文档库 最新最全的文档下载
当前位置:文档库 › 向量法求空间角、距离和二面角

向量法求空间角、距离和二面角

向量法求空间角、距离和二面角
向量法求空间角、距离和二面角

向量法求空间角、距离和二面角

1.1.向量的数量积和坐标运算

a,b是两个非零向量,它们的夹角为,则数|a| |b|cos叫做a与b的数量积(或内积),记作a b,即a b | a | | b | cos .其几何意义是a的长度与b在a的方向上的投影的乘积.其坐标运算是:

—¥■—*

若a (x1,y1,^),b (X2,y2,Z2),贝U

① a b X1X2 y〃2 Z1Z2;

②|a| X12y12z/,|b| X22目; Z22;

③ a b X1X2 y1 y2 z1z2

X1X2 y“2 Z1Z2

④C0S a

b

丨 2 2 2 厂 2 2 2

X1 y1 Z, . X2 y2 Z2

1.2.异面直线m,n所成的角

分别在直线m,n上取定向量a,b,则异面直线m,n所

成的角等于向量a,b所成的角或其补角(如图1所

示),则cos |a b 1 .(例如2004年高考数学广东

D图1 b B

|a| |b|

卷第18题第(2)问)

1.3.异面直线m、n的距离

分别在直线m、n上取定向量a,b,求与向量a、b都垂直的

向量n,分别在m、n上各取一个定点A、B,则异面直线m、n的距离d等于AB在

| AB n |

n上的射影长,即d

|n|

证明:设CD为公垂线段,取CA a, DB b (如图1所示),则

CD CA AB BD

CD n (CA AB BD) |CD n| |AB n|

d |CD| 皿

1

|n|

设直线m, n所成的角为,显然cos

la b| |a| |b|

14直线L与平面所成的角

在L上取定AB ,求平面的法向量n (如图2所

示),

再求cos ,则

|AB| | n|

2为所求的角.

1.5 . 二面角

方法一:构造二面

量n1、门2 (都取向上的方向,如图3所示),

的两个半平面、的法向

① 若二面角l 是“钝角型”的如图3甲所示,

那么其大小等于两法向量n1、n2的夹角的补角,即cos

ri t n2

g | “2 |

.(例如2004年高考数学广东卷第18题第(1)问).

②若二面角l 是“锐角型”的如图3乙所示,

那么其大小等于两法向量n1、门2的夹角,即

n t n2

cos .(例如2004年高考数学广东卷第

|n 1 | |n2 | 图3

18题第(1)问).

方法二:在二面角的棱I上确定两个点A、

求出与I垂直的向量n1、门2 (如图4所示),则

l

的大小等于向量n 、n 2的夹角,即cos

1.6.平面外一点p 到平面 的距离

先求出平面 的法向量n ,在平面内任取一定点A ,则点 p 到

平面 的距离d 等于AP 在n 上的射影长,即

d

1 AP n

(例如2004年广州一模第18题第(U)问). |n|

2.1.基向量法

由于空间中任何向量均可由不共面的三个基向量来线性表示,因此在解

题时往往根据问题条件首先选择适当的基向量, 把有关线段根据向量的加法、

数乘运算法则与基向量联系起来.再通过向量的代数运算,达到计算或证明

的目的.一般情况下,选择共点且不共面的三个已知向量作为基向量

.

[例1]如图6,已知正三棱柱ABC A 1B 1C 1的棱长为2,底面边长为1, M 是BC 的中点.

(1 )在直线CC 1上求一点N ,使MN AB 1 ; (2) 当MN AB 1时,求点A 1到平面AMN 的距离. (3) 求出AB 1与侧面ACC 1A 1所成的角. 分析1

(1 )的问题显然是求使异面直线 MN 与

门!

1

N

AB1所成的角为直角的点N .依据向量数量积的概念,必须由条件

MN AB1MN AB10,求出CN的长度,而MN与AB1都不是已知向量,

且和CN没有直接联系,因此必须选择一组基向量来表示MN与AB.

(1)解法一:取共点于B的三个不共面的已知向量

BABC 、BR 为基向量,

I I

AB BC AB CN BB 1 BC BB , CN 0 2

2

分析2 本小题还可以取共点于 A 的三个不共面的已知向量 AB,AC,AA 为

基向量,从而得

(1)解法

AB

AB BB 1

AB AA .

MN AN

AM

(AC CN) *1

d

-(AB AC)- 2 2

(AC AB) CN

MN

AB 1 (AB AAJ

1 — H(AC 2

AB) CN]

丄(AB

AA1) (AC AB) (AB AA 1)

CN

2

2 > ■ > > > ■ > ■ (AB AC AB

AA 1 AC AA 1 AB) AB CN AA 1 CN

2

1 2

(1 1 cos60 1 2 1 cos90 2 1 cos90 )

2 1 a cos90 2 a cos0

1 1

0 0 2a

4 2

AB 1 AB BB 1, MN

MC

1

CN

BC CN

(AB BE) (1 BC

CN) 0

由 正三棱柱ABC A B 1C 1及MN AB !

1 1 1 cos120 1 |CN | cos90 -

2 1 cos90 2 2 |CN |

cos0 1

0 0 2|CN| 0 4 |CN | 1 8

MN AB ! 0,

MN AB 1

0,

1

1 0 0 2a 0, a 1

4

8

|CN|

比较方法一与方法二,方法一比方法二运算简便

因为用方法一选择的一组

基向量表示MN时式子较为简单.这告诉我们可选择的基向量并不唯一,我们应选择使得运算简便的那一组向量作为基向量?当几何体中能够找到(或构造出)

用向量法求二面角的平面角教案

用向量法求二面角的平面 角教案 Prepared on 24 November 2020

第三讲:立体几何中的向量方法 ——利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量;

求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA , 2 1 = AD ,求面SCD 与面SBA 所成二面角的余弦值. 分析 分别以,,BA AD AS 所在直线为,,x y z 轴,

考点三 用空间向量求二面角

考点三用空间向量求二面角 【例3】(2019·北京海淀区模拟)如图1,在高为6的等腰梯形ABCD中,AB∥CD,且CD=6,AB=12,将它沿对称轴OO1折起,使平面ADO1O⊥平面BCO1O,如图2,点P为BC的中点,点E在线段AB上(不同于A,B两点),连接OE并延长至点Q,使AQ∥OB. (1)(一题多解)证明:OD⊥平面P AQ; (2)若BE=2AE,求二面角C-BQ-A的余弦值. (1)证明法一取OO1的中点F,连接AF,PF,如图所示. ∵P为BC的中点,∴PF∥OB, ∵AQ∥OB,∴PF∥AQ, ∴P,F,A,Q四点共面. 由题图1可知OB⊥OO1, ∵平面ADO1O⊥平面BCO1O,且平面ADO1O∩平面BCO1O=OO1,OB?平面BCO1O, ∴OB⊥平面ADO1O, ∴PF⊥平面ADO1O, 又OD?平面ADO1O,∴PF⊥OD. 由题意知,AO=OO1,OF=O1D,∠AOF=∠OO1D, ∴△AOF≌△OO1D,

∴∠F AO =∠DOO 1, ∴∠F AO +∠AOD =∠DOO 1+∠AOD =90°,∴AF ⊥OD . ∵AF ∩PF =F ,且AF ?平面P AQ ,PF ?平面P AQ , ∴OD ⊥平面P AQ . 法二 由题设知OA ,OB ,OO 1两两垂直,∴以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系, 设AQ 的长为m ,则O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0). ∵点P 为BC 的中点,∴P ? ?? ??0,92,3, ∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →=? ?? ??6,m -92,-3. ∵OD →·AQ →=0,OD →·PQ →=0, ∴OD →⊥AQ →,OD →⊥PQ →,又AQ →与PQ →不共线, ∴OD ⊥平面P AQ . (2)解 ∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3, 则Q (6,3,0),∴QB →=(-6,3,0),BC →=(0,-3,6). 设平面CBQ 的法向量为n 1=(x ,y ,z ), 由?????n 1·QB →=0,n 1·BC →=0,得? ??-6x +3y =0,-3y +6z =0, 令z =1,则y =2,x =1,n 1=(1,2,1). 易得平面ABQ 的一个法向量为n 2=(0,0,1). 设二面角C -BQ -A 的大小为θ,由图可知,θ为锐角, 则cos θ=??????n 1·n 2|n 1|·|n 2|=66,

向量法求空间距离教案

A B C D O S x y z 图2 A B C D α n a b 龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法求空间距离 能用向量方法解决空间距离问题,了解向量方法在研究集合问题中的应用. 二、授课内容及过程: 1、点到平面的距离 方法:已知AB 为平面α的一条斜线段,n 为平面α的法向量, 则A 到平面α的距离d =AB n n ? . 2、两条异面直线距离: 方法:a 、b 为异面直线,a 、b 间的距离为:AB n d n ?= . 其中n 与a 、b 均垂直,A 、B 分别为两异面直线上的任意两点 题型1:异面直线间的距离 例1、如图2,正四棱锥S ABCD -的高2SO =,底边长2AB =。求异面直线BD 和SC 之间的距离? 题型2:点面距离 如图,在长方体1111ABCD A BC D -,中,11,2AD AA AB ===,点E 在棱AD 上移动.(1)证明:11D E A D ⊥; (2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4 π. 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴, 建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C (1).,0)1,,1(),1,0,1 (,1111E D DA x E D DA ⊥=-=所以因为

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法 利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形” 的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数 方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课 程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1使学生会求平面的法向量; 2?使学生学会求二面角的平面角的向量方法; 3. 使学生能够应用向量方法解决一些简单的立体几何问题; 4. 使学生的分析与推理能力和空间想象能力得到提高 教学重点 求平面的法向量; 求解二面角的平面角的向量法 教学难点 求解二面角的平面角的向量法 教学过程 I、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:[0,])

2、 法向量的方向: 一进一出,二面角等于法向量夹角;同进同出,二面 角等于法向量夹角的补角 . 3、 用空间向量解决立体几何问题的“三步曲” : (1) 建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2) 通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题; (进行 向量运算) (3) 把向量的运算结果“翻译”成相应的几何意义。 (回到图形) n 、典例分析与练习 例1、如图,ABCD 是一直角梯形, ABC 90 , SA 求面SCD 与面SBA 所成二面角的余弦值? 分析 分别以BA, AD,AS 所在直线为x,y,z 轴, 建立空间直角坐标系,求出平面 SCD 的法向量 仁, 平面SBA 法向量n 2,利用n i , n 2夹角 cos cos n 1, n 2 结论: 或 ——■ cos cos 门1,门2 cos cos n j , n 2 统一为: n 1 n 2 |n 1 n 2 1 面 ABCD , SA AB BC 1, AD -, 2

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

用向量法求空间距离

用向量法求空间距离 湖南省冷水江市七中(417500) 李继龙 在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离 用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离. 例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点, DQ=4 1 DB ,求P 、Q 两点间的距离. 解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则 0)4 141(Q )21021(,,、,,P , 所以)21 -4141(-,,=. 46= ,即P 、Q 两点的距离为4 6. 二、 求点到直线之间的距离 已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d . 则有>= < 故>

例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2). 所以0)32-(AC 2)02-(AO 1,,,,,==. 故 d = 13 286 213168=- = 所以点O 1到直线AC 的距离为13 286 2. 三、 求点到平面的距离 如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量 在方向上的射影长就是点A 到平面α的距离d ,所以 d ==>

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 剖析:如图, BO 平面 ,垂足为O ,则点B 到平面 的距离是线段BO 的长度。 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

若AB 是平面 的任一条斜线段,则在BOA Rt ABO COS ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z r 则n AB n AC r u u u r r u u u r ,.∵(3,4,0)AB u u u r ,(3,0,2)AC u u u r ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z 即340320x y x z ∴3432y x z x 取4x ,则(4,3,6)n r ∴(4,3,6)n r 是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E u u u r u u u r u u u r 设平面EFG 的一个法向量 为(,,)n x y z r 2202420 11(,,1)33 n EF n EG x y x y n r u u u r r u u u r r ,

立体几何-利用空间向量求二面角的平面角

1 A 利用空间向量求二面角的平面角 1.二面角的概念: 二面角的定义.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--. 2.二面角的平面角: (1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角 (2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角 说明:(1)二面角的平面角范围是[0,180]o o ; (2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 引导:请学生归纳已学过的求二面角的大小的方法,教师作必要的补充与引导.明确本节课的课题. 二.求二面角的平面角: 【回顾复习定义法求二面角的平面角】例1:在棱长为1的正方体1AC 中,求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角正弦值大小. 解:过1C 作1C O BD ⊥于点O , ∵正方体1AC ,∴1CC ⊥平面ABCD , ∴1COC ∠为平面1C BD 与平面ABCD 所成二面角1C BD C --的平面角, 可以求得:3 6 sin 1= ∠COC ,所以,平面1C BD 与底面ABCD 所成 二面角1C BD C --的平面角的正弦值大小为 3 6 【回顾复习用三垂线法求二面角的平面角】例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B AC D --的正弦值 分析:要求二面角的正弦值,首先要找到二面角的平面角 解:过D 作BC DF ⊥于F ,过D 作AC DE ⊥于E ,连结EF ,则AC 垂直于平面DEF , FED ∠为二面角B AC D --的平面角, 又AB ⊥平面BCD , ∴AB DF ⊥,AB CD ⊥, ∴DF ⊥平面ABC , ∴DF EF ⊥ 又∵AB CD ⊥,BD CD ⊥, ∴CD ⊥平面ABD ,∴CD AD ⊥, 设BD a =,则2AB BC a ==, 在Rt BCD ?中, 11 22 BCD S BC DF BD CD ?= ?=?,∴DF = A B C D E F

用向量法求空间距离

A B C D m n 1 图向量法求空间距离 向量融形、数于一体,具有几何形式和代数形式的“双重身份”,向量成为中学数学知识的一个交汇点,空间向量将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值计算,化繁难为简易,化复杂为简单,成为解决立体几何问题的重要工具。 1.异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量,分别在 n m 、上各取一个定点B A 、,则异面直线n m 、的距离 d 等于在上的射影长,即| |n d = 证明:如图1,设CD 为公垂线段,取b a ==, | |||)(?=?∴?++=?∴++= | |||||n n AB d ?= =∴ 2平面外一点P 到平面α的距离 如图2,先求出平面α的法向量,在平面内任取一定 点A ,则点p 到平面α的距离d 等于在上的射影长,即| |n d = 因为空间中任何向量均可由不共面的三个基向量来线性表示,所以在解题时往往根据问题条件首先选择适当的基向量,把相关线段根据向量的加法、数乘运算法则与基向量联系起来。再通过向量的代数运算,达到计算或证明的目的。一般情况下,选择共点且不共面的三个已知向量作为基向量。 [例 1] 如图3,已知正三棱柱111C B A ABC -的侧棱长为2, 底面边长为1,M 是BC 的中点,当1AB MN ⊥时,求点1A 到平面AMN 的距离。 图2 A B C M N 1 A 1 B 1 C 图3

几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: 解:当1AB MN ⊥时,如图4 , 、)0,0,0(A )81 ,1,0()0,43,43()2,21,23(1N M B 、、、)2,0,0(1A ,则 )2,0,0(),0,4 3,43( ),8 1 ,41,43(1==- =AA AM MN , 设向量),,(z y x n =与平面AMN 垂直,则有 )0()1,1,3(8 ),81,83( 8183 0434********>-=-=∴?????? ?-==?=???????=+=++-??????⊥⊥z z z z z n z y z x y x z y x AM n MN n 取)1,1,3(0-=n 向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是 5 5 21)1()3(|)1,1,3()2,0,0(||||,cos |||2 2201011011= +-+-?= =>

空间几何向量求二面角专项练习

1. 如图,四棱锥中,底面为矩形,底面, ,点M 在侧棱上,=60° (I )证明:M 在侧棱的中点 (II )求二面角的大小。 2. 如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD , 60ABC ∠=?,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为6 2 ,求二面角E —AF —C 的余弦值. 3.如图,在直四棱柱ABCD-A B C D 中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA =2, E 、E 、F 分别是棱AD 、AA 、AB 的中点。 (1) 证明:直线EE //平面FCC ;求二面角B-FC -C 的余弦 值。 4.如图,在四棱锥ABCD P -中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --11111 11111E A B C F E 1 A 1 B 1 C 1 D 1 D

5.如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°, E 是CD 的中点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ; (Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. 6.如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=, AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 6. 已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。 (1)求证:AC 1⊥BC ; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 7. 如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值. 8.如图,在五面体ABCDEF 中,FA 平面ABCD, AD//BC//FE ,AB AD ,M 为EC 的中点,AF=AB=BC=FE= AD (I) 求异面直线BF 与DE 所成的角的大小; ⊥⊥1 2 A B C E D P A B B 1 C 1 A 1 L A C B P A D B C E D B A 图5

利用空间向量求二面角的平面角

利用空间向量求二面角的平面角 1.二面角的概念: 二面角的定义.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为 l αβ--. 2.二面角的平面角: 过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线 ,OA OB ,则AOB ∠叫做二面角l αβ--的平面角 3、二面角的大小 (1)二面角的平面角范围是[0,180]; (2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 4、用法向量求二面角 5、面面角的求法 (1)法向量法:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角 (2)方向向量法:将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。 D C β α B A O m 2 m 1 n 2 n 1 D C β α l 如图所示,分别在二面角α-l -β的面α,β内,并且沿α,β延伸的方向,作向量1n ⊥l ,2n ⊥l ,则我们可以用向量1n 与2n 的夹角来度量这个二面角。 如图,设 1m ⊥α,2m ⊥β,则角<12,m m >与该二面角相等或互补。 cos cos ,AB CD AB CD AB CD θ?== ?

小结: 1.异面直线所成角: 2.直线与平面所成角: 3.二面角: 二.求二面角的平面角: 例1:在正方体AC1中,求二面角D1—AC —D 的大小? 例2:如图,三棱锥P-ABC 中,面PBC ⊥面ABC ,⊿PBC 是边长为a 的正三角形,∠ACB= 90°, ∠BAC=30°,BM=MC 。(1)求证: PB ⊥AC (2)二面角C-PA-M 的大小 。 cos cos ,AB CD AB CD AB CD θ?==?

如何用空间向量求解二面角

如何用空间向量求解二面角 万立勇 (河南省信阳市新县高中,465550) 求解二面角大小的方法很多,诸如定义法、三垂线法、垂面法、射影法、向量法等若干种。而这些方法中最简单易学的就是向量法,但在实际教学中本人发现学生利用向量法求解二面角还是存在一些问题,究其原因应是对向量法的源头不尽了解。本文就简要介绍有关这类问题的处理方法,希望对大家有所帮助。 在立体几何中求二面角可归结为求两个向量的夹角问题.对 于空间向量→a 、→b ,有cos <→a ,→ b >= → →→ →??| |||b a b a .利用这一结论, 我们可以较方便地处理立体几何中二面角的问题. 例1 (2005年全国高考理科试题) 在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .求 面VAD 与面VDB 所成的二面角的大小. 证明: 建立如图空间直角坐标系,并设正方形边 长为1,依题意 得AB ??→ = (0,1,0),是面VAD 的法向量, 设n →= (1,y ,z)是面VDB 的法

向量,则 0,0.n VB n VB →??→→??→??=????=? ?1,3y z =-?? ?=- ???n →= (1,-1 )。 ∴cos <AB ??→,n → > |||| AB n AB n ??→→ ??→→ ??= - 7 , 又由题意知,面VAD 与面VDB 所成的二面角为锐角,所以其大小 为arccos 7 例2 (2004年全国高考四川、云南、吉林、黑龙江理科数学试题)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB =90?,AC=1, CB=2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . ⑴求证CD ⊥平面BDM ; ⑵求面B 1BD 与面CBD 所成二面角的大小. 解:⑴略 ⑵如图,以C 为原点建立坐标系.设BD 中点为G ,连结B 1G , 则依 ,14,1 4 ),BD ??→ = (- y B B 1 C 1 A 1 C A D M

向量法求空间距离n

向量法求空间距离 广州市第78中学数学科 黄涛 教学重点难点 重点:掌握由向量数量积推导距离公式 难点:空间向量的投影的理解,灵活运用数形结合的思想,空间直角坐标系的 建立,求法向量,向量的选取。 教学方法、教学手段 采用启发诱导式教学,并结合实践探索,互动教学。 因为要充分体现数形结合思想,有大量的图形对比引导,以多媒体展示作为黑板板书补充。 教学目标: (1) 知识目标:理解向量数量积与射影的关系,基本掌握用数量积公式的变形求空间距离的方法和步骤 (2) 能力训练目标:培养动手能力,计算表达能力,空间想象能力 (3) 创新素质目标:通过立体几何向量方法解题体会知识之间的内在联系,事物内在的本质联系,懂得通过思维的拓展从事物的广泛联系中寻找解决问题的方法 (4) 情感目标:化繁为简,化难为易,在师生共同探索中建立学生学习数学的信心和热情 教学过程: 一.复习引入 1.如右图中正方体ABCD-A 1B 1C 1D 1的棱长为1,则点D 1到平面BB 1C 1C 的距离是_______,直线B 1C 1与B 1C 的距离是_________. 2.点C 1到平面AB 1C 的距离又是______,体对角线BD 1与面对角线B 1C 的距离是__________. 分析:以第一题找具体线段方法求距离很困难,提出能否避开“作图”这一难点,不通过找具体的线段求解,而用“数”来求解? 3.我们已经学习了向量的数量积为0可证垂直,| |||,cos b a b a b a ??>=<可求夹角, 221221221)()()(||z z y y x x a a a -+-+-==? 可以求两点间的距离,射影公式>

空间向量及二面角的向量求法专题备课讲稿

第四讲 空间向量 一、定义: (1)已知,则),,(121212z z y y x x ---= (2)已知),,(),,,(222111z y x b z y x a ==ρ ρ ,则),,(212121z z y y x x b a +++=+ρ ρ; ),,(212121z z y y x x b a ---=-ρρ;212121z z y y x x b a ++=?ρ ρ (3)数量积:cos a b a b θ?=??r r r r 注:22a a =r r ;a b +=r r ;222||z y x a ++=ρ (4)应用:已知),,(),,,(222111z y x b z y x a ==ρ ρ 1122//x y a b b a x y λ?=?=r r r r =2 1z z 00212121=++?=??⊥z z y y x x b a b a ρ ρρρ 二、空间向量解决空间立体几何问题: 1、位置关系判定: (1)线线平行:111 222 //x y z a b a b x y z λ→ → → → ?=? == 线线垂直:121212(cos 0)02 a b x x y y z z π θθ→→ ⊥?= =??+?+?= (2)线面平行://a m l α→→ ⊥?(其中m → 为平面的法向量) 线面垂直://a m l α→ → ?⊥ (3)面面平行:////,m n m n αβαβ→→→→ ?其中为的法向量,为 的法向量 面面垂直:,m n m n αβαβ→ → → → ⊥?⊥其中为的法向量,为的法向量

2、求夹角: (1)线线角:|| |||||cos |b a b a ρρρρ??=θ,其中[0,]2π θ∈ (2)线面角:|||||||cos |sin m a m a ρ ρρ ρ??==θθ,其中[0,]2 π θ∈ (3)二面角:cos |||| m n m n θ→→ → → ?= ?,其中[0,)θπ∈

空间向量法求二面角

徐沟中学高二年级数学学案 命制人: 董晓燕 郭凯丽 复查人:段红蕊 空间向量法求二面角 学习目标: 1.让学生初步理解用与二面角的平面角两边平行的向量的夹角计算二面角大小的方法;让学生初步了解二面角的平面角与两个面的法向量的夹角的关系;并能解决与之有关的简单问题. 新知自学: 让学生观察两平面的法向量的夹角与二面角的平面角之间的关系,引导学生用法向量的 夹角解 图1 图2 课堂互学: 例1;在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小. 例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角 B A C D --的正弦值 例3:如图5,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥面A BCD ,S A =21,A B=BC=1,A D=2 1 。 求侧面SCD 与面SB A 所成的二面角的大小。 总结提炼: 随堂检测: 1.如图,正三棱柱111ABC A B C -的所有棱长都为 2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小; 能力提升: 1.如图,在直三棱柱ABC-A 1B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1,且AA 1=AB=2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为6π ,求锐二面角A-A 1C-B 的大小. A B C D E F ?ω θ β l α 2 n 1 n θ β l α ? 1 n 2 n O (A ) B A 1 C 1 B 1 D 1 D C Q z y x 图4 A z y D C B S 图5 A B C D 1 A 1 C 1 B

向量法求空间距离和角

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法 向量, 则斜线l 与平 面 α所成的角 α=arcsin | ||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角 l αβ--的平面角α=arccos |||| a b a b 法二、设12,,n n 是二面角l αβ--的两

个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角 l αβ--的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 法一、找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ==(此方法移植于点面距离的求法).

利用空间向量求空间角-教案

利用空间向量求空间角-教案

利用空间向量求空间角 备课人:龙朝芬授课人:龙朝芬 授课时间:2016年11月28日一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标

系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l , m 的方向向量分别为a ,b ,异面直线l ,m 所成的角 为θ,则cos cos ,a b θ== a b a b ?. 2、线面角公式:设直线l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成的角,则sin cos ,a n θ== a n a n ?. α m b θ a l

3、面面角公式:设1 n ,2 n 分别为平面α、β的法向 量,二面角为θ,则12 ,n n θ= 或12 ,n n θπ=- (需要根据 具体情况判断相等或互补),其中121212 cos ,n n n n n n ?= . (二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=, SO ⊥ 面OABC ,且1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. α θ O O A B C S n a

相关文档
相关文档 最新文档