关系曲线。 5实验内容、罗列了热敏电阻实验的课程要求,按照要求逐步完成课程。 6实验模拟、包含了电路原理仿真以及真实的手动测量实验。 7恒流源实测面板、显示了恒流源电路的实际测试值。 8分压法实测面板。显示了分压电路的实际测试值。 六、结果及处理 1绘制R_T特性曲线 2绘制恒流源数据图像 3绘制分压法数据图像

光电实验报告.

长春理工大学 光电信息综合实验一实验总结 名:赵儒桐 学号:S1******* 专业:信息与通信工程学院:电子信息工程2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概 念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱 为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630 纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。 2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当 光敏电阻的工作电压(Vcc )为+5V 时,通过实验我们看出来 改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也 是增加的。测得实验数据如表2-1 : 光敏电阻光照特性实验数据 光照度 (Lx ) 20 40 60 80 100 120 140 160 180 电流mA 0.37 0.52 0.68 0.78 0.88 1.00 1.07 1.18 1.24 表2-1光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 光敏电阻伏安特性实验数据 型号:G5528 电压 (U ) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 照度 (Lx ) 50 电流 (mA 0 0.05 0 .11 0. 17 0.2 4 0.29 0.35 0 1.42 0. 48 0.5 4 0.6 100 电流 (mA 0 0.09 0 .19 0. 28 0.3 3 0.48 0.58 0 .67 0. 77 0.8 7 0.95 150 电流 (mA 0.12 0 .24 0. 37 0.4 9 0.62 0.74 0.87 0. 98 1.1 2 1.19 通过实验我们看出光敏电阻的光电流值随外加电压的增大而增 大,在光照强度增大的情况下流过光敏电阻的电流值也是增大的, 得 到 数据如表2-2。 光敏电阻光照特性实验曲线 图2.1

光敏电阻特性研究

光敏电阻特性研究 【实验目的】 1.了解和掌握光敏电阻的特性 2.掌握产生和检验偏振光的原理和方法。  3.进一步学习和掌握调节复杂光路的方法; 【实验仪器与装置】 1000)、光敏电阻、导轨、检偏器、凸透镜(mm f60 =)、光源(光通量lx 磁性滑块、稳压电源、万用电表、导线等  【实验原理】 一、光电效应与光电器件 1.1 光电效应 光电效应可以分为以下三种类型:  (1)外光电效应 在光的作用下,物体内的电子逸出物体表面,向外发射的现象叫外光电效应。 只有当光子能量大于逸出功时,即时,才有电子发射出来,即有光 电效应,当光子的能量等于逸出功时,即时,逸出的电子初速度为0, 此时光子的频率为该物质产生外光电效应的最低频率,称为红限频率。 利用外光电效应制成的光电器件有真空光电管、充气光电管和光电倍增管。 (2)光电导效应 在光的作用下,电子吸收光子能量从键合状态过渡到自由状态,引起物体电 阻率的变化,这种现象称为光电导效应。由于这里没有电子自物体向外发射,仅 改变物体内部的电阻或电导,有时也称为内光电效应。与外光电效应一样,要产 生光电导效应,也要受到红限频率限制。 利用光电导效应可制成半导体光敏电阻。 (3)光生伏特效应 在光的作用下,能够使物体内部产生一定方向的电动势的现象叫光生伏特效 应。利用光生伏特效应制成的光电器件有光敏二极管、光敏三极管和光电池等。 各种光电器件都有下述特性:

(1)光电流 光敏元件的两端加一定偏置电压后,在某种光源的特定照度下产生或增加的电流称为光电流。 (2)暗电流 光敏元件在无光照时,两端加电压后产生的电流称为暗电流。 (3)光照特性 当光敏元件加一定电压时,光电流I与光敏元件上光照度E之间的关系,称为光照特性。一般可表示为。 (4)光谱特性 当光敏元件加一定电压时,如果照射在光敏元件上的是一单色光,当入射光功率不变时,光电流随入射光波长变化而变化的关系,称为光谱特性。 光谱特性对选择光电器件和光源有重要意义,当光电器件的光谱特性与光源的光谱分布协调一致时,光电传感器的性能较好,效率也高。在检测中,应选择最大灵敏度在需要测量的光谱范围内的光敏元件,才有可能获得最高灵敏度。 (5)伏安特性 在一定照度下,光电流I与光敏元件两端的电压U的关系称为伏 安特性。 (6)频率特性 在相同的电压和相同幅值的光强度下,当入射光以不同的正弦交变频率调制时,光敏元件输出的光电流I和灵敏度S随调制频率f变化的关系:、称为频率特性。 (7)温度特性 环境温度变化后,光敏元件的光学性质也将随之改变,这种现象称为温度特性。 二、光敏电阻 ①光敏电阻工作原理和结构 光敏电阻是利用光电导效应制成的。制造光敏电阻的材料一般由金属的硫化物、硒化物、碲化物组成。由于光电导效应只限于光照的表面薄层,因此光电导体一般都做成薄层。为了获得高的灵敏度,光敏电阻的电极常采用梳状图案,如图一所示。它是在一定的掩膜下向光电导薄膜上蒸镀金或铟等金属形成的。 为了避免外来干扰,光敏电阻外壳的入射孔上盖有一种能透过所要求光谱范围的透明保护窗(如玻璃)。为了避免光敏电阻的灵敏度受潮湿等因素的影响,将电导体严密封装在金属壳中。如图二所示。

PTC热敏电阻实验报告

功能材料—PTC热敏陶瓷制备与性能的综合实验一、实验目的 通过实验,使学生加深对“电子信息材料专业方向”中有关基础理论知识的理解。 1.了解PTC热敏陶瓷制备原理及方法 2.使学生熟练掌握PTC电阻的测试方法 二、实验原理 PTC效应与许多因素有关,PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度) 时,它的电阻值随着温度的升高几乎是呈阶跃式的增高。也可以说,PTC(positive temperature coefficient) 电阻是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻或材料。当PTC 陶瓷元件接通电源后,电流将随电压的升高而迅速增加,达到居里温度时,电流达到最大值,这时PTC 陶瓷元件进入PTC 区域,此时当电压继续升高时,由于PTC 陶瓷元件的电阻急剧增大,电流反而减小。 纯BaTiO3陶瓷是良好的绝缘体,是一种优良的陶瓷电容器材料,也是一种典型的钙钛矿型结构的铁电材料。纯的BaTiO3在常温下几乎是绝缘的,电阻率大于1012Ω?cm,通过不等价取代在BaTiO3中掺杂微量的元素后,会使其性能发生变化,出现PTC效应,并且伴随着室温电阻率的大幅度下降。制成的钛酸钡基PTC 陶瓷具有较大的正温度系数和开关阻温特性,通过掺杂,它的居里温度可在很宽的范围内(室温~400 ℃) 任意调节,所以,在航空航天、电子信息通讯、自动控制、家用电器、汽车工业、生物技术、能源及交通等领域,它得到了广泛的应用。 钛酸钡基PTC 陶瓷的组成: (1)移峰剂——添加后能够移动居里点(BaTiO3瓷120o C) 添加物与主晶相形成固溶体使铁电陶瓷的特性在居里温度处出现的峰值发生移动的现象,称为移峰效应。居里温度通常满足以下经验公式: t c =t c1 (1-x)+t c2 x(x-摩尔分数) 该添加物称为移峰剂。PTC 陶瓷中常用钙钛矿型铁电体的移峰剂有两种:钛酸铅、PbTiO3(490℃)、钛酸锶SrTiO3(-250℃)。 (2)半导体化: 施主掺杂:将BaTiO 3 基本组成离子分成三种离子群:其中至少在两个位置上的部分离子,用离子半径相接近,而原子价相差1价的不同离子进行置换。置换可得到低电阻率的陶瓷材料。 1.对于Ba 2+位可用La 3+、Ce3+、Sb3+、Sm3+、Dy3+或K +、Na +等离子;

光敏电阻实验

中国石油大学 智能仪器 实验报告 成 绩: 班级: 姓名: 同组者: 教师: 光敏电阻实验 【实验目的】 1、 了解光敏电阻的工作原理; 2、 掌握光敏电阻的光电特性,光谱响应特性,频率特性等基本特性; 3、 理解光敏电阻的一般应用。 【实验原理】 光敏电阻是利用半导体光电导效应制成的一种特殊电阻,对光线十分敏感,它的电阻值能随着外界光照强弱(明暗)变化而变化.它在无光照射时,呈高阻状态;当有光照射时,其电阻值迅速减小.光敏电阻通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成的,如图1所示。可见光波段和大气透过的几个窗口都有适用的光敏电阻,利用光敏电阻制成的光控开关在我们日常生活中随处可见,广泛应用于各种自动控制电路(如自动照明灯控制电路、自动报警电路等)、 家用电器(如电视机中的亮度自动调节,照相机的自动曝光 图1 光敏电阻结构图 控制等)及各种测量仪器中。 在光照作用下能使物体的电导率改变的现象称为内光电效应.本实验所用的光敏电阻就是基于内光电效应的光电元件.当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。这样由于材料中载流子个数增加,使材料的电导率增加,电导率的改变量为 p n p e n e σμμ?=???+??? (1) 在(1)式中,e 为电荷电量,p ?为空穴浓度的改变量,n ?为电子浓度的改变量,μ表示迁移率。 当两端加上电压U 后,光电流为: ph A I U d σ= ??? (2) 式中A 为与电流垂直的表面,d 为电极间的间距。在一定的光照度下,σ?为恒定的值,因而光电流和电压成线性关系。 光敏电阻的伏安特性如图2所示,不同的光照度可以得到不同的伏安特性,表明电阻值随光照

光敏电阻的主要参数与特性(精)

光敏电阻的主要参数与特性 1.光敏电阻的主要参数 (1)暗电阻 ◆光敏电阻在不受光时的阻值称为暗电阻,此时流过的电流称为暗电流。 (2)亮电阻 ◆光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。(3)光电流 ◆亮电流与暗电流之差称为光电流。 2.光敏电阻的基本特性 (1)伏安特性 ◆在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。 硫化镉光敏电阻的伏安特性 (2)光谱特性 ◆光敏电阻的相对光敏灵敏度与入射波长的关系称为光谱特性,亦称为光谱响应。 下图为几种不同材料光敏电阻的光谱特性。对应于不同波长,光敏电阻的灵敏度是不同的。 光敏电阻的光谱特性 (3)光照特性 ◆光敏电阻的光照特性是光敏电阻的光电流与光强之间的关系,如图8-10所示。 ◆由于光敏电阻的光照特性呈非线性,因此不宜作为测量元件,一般在自动控制系统中常用作开关式光电信号传感元件。

光敏电阻的光照特性 (4)温度特性 ◆光敏电阻受温度的影响较大。当温度升高时,它的暗电阻和灵敏度都下降。 ◆温度变化影响光敏电阻的光谱响应,尤其是响应于红外区的硫化铅光敏电阻受温度影响更大。下图为硫化铅光敏电阻的光谱温度特性曲线。 硫化铅光敏电阻的光谱温度特性曲线 (5)光敏电阻的响应时间和频率特性 ◆实验证明,光电流的变化对于光的变化,在时间上有一个滞后,通常用时间常数t来描述,这叫做光电导的弛豫现象。所谓时间常数即为光敏电阻自停止光照起到电流下降到原来的63%所需的时间,因此,t越小,响应越迅速,但大多数光敏电阻的时间常数都较大,这是它的缺点之一。下图所示为硫化镉和硫化铅的光敏电阻的频率特性。 光敏电阻的频率特性

大学物理实验报告--热敏电阻的电阻温度特性的研究(精)

实验六半导体热敏电阻特性的研究 实验目的 1.研究热敏电阻的温度特性。 2.进一步掌握惠斯通电桥的原理和应用。 实验仪器 箱式惠斯通电桥,控温仪,热敏电阻,直流电稳压电源等。 实验原理 半导体材料做成的热敏电阻是对温度变化表现出非常敏感的电阻元件,它能测量出温度的微小变化,并且体积小,工作稳定,结构简单。因此,它在测温技术、无线电技术、自动化和遥控等方面都有广泛的应用。 半导体热敏电阻的基本特性是它的温度特性,而这种特性又是与半导体材料的导电机制密切相关的。由于半导体中的载流子数目随温度升高而按指数规律迅速增加。温度越高,载流子的数目越多,导电能力越强,电阻率也就越小。因此热敏电阻随着温度的升高,它的电阻将按指数规律迅速减小。 实验表明,在一定温度范围内,半导体材料的电阻R T 和绝对温度T 的关系可表示为 b T ae R = (4-6-1) 其中常数a 不仅与半导体材料的性质而且与它的尺寸均有关系,而常数b 仅与材料的性质有关。常数a 、b 可通过实验方法测得。例如,在温度T 1时测得其电阻为R T 1 11b T ae R = (4-6-2) 在温度T 2时测得其阻值为R T 2

22b T ae R = (4-6-3)将以上两式相除,消去a 得 1 1(212 1T T b T T e R R ?= 再取对数,有 11(ln ln 2 121T T R R b T T ??= (4-6-4) 把由此得出的b 代入(4-6-2)或(4-6-3)式中,又可算出常数a ,由这种方法确定的常数a 和b 误差较大,为减少误差,常利用多个T 和R T 的组合测量值,通过作图的方法(或用回归法最好)来确定常数a 、b ,为此取(4-6-1)式两边的对数。变换成直线方程: T b a R T +=ln ln (4-6-5)或写作 BX A Y += (4-6-6)式中X b B a A R Y T , , ln , ln ====,然后取X 、Y 分别为横、纵坐标,对不同的温度T 测得对应的R T 值,经过变换后作X ~Y 曲线,它应当是一条截距为A 、斜率为B 的直线。根据斜率求出b ,又由截距可求出a =e A 。 确定了半导体材料的常数a 和b 后,便可计算出这种材料的激活能E =bK (K 为玻耳兹曼常数,其值见附录)以及它的电阻温度系数 %10012×?==T b dT dR R T T α (4-6-7)显然,半导体热敏电阻的温度系数是负的,并与温度有关。 热敏电阻在不同温度时的电阻值,可用惠斯通电桥测得。

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv) 作出V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。 六、思考题:

本实验中霍尔元件位移的线性度实际上反映的时什么量的变化 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。 实验二集成温度传感器的特性 一、实验目的: 了解常用的集成温度传感器基本原理、性能与应用。 二、基本原理: 集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极—发射极电压与温度成线性关系。为克服温敏晶体管U b电压生产时的离散性、均采用了特殊的差分电路。集成温度传感器有电压型和电流型二种,电流输出型集成温度传感器,在一定温度下,它相当于一个恒流源。因此它具有不易受接触电阻、引

第一章 光敏电阻及其特性1

第1章 光敏电阻及其特性 1.1 光敏电阻的功能与结构 光敏电阻是根据光电导效应制成的光电探测器件,所谓光电导效应就是光电材料受到光辐射后,材料的电导率发生变化。它可以这样理解:材料的电导率、电阻与该材料内部电子受到的束缚力有关,束缚力越大,电子越难自由运动,电导率越小,电阻越大;当电子吸收外来的一定能量的光子后,根据能量守恒原则,动能增加,材料对电子的束缚力减弱,电导率减小,电阻减小。从而等到结论:光敏电阻的阻值会随着光照强弱的变化而变化。光照强,光敏电阻的阻值就小;光照弱,光敏电阻的阻值就大。暗电阻光敏电阻在不受光时的阻值称为暗电阻,亮电阻光敏电阻在受光照射时的电 阻称为亮电阻。 光敏电阻在应用时,通常采用的电路形式 如图1-1所示。R p 为光敏电阻,R L 为负载电阻, V b 为偏置电压,V L 为光敏电阻两端电压。 光敏电阻在使用时呈现一定的电路特性:光 敏电阻的两极加上一定电压后,当光照射在光电 导体时,由光照产生的光生载流子在外加电场作用下沿一定方向运动,在电路中产生电流。光敏电阻的电路特性(电阻、转换效率等)和光电导体长度有关。通常将光敏电阻的光敏面作成蛇形,电极作成梳状,如图1-2所示;这样既可 保证有较大的受光表面,也可以减小电极之间距离, 从而既可减小极间电子渡越时间,也有利于提高灵 敏度。 1.2 光敏电阻的特性 光敏电阻的材料和结构不同,会使光敏电阻 呈现不同的特性。在不同的应用场合下,就应选用不同特性的光敏电阻。光敏电阻的选择通常应考虑光电材料的光谱特性、光电电路的转换效率和响应时间等因素。 1.2.1 光谱特性 光敏电阻的光电导效应不是在任意的光照下都能呈现,只有光子能量大于材料的间接能隙(原子的能级之差)时,光敏电阻才能呈现光电导效应。 光敏电阻与入射光光谱之间的特 图1-1 光敏电阻基本应用电路 图1-2 光敏电阻的电路符号及蛇形结构

相关文档
相关文档 最新文档