文档库 最新最全的文档下载
当前位置:文档库 › 航空航天大数据总线技术发展综述

航空航天大数据总线技术发展综述

航空航天大数据总线技术发展综述
航空航天大数据总线技术发展综述

航空航天数据总线技术发展综述

综述1

70年代以来,随着微电子、计算机、控制论的发展,使得航空电子系统的发展更为迅速。1980年美国专门制定了军用1553系列标准和ARINC系列标准,使数据总线更加规范化。目前自动化程度较高的军、民用飞机,如F-16、F-117、幻影2000、空中客机A340等都采用了数据总线技术。数据总线技术在我国航空电子系统设计中已有十几年的设计和使用经验,本文针对具有代表性的总线标准,包括MIL-STD-1553B、ARINC429、MIL-STD-1773、ARINC629、STANAG3910、RS485及CAN总线技术进行介绍。

1. MIL-STD-1553B

MIL-STD-1553B总线全称为飞行器内部时分命令/响应式多路数据总线,它由美国自动化工程师协会在军方和工业界的支持下制定,正式公布于1978年,1986-1993年进行了修改和补充。我国与之对应的标准是GJB289A-97。该总线采用冗余的总线型拓扑结构,传输数据率可达1 Mb/S,足以满足第三代作战飞机的要求。1553B总线系统主要由总线控制器BC和远程终端RT和组成,其字长度20bit,数据有效长度为16bit,半双工传输方法,双冗余故障容错方式,传输媒介为屏蔽双绞线,1553B总线的冗余度设计,提高了子系统和全系统的可靠性。

1553B总线的主要功能是为所有连接到总线上的航空电子系统提供综合化、集中式的系统控制和标准化接口。该总线技术首先运用于美国空军F-16战斗机。在过去的30年中,MIL-STD-1553B已成功地应用于多种战机,并且成功应用于其它控制领域,如导弹控制、舰船控制等,在海军和陆军的武器和维护系统中已经开始采用1553B总线。

随着国防现代化的建设和武器系统的升级换代,我军也开始将1553B协议大量应用到武器系统的设计中。

2. ARINC429

ARINC429总线协议是美国航空电子工程委员会(Airlines Engineering Committee)于1977年7月发表并获得批准使用的,它的全称是数字式信息传输系统(DITS)。协议标准

规定了航空电子设备及有关系统间的数字信息传输要求。ARINC429广泛应用在民航客机中,如B-737,A310等,俄制军用飞机也选用了类似的技术。我国与之对应的标准是

HB6096-SZ-01。ARINC429总线是面向接口型数据传输结构,总线上定义了2种设备,发送设备只能有1个,而接收设备却可以有多个。发送设备与接收设备采用屏蔽双绞线传输信息,传输方式为单向广播式,调制方式采用双极性归零制三态码,传输数据率可达100 Kb/s。ARINC429总线结构简单、性能稳定、抗干扰性强、具有高可靠性等优点。

3. MIL_STD_1773

1988年,美国国防部发布了新的军用标准即MIL_STD_1773(飞机内部时分制指令/响应多路传输数据总线),这个标准主要是对MIL_STD_1553在传输介质上的一个改进,其利用光纤传输介质来取代屏蔽双绞线以及电缆,其他的高层协议与MIL_STD_1553B相同。MIL_STD_1773数据总线在20世纪90年代已被美国国家航空航天局(NASA)和海军(NAVY)所使用,其中, F-18战斗机就使用这一标准。目前,MIL_STD_1773已发展到了双速率、高速度的阶段,其中,波音(Boeing)公司研制了基于MIL_STD_1773标准的双速率的收发器(具有1 Mb/s和20 Mb/s两种速率) ,其中1 Mb/s主要用于MIL_STD_1553B总线,而20 Mb/s主要用于高速数据传输。

4. STANAG 3910

在20世纪90年代初,北约(NATO)在研制欧洲新一代战机时,提出了一种新的数据总线欧洲标准即STANAG3910,这种标准主要是用来改进机载数据总线的传输速率,以适应新一代战机的发展要求。STANAG3910也是一种指令/响应协议,采用双速率传输总线结构。高速通道具有20 Mb/s的传输速率,以满足现今绝大多数战机航电子系统之间高速通信的要求,而低速率的MIL-STD-1553B通道主要控制高速率的通信。使用相同的传输介质可以连接STANAG3910系统和MIL-STD-1553B系统,这样就可以很方便地对MIL-STD-1553B 系统进行升级改进,并且20 Mb/s的高速通道既可采用光纤也可采用同轴电缆作为其传输介质。使用STANAG3910可以非常有效地对现有MIL-STD-1553B系统进行升级,以提供高传输速率来满足未来战机的发展需要。这样就可以提高MIL-STD-1553B系统的使用寿命,在新一代战机所要求的高速数据总线和航空电子系统通信稳定性(使用

MIL-STD-1553B总线的系统性能非常稳定)上取得较好的结合点。事实上,欧洲2个军用

战机项目均使用了该总线技术,如:英国、德国、意大利、西班牙联合开发的欧洲战斗机(EFA)以及法国单独研制的RAFALE战斗机。

5. RS485总线

RS485 是串行数据接口标准,由电子工业协会(EIA)制订并发布的,它是在RS422 基础上制定的标准,RS485标准采用平衡式发送,差分式接收的数据收发器驱动总线,其最高传输速率为10Mbps。RS485 为总线式拓扑结构,在同一总线上最多可以挂接32个节点。RS485 有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现已很少采用。在监控装置的RS485 通信网络中采用的就是这种主从通信方式,即一台上位机(主机)带多个传感器(从机)的控制方式。

RS485 总线接口作为多点、差分数据传输的电气规范,现已成为业界应用较为广泛的标准通信接口之一。

RS485串行数据总线具有结构简单、价格低廉、通信距离和数据传输速率适当等优点使其在工业控制领域、汽车、舰船系统中得到广泛应用。

6. ARINC629

ARINC629总线是波音公司为民用机开发的一种新型总线数字式自主终端存取通信(digital autonomous terminal access communications,DATAC),这种总线技术在ARINC429的基础上,结合1553B的优点开发出来的,其总线传输率为2 Mb/s,线性拓扑结构,基本能满足现代航空电子系统高速数据的传输要求。与1553B相同,它也采用了双向传输,传输时采用曼彻斯特码II型双相电平码,而且还进一步使用量电流型耦合器。与1553B所不同的是,它不再采用集中式控制,因而无需总线控制器,不存在又要总线控制器失效而造成全系统瘫痪的问题。比较而言,ARINC629具有自主控制、可双向传输、连接简单、“插入式”兼容等特点,因而在波音-777上得到了广泛的应用,成为机上信号处理、航空电子系统、动力系统、飞机构架系统及自动驾驶仪通信的基础。可以说,ARINC629总线的推出以及在B777飞机上的应用将使用数据总线技术的发展进入一个新的时代。

7. CAN总线技术

CAN(控制器局域网)总线是当前现场总线具有代表性的一种总线,是一种有效支持分布式控制和实时控制的串行通信网络。CAN总线是德国Bosch公司从20世纪80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线。其通信介质可以是双绞线、同轴电缆或光导纤维,通信速率可达1Mbit/s。CAN总线通信接口集中了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余校验、优先级判别等工作。

航空航天领域使用的总线系统要求具有很高的实时性、可靠性和抗干扰性能等,CAN总线自身存在的一些问题限制了它在这一领域的应用:①不可预测性。CAN总线采取多主竞发的形式,当遇到总线多个节点要求发送时,此时只有发送具有最高优先权帧的节点变为总线主站。在极端情况下,具有较低优先权的报文可能在相当长一段时间内无法抢占发送权,报文延迟时间不可预知。②信道出错堵塞。在节点有可能受干扰或其他原因暂时或永久失效时,出错的主机会命令CAN收发器不断发送报文。该信息的格式等均合法,因此CAN没有相应的机制来处理这种情况。根据CAN的优先权机制,比它优先权低的信息就被暂时或永久堵塞。③系统冗余支持。CAN是单条总线,而在航空航天领域的应用中,为满足苛刻的可靠性要求多采用双冗余甚至多冗余总线的方式。CAN本身并不包括像数据描述、站地址、连接导向协议等项目。它只规范了ISO/OSI7层标准模型中的数据链路层和物理层,因此,必须通过开发CAN的较高层协议来解决这些问题。

8. 结语

航空航天电子系统选用数据总线需要综合考虑通信速率、可靠性、抗干扰、兼容性、可扩展等要求,MIL-STD-1553B、ARINC429、MIL-STD-1773和ARINC629等数据总线技术,由于具有以上优点,在航空航天领域得到了非常广泛的应用。

但随着技术的发展,通信速率达到数百兆以上的设备大量出现,以上介绍的数据总线技术已不能满足新型航空航天飞行器的发展要求,迫切需要新的技术支持,相关内容将在“航空航天数据总线技术综述(二)”中介绍。

综述二

在上一期的“航空航天数据总线技术发展综述(一)”中,我们主要介绍了

MIL-STD-1553B、ARINC429、MIL-STD1773、ARINC629、CAN总线等中低速的航空航天数据总线技术,本期将针对IEEE1394、FDDI、LDPB及SpaceWire等部分中高速数据总线技术进行详细介绍。

1. IEEE1394总线

IEEE1394是由IEEE制定的一种高性能串行总线标准,又名火线(FireWire)。IEEE 1394协议分为1394a、1394b等,其中1394b可支持高达3.2 Gbps传输速率,并支持光纤传输。IEEE1394作为商用总线,近年来发展迅速,不仅在工业和测控领域被广泛应用,而且已经逐步深入到航空航天及军事应用领域。

基于1394b的光纤总线系统具有计算能力强、吞吐量大、可靠性高、易于扩展、维护方便、且支持点对点通信、广播通信及支持热插拔等优点,为多模态传感系统、在线实时检测和视频图像传输提供了广阔的空间。

因此,基于1394b光纤总线的军事应用,对于提高武器系统打击精度、机动性和快速性具有重要意义。IEEE1394b已经使用在军用飞机上,并作为F22猛禽战机上的视频总线,同时也在F35上有所使用。

2. FDDI总线

光纤分布式数据接口( FDDI: Fiber Distributed Data Interface) 高速总线由美国海军研究中心提出,由美国国家标准局(ANSI)于1989年制定的一种用于高速局域网的MAC标准。FDDI是一种按令牌协议传输信息、实现分布式控制、分布式处理的光纤介质总线网络系统。“令牌”是一个特别定义的信息帧,只有令牌明确寻址的终端才可在总线上发送信息,对总线上每个终端都给定一个握有令牌的时间期,在终端握有令牌的时间期内, 终端主控工作, 可发送信息给其他终端。

FDDI传输速率可达100Mbps,FDDI具有传输速率高、传输距离长、覆盖范围大、可靠性高、安全性高、支持可动态分布传输的特点,因此在上世纪90年代作为先进的光纤组网技术得到了发展与应用。FDDI主要用于海军作战系统,已经应用于舰载作战情报指挥系统(C3I)的海军第三代ZKJ-7上,并且还应用于国际空间站中。

3. LTPB总线技术

LTPB(LinearToken Passing Bus)是由国际自动机工程师学会(SAE International)制定的军用数据总线,定义了令牌消息、站管理消息、数据消息三种消息类型,其数据传输速率为50Mbit/s,最多可连接128个终端,消息最大长度为4096个字。从物理上看,LTPB是星型拓扑结构,易于监控网络上信息的传送及整个网络的状态,从逻辑上看,它按站点地址递增顺序形成环型拓扑结构。

线性令牌传输数据总线( LTPB)采用令牌传输协议,不需总线控制器,实现了真正的分布式控制、分布式处理。LTPB总线技术采用光纤传输介质,具有很强的抗电磁干扰能力,其传输总线为广播式总线。

LTPB对应的标准为SAE AS4074.1,应用于RAH-66、F-22“猛禽”第4代战斗机中。

4. SpaceWire总线

SpaceWire是欧洲航天局开发的一种高速、点对点、全双工的串行总线网络,以IEEE1355-1995 和LVDS 两个商业标准为基础,汲取了1394技术、ATM技术、以太网技术的优点,同时考虑了空间应用的特点,在故障检测与时间确定性方面做了加强。SpaceWire最高速度可以达到400Mbps,是目前在航天领域应用较广泛的高速数据总线,已成功应用于火星探测器“Mars Express”项目、彗星探测器“Rosetta Spacecraft”项目和地球环境遥感卫星“Cryosat”项目等。

SpaceWire采用点到点连接的结构,在同一网络中可以同时使用多条总线,其网络拓扑具有很高的自由度。SpaceWire得到较广泛的应用不仅是由于它是一种简单、可靠、低功耗数据传输技术,另外他也采用了符合当前数据传输发展方向的包交换技术。相比与CSMA/CD以太网、IEEE1394等总线型数据传输技术中数据速率不可能超过连接性能的情况,其优点是网络中节点的增加不会导致节点可用带宽的降低,为系统的扩展提供了充分的余地。

SpaeceWire网络是一种正在不断发展、完善中的高速数据传输技术,新的补充协议加入到协议簇中,新的应用产品也不断出现。这种采用交换机制的高速串行全双工技术为载荷数据处理系统向低功耗、可靠、可重用新结构的发展提供了有效的手段。

5. 中高速数据总线对比

各种总线的对比分析如下表所示,尽管IEEE1394目前还没有被广泛应用,但是其在数字成像领域内的重要作用已经为世人所关注;FDDI和LTPB总线不但都实现了高速化和光纤化,而且是完全的分布式控制模式,且FDDI技术已得到商业领域的广泛应用与验证,较LTPB技术风险小、投资少、研制周期短,但100Mbps 的传输速率也越来越不能满足更高速的数据传输;从欧美对这些高速总线的应用与研究情况来看,航天领域尤其深空探测领域使用较多的高速总线是SpaceWire 总线,但传输距离较短,最大只有10米。

表1.各种总线对比分析

6. 结语

航空航天电子系统选用数据总线的基础是该总线标准是否满足系统的通信速率、可靠性、抗干扰、兼容性、可扩展等要求。本期详细介绍了IEEE1394、FDDI、LDPB、SpaceWire等部分高速航空航天数据总线,并对所介绍中高速数据总线进行了对比分析。高速航空航天数据总线技术是满足未来航空航天任务需求的重要技术手段,因此,我们将在下期继续介绍当前流行的高速航空航天数据总线技术,敬请进一步关注。

综述三

在上一期的“航空航天数据总线技术发展综述(二)”中,我们主要介绍了IEEE1394、FDDI、LDPB及SpaceWire等部分高速航空航天数据总线技术,本期将针对AFDX、TTE、Ethernet及FC总线等通信速率达到百兆以上的高速数据总线技术进行详细介绍。

1、AFDX总线技术

航空电子全双工交换以太网(AFDX:Avionics Full-Duplex Switched Ethernet)是基于标准(IEEE802.3以太网技术和ARINC664 Part7)定义的电子协议规范,主要用于实现航空子系统之间进行的数据交换。AFDX是通过航空电子委员会审议的新一代机载以太网标准,AFDX允许连接到其他标准总线如ARINC429和MIL-STD-1553B等,并允许

通过网关和路由与其他的适应ANIRC664但非确定的网络通讯。AFDX是大型运输机和民用机载电子系统综合化互联的解决方案。

AFDX的传输速率可达100Mbps甚至更高,传输介质为铜制电缆或光纤。AFDX中没有总线控制器,不存在1553B中集中控制的问题。同时,AFDX采用接入交换式拓扑结构,使它的覆盖范围和可支持的节点数目远远超过了1553B总线。

AFDX的主要特点如下:

(1) 全双工:物理层的连接介质是两个双绞线对,一对用于接收,另一对用于发送;

(2) 交换式网络:网络连接采用星型拓扑结构,每个交换机最多可连接24个终端节点,交换机可以级联以实现更大规模的网络;

(3) 确定性:网络采用点到点网络,通过使用虚连接以保证带宽;

(4) 冗余:双重网络提供了更高的可靠性;

(5) 网络传输速率可选择10Mbps或100Mbps 。

空中客车公司在最新研制的A380飞机上就率先采用AFDX总线,同时波音公司在最新研制的787和747-400ER飞机中也采用了AFDX作为机载数据总线。

2、TTE

时间触发以太网(TTE,Time-Triggered-Ethernet),即以时间触发代替事件触发,将通信任务通过合理的调度定时触发发送。时间触发概念的提出,其目的是在于通过全局时钟精确同步,可有效避免数据帧争用物理链路,保证通信延迟和时间偏移的确定性。时间触发与事件触发相比在系统确定性、资源损耗、可靠性、实时性上有很大优势。

TTE总线技术具有高数据量、高实时性等特点,能适应分布式综合模块化航空电子架构的发展。

TTE网络是在标准IEEE802.3以太网上实现的时间触发网络协议,可作为完全分布的、严格确定性的安全关键性计算及联网平台,目前支持100Mb/s和1000Mb/s速率,10000Mb/s速率的TTE网络也在开发过程中。

TTE总线技术兼容了时间触发协议和以太网技术的优势,能够在同一个网络平台上兼容普通网络数据流、AFDX数据流和TTE网络数据流,具备更高的安全性和强有力的容错机制,拥有非常广阔的应用前景,有望作为AFDX互连的子集,在大中型飞机的综合化互联中扮演重要角色。目前,美国航天局已将TTE的一些技术应用在了猎户座载人探索飞行器上(Orion Crew Exploration Vehicle)。

3、Ethernet

在地面局域网中,以太网是首选的局域互连技术,速率从百兆到千兆,正向万兆以太网技术发展。Ethernet来源于商业应用,虽没有军品级器件,但商业支持非常强,被

NASA 推荐为将来可在空间应用的总线之一。国际空间站与一些小卫星上已采用过这种总线。

目前,用于解决地面局域网宽带接入问题的是无源光网络技术(passive optical network,简称“PON”),近十年来随着光通信技术的成熟,PON 技术开始走上了大规模的应用,可解决接入网的带宽瓶颈问题。其传输速率支持上下行对等1.25Gbps,或下行2.5Gbps、上行1.25Gbps ,目前最高支持上下对等10Gbps的带宽;PON技术是一种点对多点的结构,下行方向(网络到用户)采用TDM广播机制,上行(用户到网络)采用TDMA 复用方式,因此下行方向具有共享媒介的特性;并采用单模光纤作为传输介质,传输距离最大可达10km~20km;采用无源的光分路器取代了有源复用器或交换机,简化了光纤分配网的设计,提高了传输链路的可靠性,因此便于运行、维护和管理并且成本低廉等特点。

不论在国内还是国外,无源光网络技术因其独特的优势都在大规模商用,中国电信与中国联通以EPON 为主进行接入网部署,日本和韩国当前也均以EPON为主,北美和中东以GPON为主。EPON和GPON,尤其是 EPON在商用领域的产业链已经走向成熟。

4、FC总线

光纤通道(FiberChannel ,简称FC)是美国国家标准委员会(ANSI)的X3T11 小组于1988年开始制定的高速串行传输协议,将计算机通道技术和网络技术有机结合起来,具有全新概念的通信机制。FC采用通道技术控制信号传输,在共享介质时采用基于仲裁或交换的信道共享冲突解决机制和基于信用(Credit)的流量控制策略,信道的传输效率较高,适用于网络负载较重的应用系统中。

光纤通道的高带宽、低延迟、低误码率、灵活的拓扑结构和服务类型、支持多种上层协议和底层传输介质以及具有流量控制功能,使得它能够很好地满足未来航空电子系统互连的要求。美国在“宝石台”和“宝石柱”计划的基础上,开展了JAST计划研究,把统一网络引入航电系统,并把FC作为统一网络的总线标准。

目前,光纤通道已应用于美国航空电子的升级换代中,如:AH-64D“阿帕奇”、“长弓”式直升机中用于数字视频接口与飞行试验和任务处理器的互连。B1-B中用于航空电子计算机和数据存储/传输设备间的互连。机载预警与控制系统“扩展哨所”(AWACS Extendsentry)中用于构成交换式网络。美英下一代联合攻击机JSF的飞行管理系统、综合RF和综合核心处理机(ICP )三个子系统间的高速互连也采用了FC-AE 作为统一的网络。

5、高速数据总线对比

通过对以上高速数据总线的分析,民用航空领域主要是AFDX ,军用航空领域主要以FC为主,同时也是JAST计划提出的“航空电子统一网络”首选协议之一;基于以太网的无源光网络技术则是正在大规模商用和部署的地面宽带接入技术;而基于以太网

6、结语

本期继续对高速航空航天数据总线技术进行了介绍,主要介绍了AFDX、TTE、Ethernet及FC总线等高速航空航天数据总线技术。通过前面对中低速及高速航空航天数据总线技术的简要分析,FC技术由于其高速率、高可靠性、扩展余度大、拓扑灵活等特点,较其他总线技术更加适合航空航天数据通信的发展要求,应该成为我国航空航天用数据总线的研究和关注焦点。FC总线技术的相关内容将在接下来的“FC总线技术简介(一)”中进行详细介绍。

大数据的五大关键技术

大数据的五大关键技术 大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和展现的有力武器。 一、大数据接入 1、大数据接入 已有数据接入、实时数据接入、文件数据接入、消息记录数据接入、文字数据接入、图片数据接入、视屏数据接入 2、大数据接入技术 Kafka、ActiveMQ、ZeroMQ、Flume、Sqoop、Socket(Mina、Netty)、ftp/sftp 二、大数据存储 1、大数据存储 结构化数据存储、半结构化数据存储、非结构化数据存储 2、大数据存储技术 Hdfs、Hbase、Hive、S3、Kudu、MongoDB、Neo4J 、Redis、Alluxio(Tachyon)、Lucene、Solr、ElasticSearch 三、数据分析挖掘 1、大数据分析与挖掘 离线分析、准实时分析、实时分析、图片识别、语音识别、机器学习

2、大数据分析与挖掘技术 MapReduce、Hive、Pig、Spark、Flink、Impala、Kylin、Tez、Akka、Storm、S4、Mahout、MLlib 四、大数据共享交换 1、大数据共享交换 数据接入、数据清洗、转换、脱敏、脱密、数据资产管理、数据导出 2、大数据共享交换技术 Kafka、ActiveMQ、ZeroMQ、Dubbo、Socket(Mina、Netty)、ftp/sftp、RestFul、Web Service 五、大数据展现 1、大数据展现 图化展示(散点图、折线图、柱状图、地图、饼图、雷达图、K线图、箱线图、热力图、关系图、矩形树图、平行坐标、桑基图、漏斗图、仪表盘),文字展示; 2、大数据展现技术 Echarts、Tableau 国家规划大数据产业发展战略,各行各业需要大数据技术支撑指数级的数据增量服务,越来越多的企业逐渐转型于大数据,大数据方面市场需求呈爆发式增长。为了应对大数据人才的缺乏,加米谷大数据培训中心制定了全流程的大数据课程,主要包括Linux、java、CentOS、mysql、HDFS、Hadoop、Hbase、Hive、Kafka、Spark、Storm等。除了在理论方面深入讲解外,还有对应代码实战,全流程学完之后会有实战大数据项目,整体把控学习效果,教学目的旨在提高学员实战能力,真实提升自身大数据能力。

大数据技术进展与发展趋势

大数据技术进展与发展趋势 在大数据时代,人们迫切希望在由普通机器组成的大规模集群上实现高性能的以机器学习算法为核心的数据分析,为实际业务提供服务和指导,进而实现数据的最终变现。与传统的在线联机分析处理OLAP不同,对大数据的深度分析主要基于大规模的机器学习技术,一般而言,机器学习模型的训练过程可以归结为最优化定义于大规模训练数据上的目标函数并且通过一个循环迭代的算法实现,如图4所示。因而与传统的OLAP相比较,基于机器学习的大数据分析具有自己独特的特点[24]。图4 基于机器学习的大数据分析算法目标函数和迭代优化过程(1)迭代性:由于用于优化问题通常没有闭式解,因而对模型参数确定并非一次能够完成,需要循环迭代多次逐步逼近最优值点。(2)容错性:机器学习的算法设计和模型评价容忍非最优值点的存在,同时多次迭代的特性也允许在循环的过程中产生一些错误,模型的最终收敛不受影响。(3)参数收敛的非均匀性:模型中一些参数经过少数几轮迭代后便不再改变,而有些参数则需要很长时间才能达到收敛。这些特点决定了理想的大数据分析系统的设计和其他计算系统的设计有很大不同,直接应用传统的分布式计算系统应用于大数据分析,很大比例的资源都浪费在通信、等待、协调等非有效的计算上。传统的分布式

计算框架MPI(message passing interface,信息传递接口)[25]虽然编程接口灵活功能强大,但由于编程接口复杂且对容错性支持不高,无法支撑在大规模数据上的复杂操作,研究人员转而开发了一系列接口简单容错性强的分布式计算框架服务于大数据分析算法,以MapReduce[7]、Spark[8]和参数服务器ParameterServer[26]等为代表。分布式计算框架MapReduce[7]将对数据的处理归结为Map和Reduce两大类操作,从而简化了编程接口并且提高了系统的容错性。但是MapReduce受制于过于简化的数据操作抽象,而且不支持循环迭代,因而对复杂的机器学习算法支持较差,基于MapReduce的分布式机器学习库Mahout需要将迭代运算分解为多个连续的Map 和Reduce 操作,通过读写HDFS文件方式将上一轮次循环的运算结果传入下一轮完成数据交换。在此过程中,大量的训练时间被用于磁盘的读写操作,训练效率非常低效。为了解决MapReduce上述问题,Spark[8] 基于RDD 定义了包括Map 和Reduce在内的更加丰富的数据操作接口。不同于MapReduce 的是Job 中间输出和结果可以保存在内存中,从而不再需要读写HDFS,这些特性使得Spark能更好地适用于数据挖掘与机器学习等需要迭代的大数据分析算法。基于Spark实现的机器学习算法库MLLIB 已经显示出了其相对于Mahout 的优势,在实际应用系统中得到了广泛的使用。近年来,随着待分析数据规模的迅速扩

大数据文献综述

信息资源管理文献综述 题目:大数据背景下的信息资源管理 系别:信息与工程学院 班级:2015级信本1班 姓名: 学号:1506101015 任课教师: 2017年6月 大数据背景下的信息资源管理 摘要:随着网络信息化时代的日益普遍,我们正处在一个数据爆炸性增长的“大数据”时代,在我们的各个方面都产生了深远的影响。大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力就是大数据技术,这也是一个企业所需要必备的技术。“大数据”一词越来越地别提及与使用,我们用它来描述和定义信息爆炸时代产生的海量数据。就拿百度地图来说,我们在享受它带来的便利的同时,无偿的贡献了我们的“行踪”,比如说我们的上班地点,我们的家庭住址,甚至是我们的出行方式他们也可以知道,但我们不得不接受这个现实,我们每个人在互联网进入大数据时代,都将是透明性的存在。各种数据都在迅速膨胀并变大,所以我们需要对这些数据进行有效的管理并加以合理的运用。

关键词:大数据信息资源管理与利用 目录 大数据概念.......................................................... 大数据定义...................................................... 大数据来源...................................................... 传统数据库和大数据的比较........................................ 大数据技术.......................................................... 大数据的存储与管理.............................................. 大数据隐私与安全................................................ 大数据在信息管理层面的应用.......................................... 大数据在宏观信息管理层面的应用.................................. 大数据在中观信息管理层面的应用.................................. 大数据在微观信息管理层面的应用.................................. 大数据背景下我国信息资源管理现状分析................................ 前言:大数据泛指大规模、超大规模的数据集,因可从中挖掘出有价值 的信息而倍受关注,但传统方法无法进行有效分析和处理.《华尔街日

大数据关键技术

大数据关键技术 大数据技术,就就是从各种类型得数据中快速获得有价值信息得技术。大数据领域已经涌现出了大量新得技术,它们成为大数据采集、存储、处理与呈现得有力武器. 大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现与应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。 一、大数据采集技术 数据就是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得得各种类型得结构化、半结构化(或称之为弱结构化)及非结构化得海量数据,就是大数据知识服务模型得根本.重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。 大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化得海量数据得智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理与管理等。必须着重攻克针对大数据源得智能识别、感知、适配、传输、接入等技术.基础支撑层:提供大数据服务平台所需得虚拟服务器,结构化、半结构化及非结构化数据得数据库及物联网络资源等基础支撑环境。

重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析与决策操作得可视化接口技术,大数据得网络传输与压缩技术,大数据隐 私保护技术等. 二、大数据预处理技术 主要完成对已接收数据得辨析、抽取、清洗等操作。1)抽取:因获取得数据可能具有多种结构与类型,数据抽取过程可以帮助我们将这些复杂得数据转化为单一得或者便于处理得构型,以达到快速分析处理得目得。2)清洗:对于大数据,并不全就是有价值得,有些数据并不就是我们所关心得内容,而另一些数据则就是完全错误得干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据. 三、大数据存储及管理技术 大数据存储与管理要用存储器把采集到得数据存储起来,建立相 应得数据库,并进行管理与调用。重点解决复杂结构化、半结构化与非结构化大数据管理与处理技术。主要解决大数据得可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠得分布式文件系统(DFS)、能效优化得存储、计算融入存储、大数据得去冗余及高效低成本得大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据得数据融合技术,数据组织技术,研 究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术. 开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指得就是NoSQ

大数据综述

大数据综述 大数据作为互联网、物联网、移动计算、云计算之后IT产业又一次颠覆性的技术变革,正在重新定义社会管理与国家战略决策、企业管理决策、组织业务流程、个人决策的过程和方式。随着科技和社会的发展进步加上计算机和网络技术的兴起,社交网络、物联网、云计算以及多种传感器的广泛应用,使数量庞大,种类众多,时效性强为特征的数据的不断涌现,引发了数据规模的爆炸式增长[1]。 国际数据公司(International Data Corporation,IDC)研究报告称:2011年全球被创建和被复制的数据总量超过1. 8ZB,且增长趋势遵循新摩尔定律(全球数据量大约每两年翻一番),预计2020 年将达到35ZB。与此同时,数据复杂性也急剧增长,其多样性(多源、异构、多模态、不连贯语法或语义等) 、低价值密度(大量不相关信息、知识“提纯”难度高)、实时性(数据需实时生成、存储、处理和分析)等复杂特征日益显著。预示着全球已然进入了“大数据”时代[2]。 1.大数据国外研究现状 大数据相关理论的研究 “大数据”这一术语从2008年开始在科技领域中出现,随之引起学术界的广泛研究兴趣。《Nature》与《Science》杂志分别出版专刊,从互联网技术、互联网经济学、超级计算、环境科学、生物医药等多个方面讨论大数据处理和应用专题。世界各国政府也高度重视大数据领域的研究和探索,并从国家战略的层面推出研究规划以应对其带来的挑战。虽然大数据研究已在全球范围内成为热点和焦点,但目前国内外大数据相关的研究仍然处于起步阶段,面向管理和决策的大数据研究与应用逐步兴起,研究理念、思路、方法和学术路线等方面的探索已经开始全面展开[3]。 大数据蕴含着巨大的价值,对社会、经济、科学研究等各个方面都具有重要的战略意义。目前,大数据已经在政府公共管理、医疗服务、零售业、制造

大数据核心技术培训

大数据核心技术培训 你学或者不学,大数据依旧在发展;你从事或者不从事,大数据的前景你都应该了解。时代的前进方向,未来的领先技术,作为时代的年轻人,你不知道就真的会被社会所淘汰的。大数据的发展前景怎么样?未来大数据的发展趋势如何? 近年来,科技的快速发展推动了企业在数据生成、储存等多方面的需求增长。所以在企业爆炸式的大数据时代下,剧增了原有数据存的储存压力,所以大数据人才需求量将会与日俱增。所以大数据在未来就业前景一定非常广阔,在此千锋教育带大家了解大数据的发展趋势。 数据分析成为大数据技术的核心 大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息。要想逐步实现这个功能,就必须对数据进行分析和挖掘。而数据的采集、存储、和管理都是数据分析步骤的基础,通过进行数据分析得到的结果,将应用于大数据相关的各个领域。 云数据分析平台将更加完善 近几年来,云计算技术发展迅猛,与此相应的应用范围也越来越宽。云计算的发展为大数据技术的发展提供了一定的数据处理平台和技术支持。云计算为大

数据提供了分布式的计算方法、可以弹性扩展、相对便宜的存储空间和计算资源,这些都是大数据技术发展中十分重要的组成部分。随着云计算技术的不断发展和完善,发展平台的日趋成熟,大数据技术自身将会得到快速提升,数据处理水平也会得到显著提升。 开源软件的发展成为推动大数据发展的新动力 开源软件是在大数据技术发展的过程中不断研发出来的。这些开源软件对各个领域的发展、人们的日常生活具有十分重要的作用。开源软件的发展可以适当的促进商业软件的发展,以此作为推动力,从而更好地服务于应用程序开发工具、应用、服务等各个不同的领域。 由于大数据行业快速发展,人才需求急剧增加。目前,据某招聘网站平台数据,目前大数据人才的供给量远远低于行业人才需求。所以大数据培训应运而生,作为连接人才与企业的窗口,千锋大数据培训成为了为企业提供大数据人才强而有力的保障。 千锋大数据培训讲师经过多年的培训经验,结合学员的学习曲线,设计合理的项目进阶课程,让学员逐渐掌握做项目的方法方式,培训真正的项目经验。不

大数据综述

Computer Science and Application 计算机科学与应用, 2018, 8(10), 1503-1509 Published Online October 2018 in Hans. https://www.wendangku.net/doc/cf2998257.html,/journal/csa https://https://www.wendangku.net/doc/cf2998257.html,/10.12677/csa.2018.810163 Overview on Big Data Kaiyue Liu China University of Mining & Technology (Beijing), Beijing Received: Oct. 1st, 2018; accepted: Oct. 11th, 2018; published: Oct. 19th, 2018 Abstract As a current popular technical, big data has received wide attention from every industry. In order to further understand big data, this paper comprehensively describes big data from the six aspects: The basics of big data, the origin and development status of big data, big data processing, big data application, big data challenges and the future of big data. The basics of big data include the con-cepts and differences between big data and traditional databases, and the characteristics of big data. The big data processing includes generating and getting data, preprocessing data, data sto-rage, analyzing and mining data. This article is a systematic review of big data, and can establish a good knowledge system for scholars who are new to big data. Keywords Big Data, Data Storage, Data Mining, Data Visualization, Big Data Application 大数据综述 刘凯悦 中国矿业大学(北京),北京 收稿日期:2018年10月1日;录用日期:2018年10月11日;发布日期:2018年10月19日 摘要 大数据作为当今的热点技术,受到了各行各业的广泛关注。为了进一步认识大数据,本文从大数据的基础、大数据的起源和发展现状、大数据的处理流程、大数据的应用、大数据面临的挑战、大数据未来展望六个方面对大数据进行了综合性描述。其中大数据基础包括大数据和传统数据库的概念和区别、大数据的特性,处理流程包括数据生成和获取、数据预处理、数据存储、数据分析挖掘。本文是大数据的系统性综述,可以对初次接触大数据的学者建立了良好的知识体系。

大数据综述

大数据相关技术综述及调研 大数据本身就是一个很抽象的概念,提及大数据很多人也只能从数据量上去感知大数据的规模,如: 百度每天大约要处理几十PB 的数据; Facebook 每天生成300 TB 以上的日志数据; 据著名咨询公司IDC 的统计,2011 年全球被创建和复制的数据总量为1.8 ZB( 1021 ) ,但仅仅是数据量并不能区分大数据与传统的海量数据的区别。在2008 年《Science》杂志出版的专刊中,大数据被定义为“代表着人类认知过程的进步,数据集的规模是无法在可容忍的时间内用目前的技术、方法和理论去获取、管理、处理的数据”。比较有影响力的Gartner 公司也给出了大数据的定义,大数据是高容量、高生成速率、种类繁多的信息价值,同时需要新的处理形式去确保判断的作出、洞察力的发现和处理的优化。这种定义不仅是数据规模大,更重要的是如何从这些动态快速生成的数据流或数据块中获取有用的具有时效性价值的信息,但是这些数据类型众多,结构化、半结构化、非结构化的数据对已有的数据处理模式带来了巨大的挑战,其中也体现了大数据在3V 基础上发展的4V定义。4V 定义即volume,variety,velocity,value,关于第4 个V的说法并不统一,国际数据公司( International Data Corporation,IDC) 认为大数据还应当具有价值性( value),大数据的价值往往呈现出稀疏性的特点; 而IBM 认为大数据必然具有真实性( veracity),这样有利于建立一种信任机制,有利于领导者的决策。百度百科对大数据的定义是: 大数据( big data) ,或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理并整理成为帮助企业经营决策更积极目的的资讯。大数据的科学家Rauser提到一个简单的定义: 大数据就是超过了任何一个计算机处理能力的庞大数据量。 以下为大数据与传统数据应用的对比:

大数据安防中的三种关键技术及五大挑战

大数据安防中的三种关键技术及五大挑战 1.大数据 在安防行业,随着前端设备分辨率的不断提高、安防系统建设规模的不断扩大以及视频、图片数据存储的时间越来越长,安防大数据问题日益凸显。如何有效对数据进行存储、共享以及应用变得愈加重要。要应用安防大数据,首先要了解安防大数据有何特点。 安防大数据涉及的类型比较多,主要包含结构化、半结构化和非结构化的数据信息。其中结构化数据主要包括报警记录、系统日志、运维数据、摘要分析结构化描述记录以及各种相关的信息数据库,如人口库、六合一系统信息等;半结构化数据如人脸建模数据、指纹记录等;而非结构化数据主要包括视频录像和图片记录,如监控、报警、视频摘要等录像信息和卡口、人脸等图片信息。区别于其他行业大数据特点,安防大数据以非结构化的视频和图片为主,如何对非结构化的数据进行分析、提取、挖掘及处理,对安防行业提出了更多挑战。 大数据 对于安防视频图像数据,传统的处理方式主要靠事后人工查阅来完成,效率极低。面对海量的安防数据,如果继续采用传统方式,不仅效率低下,而且不能达到实战应用目的,偏离了安防系统建设目的。为充分利用安防系统价值,提升对安防大数据的应用能力,大华股份(002236,股吧)从多层次、全方位考虑产品和方案规划,不断提升对于安防有效信息的快速挖掘能力。 要提升安防大数据的处理效率,首先要从智能分析做起,快速过滤无效信息。大华智能分析从多维度、多产品形态来实现。如对于事件检测、行为分析、异常情况报警等,大华前端、存储以及平台系统产品都能够快速实现智能检测,并通知系统对事件进行快速响应,这些产品从某种层面上将安防有效数据的分析分散化,大大加快了整个系统的大数据处理应用速度。此外,大华还推出了基于云存储系统的大数据应用系统,如视频编解码系统、车辆研判系统、以图搜图系统、视频浓缩摘要系统、人脸识别系统以及车型识别系统等等。 大数据安防应用的几种关键技术 1)大数据融合技术 经过十几年的发展,国内安防系统建设基本形成了是以平安城市、智能交通系统为主体,其他行业系统有效完善的发展态势。而“重建设、轻应用”的现况给安防应用提出了更高要求,如何解决这些问题成为当务之急。 为实现数据融合、数据共享,首先要解决存储“分散”问题,大华云存储系统不仅能够实现数据的有效融合与共享,解决系统在硬件设备故障条件下视频数据的正常存储和数据恢复问题,为安防大数据应用分析提供可靠基础。 2)大数据处理技术 安防大数据以半结构化和非结构化数据居多,要实现对安防大数据的分析和信息挖掘,首先要解决数据结构化问题。所谓的数据结构化就是通过某种方式将半结构化和非结构化数据转换为结构化数据。大华通过采用先进的云计算系统对安防非结构化数据进行结构化处

浅析大数据的特点及未来发展趋势

浅析大数据的特点及未来发展趋势 摘要:随着二十一世纪的到来,人们已经进入了信息化的时代。计算机技术水平越来越先进,给人们的生活带来了极大的便利。在信息化的时代,人们每天接触的信息量成千上万。获取有用的数据,不仅可以有效缩短时间,而且可以满足具体需求。大数据技术正是适应现代社会的发展,从数据量巨大、结构复杂、类型众多的数据中,快速获取有价值的信息。因此本篇文章主要分析了大数据的特点,通过进一步探讨,并对其未来的发展趋势进行展望。 关键词:大数据;特点;发展趋势 大数据是继互联网、云计算技术后世界又一热议的信息技术,近几年来发展十分迅速。大数据技术的出现,给人们的生活带来了极大的便利。我们将生活中的东西数据化之后,就可以采用数据的格式对其进行存储、分析,从而获得更大的价值。 一、大数据技术的特点分析 1)开源软件得到广泛的应用 近几年来,大数据技术的应用范围越来越广泛。在信息化的时代,各个领域都趋向于智能化、科技化。大数据技术研发出来的分布式处理的软件框架Hadoop、用来进行挖掘和可视化的软件环境、非关系型数据库Hbase、MongoDb 和CounchDB等开源软件,在各行各业具有十分重要的意义。这些软件的研发,与大数据技术的发展是分不开的。 2)不断引进人工智能技术 大数据技术主要是从巨大的数据中获取有用的数据,进而进行数据的分析和处理。尤其是在信息化爆炸的时代,人们被无数的信息覆盖。大数据技术的发展显得十分迫切。实现对大数据的智能处理,提高数据处理水平,需要不断引进人工智能技术,大数据的管理、分析、可视化等等都是与人密切相关的。现如今,机器学习、数据挖掘、自然语言理解、模式识别等人工智能技术,已经完全渗透到了大数据的各个程序中,成为了其中的重要组成部分。 3)非结构化的数据处理技术越来越受重视 大数据技术包含多种多样的数据处理技术。非结构化的处理数据与传统的文本信息存在很大的不同,主要是指图片、文档、视频等数据形式。随着云计算技

大数据系统和分析技术综述 黄强

大数据系统和分析技术综述黄强 发表时间:2019-03-21T10:38:37.140Z 来源:《防护工程》2018年第34期作者:黄强1 卢荣2 [导读] 提出了不少有效的方案. 随着更丰富更先进的web 应用的出现, 一些新的爬虫机制已被用于爬取富互联网应用的数据。 1浙江大华系统工程有限公司浙江杭州 310053;2浙江泰林生物技术股份有限公司浙江杭州 310052 摘要:云计算、物联网、移动互连、社交媒体等新兴信息技术和应用模式的快速发展,促使全球数据量急剧增加,推动人类社会迈入大数据时代。一般意义上,大数据是指利用现有理论、方法、技术和工具难以在可接受的时间内完成分析计算、整体呈现高价值的海量复杂数据集合.大数据呈现出多种鲜明特征。 关键词:大数据系统;分析技术; 大数据与传统的数据相比, 除了大容量等表象特点, 大数据还具有其他独特的特点, 例如大数据通常是无结构的, 并且需要得到实时分析,因此大数据的发展需要全新的体系架构, 用于处理大规模数据的获取、传输、存储和分析。 一、大数据定义 随着大数据的流行, 大数据的定义呈现多样化的趋势, 达成共识非常困难. 本质上, 大数据不仅意味着数据的大容量, 还体现了一些区别于“海量数据” 和“非常大的数据” 的特点. 实际上, 不少文献对大数据进行了定义, 其中三种定义较为重要。一是属性定义: 国际数据中心IDC 是研究大数据及其影响的先驱, “大数据技术描述了一个技术和体系的新时代, 被设计于从大规模多样化的数据中通过高速捕获、发现和分析技术提取数据的价值”. 这个定义刻画了大数据的4 个显著特点, 即容量、多样性、速度和价值, 而“4Vs” 定义的使用也较为广泛,类似的定义注意到数据的增长是三维的, 即容量、多样性和速度的增长。二是比较定义(将大数据定义为“超过了典型数据库软件工具捕获、存储、管理和分析数据能力的数据集”。这种定义是一种主观定义, 没有描述与大数据相关的任何度量机制, 但是在定义中包含了一种演化的观点从时间和跨领域的。三是体系定义: 大数据是指数据的容量、数据的获取速度或者数据的表示限制了使用传统关系方法对数据的分析处理能力,需要使用水平扩展的机制以提高处理效率”。此外, 大数据可进一步细分为大数据科学和大数据框架,大数据科学是涵盖大数据获取、调节和评估技术的研究; 大数据框架则是在计算单元集群间解决大数据问题的分布式处理和分析的软件库及算法,一个或多个大数据框架的实例化即为大数据基础设施。 二、大数据系统和分析技术 1.流式大数据。该表现出低延迟、高吞吐、持续稳定运行和弹性可伸缩等特性,这其中离不开系统架构、数据传输、编程接口、高可用技术等关键技术的合理规划和良好设计。数据传输数据传输是指完成有向任务图到物理计算节点的部署之后,各个计算节点之间的数据传输方式。在大数据流式计算环境中,为了实现高吞吐和低延迟,需要更加系统地优化有向任务图以及有向任务图到物理计算节点的映射方式。在上游节点产生或计算完数据后,主动将数据发送到相应的下游节点,其本质是让相关数据主动寻找下游的计算节点,当下游节点报告发生故障或负载过重时,将后续数据流推送到其他相应节点.主动推送方式的优势在于数据计算的主动性和及时性,但由于数据是主动推送到下游节点,往往不会过多地考虑到下游节点的负载状态、工作状态等因素,可能会导致下游部分节点负载不够均衡;当然,主动推送方式和被动拉取方式不是完全对立的,也可以将两者进行融合,从而在一定程度上实现更好的效果. 2.编程接口。编程接口是方便用户根据流式计算的任务特征,通过有向任务图来描述任务内在逻辑和依赖关系,并编程实现任务图中各节点的处理功能.用户策略的定制、业务流程的描述和具体应用的实现,需要通过大数据流式计算系统提供的应用编程接口。良好的应用编程接口可以方便用户实现业务逻辑,可以减少用户的编程工作量,并降低用户系统功能的实现门槛。明确数据流的有向无环图,其他具体细节的实现方式用户不需要太多关心,即可满足对流式大数据的高效、实时计算;也有部分大数据流式计算系统为用户提供了类SQL 的应用编程接口,并给出了相应的组件,便于应用功能的实现;系统不仅为用户提供了类SQL 的应用编程接口来描述计算过程,也借助图形化用户视窗为用户提供了丰富的组件。大数据批量计算将数据事先存储到持久设备上,节点失效后容易实现数据重放;而大数据流式计算对数据不进行持久化存储。因此,批量计算中的高可用技术不完全适用于流式计算环境,需要根据流式计算新特征及其新的高可用要求,有针对性地研究更加轻量、高效的高可用技术和方法。大数据流式计算系统高可用是通过状态备份和故障恢复策略实现的。 3.大数据系统面临的挑战。设计和实现一个大数据系统不是一个简单的任务, 如同大数据定义描述的, 大数据超出了现有硬件和软件平台的处理能力. 新的硬件和软件平台反过来要求新的基础设施和编程模型解决大数据带来的挑战。普适的感知和计算以难以想象的速率和规模产生数据, 远超现有存储技术的发展。一个迫切的挑战是现有的存储系统难以容纳海量数据. 而数据的潜在价值和数据新鲜度有关, 因此应该设置和隐藏价值相联系的数据重要性原则, 以决定哪部分数据需要存档, 哪部分数据可以丢弃。随着在线服务和移动手机的增长, 与访问控制、个人信息分析相关的隐私和安全问题日益得到关注. 了解需要提供什么样的系统级别隐私保护机制至关重要.大数据分析技术的发展为数据解释、建模、预测和模拟带来了重大的影响。然而, 海量数据、异构数据结构和多样化的应用也带来了许多挑战,随着数据集的增长和实时处理需求的提出, 对整个数据集的分析越来越难. 一个潜在的解决方案是给出近似结果, 例如使用近似查询,近似的含义有两个方面:结果的准确度和从输出中删除的数据组。大规模计算系统的能量消耗从经济和环境的观点吸引了较大的关注。随着数据量和分析需求的增长, 数据传输、存储和处理无疑将消耗更多的能量,因此, 在大数据系统中必须提供系统级的能量控制和管理机制, 同时提供可扩展性和可访问性。大数据分析是一个交叉学科研究领域, 需要来自不同专业领域的专家协作挖掘数据中隐藏的价值。因此需要建立一个综合的大数据基础设施, 允许不同领域的科学家和工程师访问多样的数据, 并应用各自的专业知识, 协作完成分析任务。爬虫从队列中获得具有一定优先级的URL, 下载该网页, 随后解析网页中包含的所有URLs 并添加这些新的URLs 到队列中。这个过程一直重复, 直到爬虫程序停止为止.Web 爬虫是网站应用如搜索引擎和web 缓存的主要数据采集方式。数据采集过程由选择策略、重访策略、礼貌策略以及并行策略决定。选择策略决定哪个网页将被访问; 重访策略决定何时检查网页是否更新; 礼貌策略防止过度访问网站; 并行策略则用于协调分布的爬虫程序。传统的web 爬虫应用已较为成熟, 提出了不少有效的方案. 随着更丰富更先进的web 应用的出现, 一些新的爬虫机制已被用于爬取富互联网应用的数据。 大数据的一种重要形态,在商业智能、市场营销和公共服务等诸多领域有着广泛的应用前景,并已在金融银行业、互联网、物联网等场景的应用中取得了显著的成效。也使得当前诸多数据计算系统无法进一步更好地适应流式大数据在系统可伸缩性、容错、状态一致性、负载

工业大数据分析综述:模型与算法

摘要:随着条形码、二维码、RFID、工业传感器、自动控制系统、工业互联网、ERP、CAD/CAM/CAE等信息技术在工业领域的广泛应用,大量与工业生产活动相关的数据被实时采集并存储到企业的信息系统中。对这些数据进行分析,有助于改进生产工艺、提高生产效率、降低生产成本,为实现智能制造奠定基础。因此,工业大数据分析引起了工业界和学术界的广泛关注。模型和算法是大数据分析理论和技术中的两个核心问题。介绍了工业大数据分析的基本概念,综述了几种流行的工业大数据分析模型在工业大数据分析领域的应用情况以及相应求解算法方面的研究成果,并探索了大数据分析模型和算法的未来研究方向。 关键词:工业大数据; 大数据分析; 模型; 算法; 智能制造 1 引言 当今时代,信息化和工业化的融合已经成为发展趋势,《中国制造2025》指出:“新一代信息技术与制造业深度融合,正在引发影响深远的产业变革,形成新的生产方式、产业形态、商业模式和经济增长点”。工业大数据在两化融合过程中起着至关重要的作用,国务院颁发的《促进大数据发展行动纲要》把发展工业大数据列为主要任务之一:“推动大数据在工业研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链全流程各环节的应用,分析感知用户需求,提升产品附加价值,打造智能工厂。建立面向不同行业、不同环节的工业大数据资源聚合和分析应用平台”。工业大数据是指在工业领域中产生的大数据。随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、射频识别(radio frequency identification,RFID)、工业传感器、工业自动控制系统、工业互联网、企业资源计划(enterprise resource planning,ERP)、计算机辅助设计(computer

大数据发展背景与研究现状

大数据发展背景与研究现状 (一)大数据时代的背景 随着计算机存储能力的提升和复杂算法的发展,近年来的数据量成指数型增长,这些趋势使科学技术发展也日新月异,商业模式发生了颠覆式变化。《分 MGI)发 “赢 技术使得在线购物的完成率提升了10%到15%。我国信息数据资源80%以上掌握在各级政府部门手里,但很多数据却与世隔绝“深藏闺中”,成为极大的浪费。2015年,国务院印发《促进大数据发展行动纲要》,明确要求“2018年底前建成国家政府数据统一开放平台”;今年5月,国务院办公厅又印发《政务信息系

统整合共享实施方案》,进一步推动政府数据向社会开放。1 大数据可以把人们从旧的价值观和发展观中解放出来,从全新的视角和角度理解世界的科技进步和复杂技术的涌现,变革人们关于工作、生活和思维的看法。大数据的应用十分广泛,通过对大规模数据的分析,利用数据整体性与涌现性、相关性与不确定性、多样性与非线性及并行性与实时性研究大数据在 。2012年Gartner认为,不到两年时间大数据将成为新技术发展的热点,海量和多样化的信息资产使得大数据需要新的处理模式,才能为数据信息使用者提供有效的信息,使得企业洞察危险的能力增强,流程得以优化,决策更加准确。Victor 在其最新着作《大数据时代——生活、工作与思维的大变革》中指出,大数据 1人民网 26个好用大数据的秘诀

时代要想得到有价值的信息,要从总体而不是少量的数据样本分析与实务相关的所有数据。更加注重数据之间的相关关系,乐于加收纷繁复杂的数据,而不再探求难以捉摸的因果关系和追求数据的精确性。欧盟在其公布的《数字议程》中指出公共数据的市场价值约有320亿欧元,公共数据的开放和再利用可以产生新的商业和工作机会。开放行、公共数据,增加政府的开放和透明度可以给 年9 展的进程。2017年8月30日,国家旅游局、银联商务股份有限公司和中国电信集团联合成立“旅游消费但是数据联合实验室”,并发布了首份研究成果《2017年上半年中国旅游消费大数据报告》。三方在各自的领域有深耕多年的技术、大数据能力、市场资源和经验,通过签署站多合作,可以实现资源共享,优势互 3国家十三五规划纲要

工业大数据技术架构白皮书

工业大数据技术架构白皮书

编写说明 党的十九大报告中提出要“加快建设制造强国,加快发展先进制造业,推动互联网、大数据、人工智能和实体经济的深度融合”。再一次强调了运用新兴技术促进信息化和工业化的深度融合,以实现制造强国的战略目标。 工业是国民经济的主导,每一次工业届的重大变革都会对社会发展形成重大的影响。我国政府高度重视并积极推动以互联网为代表的新一代新兴技术与工业系统深度融合,以加速工业体系的智能化变革。工业互联网的建设重点概括为“网络”、“数据”、“安全”三大领域,而“数据”是实现工业智能化的核心驱动。在工业领域中合理地运用大数据技术能有效促进企业信息化发展,提升企业生产运行效率、加速生产信息在制造过程中的流动、助力企业升级转型并形成全新的智能制造模式。 为了加速新一代信息技术与传统产业的融合,工业互联网联盟(AII)针对工业领域的技术创新、标准制定、试验验证、应用实践等进行了一系列调查研究,在工业大数据领域也开展了相关工作,先后发布了《中国工业大数据技术与应用白皮书》,《工业大数据创新竞赛白皮书——风机结冰故障分析指南》等成果,以推动大数据技术在工业领域的深入应用。 本白皮书从实际出发,在现有研究的基础上,结合生产过程中的经典案例,介绍和分析了工业生产环境中大数据技术的应用方法,为工业企业建设大数据系统提供了基础架构层面的建议和指导,从数据的采集与交换、集成与处理、建模与分析、决策与控制几个层面,形成完整的大数据管理与分析架构,供相关行业伙伴参考使用,适用于广义的工业领域,包括制造业、采伐工业、原材料工业以及其他衍生的工业范围。

目录 第一章工业大数据系统综述 (1) 1.1 建设意义及目标 (1) 1.2 重点建设问题 (2) 第二章工业大数据技术架构概述 (3) 2.1 数据采集与交换 (5) 2.2 数据集成与处理 (6) 2.3 数据建模与分析 (8) 2.4 决策与控制应用 (9) 2.5 技术发展现状 (10) 第三章工业大数据技术架构实现 (12) 3.1 技术组件选择 (12) 3.1.1 数据采集 (12) 3.1.2 数据存储 (16) 3.1.3 数据计算 (17) 3.1.4 混合云架构 (18) 3.2 建设标准 (19) 3.2.1 基础业务能力 (19) 3.2.2 数据管理能力 (20) 3.2.3 运维管理能力 (21) 3.2.4 安全管理 (22) — 1 —

大数据处理技术发展现状及其应用展望

. ,.. 大数据处理技术发展现状及其应用展望 一、定义 著名的管理咨询公司麦肯锡曾预测到:“数据,已经渗透到当今每一个行业和业务职能领域, 成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者 盈余浪潮的到来。”这是大数据的最早定义。业界(于2012年,高德纳修改了对大数据的定义)将大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:第一,海量数据量。大数据计量单位至少是PB级别;第二,数据 类型繁多。比如,网络日志、视频、图片、地理位置信息等等都是囊括进来。第三,商业价 值高。第四,处理速度快。 在大数据时代,三分技术,七分数据,得数据者得天下。在大数据时代已经到来的时候要用 大数据思维去发掘大数据的潜在价值。Google利用人们的搜索记录挖掘数据二次利用价值, 比如预测某地流感爆发的趋势;Amazon利用用户的购买和浏览历史数据进行有针对性的书 籍购买推荐,以此有效提升销售量;Farecast利用过去十年所有的航线机票价格打折数据, 来预测用户购买机票的时机是否合适。 大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具 有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 二、大数据的技术 技术是大数据价值体现的手段和前进的基石。我将分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。 2.1、云技术 大数据常和云计算联系到一起,因为实时的大型数据集分析需要分布式处理框架来向数十、 数百或甚至数万的电脑分配工作。可以说,云计算充当了工业革命时期的发动机的角色,而大数据则是电。 云计算思想的起源是麦卡锡在上世纪60年代提出的:把计算能力作为一种像水和电一样的 公用事业提供给用户。如今,在Google、Amazon、Facebook等一批互联网企业引领下,一 种行之有效的模式出现了:云计算提供基础架构平台,大数据应用运行在这个平台上。 业内是这么形容两者的关系:没有大数据的信息积淀,则云计算的计算能力再强大,也难以找到用武之地;没有云计算的处理能力,则大数据的信息积淀再丰富,也终究只是镜花水月。 那么大数据到底需要哪些云计算技术呢?这里暂且列举一些,比如虚拟化技术,分布式处理技术,海量数据的存储和管理技术,NoSQL、实时流数据处理、智能分析技术(类似模式识

大数据技术概述

大数据技术 1.什么是数据挖掘,什么是机器学习: 什么是机器学习 关注的问题:计算机程序如何随着经验积存自动提高性能; 研究计算机如何样模拟或实现人类的学习行为,以猎取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能; 通过输入和输出,来训练一个模型。 2.大数据分析系统层次结构:应用层、算法层、系统软件层、基础设施层 3.传统的机器学习流程 预处理-》特征提取-》特征选择-》再到推理-》预测或者识不。手工地选取特征是一件特不费劲、启发式(需要专业知识)的方法,假如数据被专门好的表达成了特征,通常线性模型就能达到中意的精度。 4.大数据分析的要紧思想方法

4.1三个思维上的转变 关注全集(不是随机样本而是全体数据):面临大规模数据时,依靠于采样分析;统计学习的目的——用尽可能少的数据来证实尽可能重大的发觉;大数据是指不用随机分析如此的捷径,而是采纳大部分或全体数据。 关注概率(不是精确性而是概率):大数据的简单算法比小数据的复杂算法更有效 关注关系(不是因果关系而是相关关系):建立在相关关系分析法基础上的预测是大数据的核心,相关关系的核心是量化两个数据值之间的数理关系,关联物是预测的关键。 4.2数据创新的思维方式 可量化是数据的核心特征(将所有可能与不可能的信息数据化);挖掘数据潜在的价值是数据创新的核心;三类最有价值的信息:位置信息、信令信息以及网管和日志。 数据混搭为制造新应用提供了重要支持。 数据坟墓:提供数据服务,其他人都比我聪慧! 数据废气:是用户在线交互的副产品,包括了扫瞄的页面,停留了多久,鼠标光标停留的位置、输入的信息。

4.3大数据分析的要素 大数据“价值链”构成:数据、技术与需求(思维);数据的价值在于正确的解读。 5.数据化与数字化的区不 数据化:将现象转变为可制表分析的量化形式的过程; 数字化:将模拟数据转换成使用0、1表示的二进制码的过程 6.基于协同过滤的推举机制 基于协同过滤的推举(这种机制是现今应用最为广泛的推举机制)——基于模型的推举(SVM、聚类、潜在语义分析、贝叶斯网络、线性回归、逻辑回归) 余弦距离(又称余弦相似度):表示是否有相同的倾向 欧几里得距离(又称欧几里得相似度):表示绝对的距离 这种推举方法的优缺点: 它不需要对物品或者用户进行严格的建模,而且不要求物品的描述是机器可理解的;推举是开放的,能够共用他人的经验,专门好的支持用户发觉潜在的兴趣偏好。 数据稀疏性问题,大量的用户只是评价了一小部分的项目,而大多数的项目是没有进行评分;冷启动问题,新物品和新用户依靠

相关文档