文档库 最新最全的文档下载
当前位置:文档库 › 基于ZigBee技术的井下人员定位算法研究

基于ZigBee技术的井下人员定位算法研究

2014,50(15)1引言随着对煤矿安全生产要求的不断提高,开发出可靠有效的人员跟踪定位,对于改善煤矿安全生产具有很大的现实意义和应用价值。现代化的煤矿安全监控系统除了实现对环境的监控之外,还应包括对设备和人员的监控,通过监控系统实现井下人员和设备的管理和调度,提高生产效率和安全性[1-2]。因此,使用无线通信技术,建立以无线传感器网络为基础的煤矿监控系统己经成为煤矿安全生产和现代化管理的需求。目前,无线定位技术从原理上分类主要有基于到达时间的TOA/TDOA [3]定位以及基于接收信号强度(RSSI )[4]的AOA 定位[5]。从无线硬件装置上分类,分为

基于GPS 定位[6],Wi-Fi 定位[7-8],ZigBee 定位[9-10],RFID [11]定位,红外定位,超声波定位等。TOA/TDOA 方法是一种基于高精度晶振和高速数据传输的计算位置方法,它通过某一节点向不同基站同时发出信号,信号到达时间与节点离基站的距离成正比,利用基站的接收时间(TOA )或接收时间差(TDOA ),来得出标签节点的位置;AOA 算法是通过估计信号传播时候到达目的地的角度,根据每一个信号接收终端的已知位置和接收信号

到达角度来分析得出发送基站,这种方法在很大程度上依赖于天线的功能,对天线的自调整要求很高。定位中基于ZigBee 技术的井下人员定位算法研究

裴新,虞慧群,范贵生

PEI Xin,YU Huiqun,FAN Guisheng

华东理工大学计算机科学与工程系,上海200237

Department of Computer Science &Engineering,East China University of Science &Technology,Shanghai 200237,China PEI Xin,YU Huiqun,FAN Guisheng.Research on mining personnel location algorithm based on ZigBee https://www.wendangku.net/doc/d3216813.html,puter Engineering and Applications,2014,50(15):249-254.

Abstract :The Internet of Things is a tightly coupled system composed of embedded computer and physical device,which is widely applied in many fields,such as,intelligent transportation,medical and smart mine.However,how to effec-tively design the personnel location algorithm based on ZigBee technology has become a challenging research topic.This paper proposes a method for personnel locating based on the ZigBee technology in one-dimension case by analyzing the advantages and disadvantages of the existing technologies,then optimizes it by using the filters and navigation algorithm.The algorithm can improve the location precision and realistic of moving trace,thus ensuring to meet the actual requirement.It demonstrates the algorithm and verifies its feasibility by an actual case.

Key words :Internet of Things (IOT );location;ZigBee;Received Signal Strength Indicator (RSSI );optimization algorithm 摘要:物联网是嵌入式计算机与物理设备紧密耦合的系统,在智能交通、智能医疗、智能煤矿等领域的应用日益广泛。然而,如何有效地设计出基于ZigBee 技术的人员定位算法成为具有挑战性的研究课题。在分析国内外现有定位技术优势和缺陷的基础上,提出了一种一维环境下基于Zigbee 技术的井下人员定位算法。该算法利用滤波、惯性导航等算法对计算结果进行优化,在保证定位信息实时性的同时,提高了定位精度和人员运动轨迹的真实性。通过实际煤矿所采集的数据,验证了算法的可行性及有效性。

关键词:物联网;定位;ZigBee ;信号强度;优化算法

文献标志码:A 中图分类号:TP311doi :10.3778/j.issn.1002-8331.1208-0542

作者简介:裴新(1988—),男,博士研究生,主要研究方向为信息安全,物联网定位,形式化方法;虞慧群(1967—),男,博士,教授,

博士生导师,IEEE 高级会员,ACM 会员,主要研究方向为软件工程,信息安全,形式化方法;范贵生(1980—),男,博士,主要研究方向为软件工程,面向服务计算,形式化方法。E-mail :peixin422@https://www.wendangku.net/doc/d3216813.html,

收稿日期:2012-09-07修回日期:2012-11-02文章编号:1002-8331(2014)15-0249-06

CNKI 网络优先出版:2012-12-03,https://www.wendangku.net/doc/d3216813.html,/kcms/detail/11.2127.TP.20121203.1559.008.html Computer Engineering and Applications 计算机工程与应用

249

基于ZigBee的定位算法MATLAB仿真及结果分析

3.4 TDOA算法仿真 我们取节点总数为100个,已知节点为20个,通信半径为60米,边界长宽均为100米,已知节点坐标和未知节点坐标均随机产生,定位结果如下: 绝对误差3.3225e-13米,相对误差 5.5376e-13%,均接近于0(盲节点的定位误差视为0),所有节点均可被定位且它们的定位误差几乎为0。因为将盲节点的定位误差视为0,则此TDOA定位算法的误差来源于计算过程中的小数位数的取舍,这样的误差是十分小的与接近于0的运算结果相符。 注:≈0表示接近于0(远小于1)。 绝对误差:定位出的未知节点的坐标与实际坐标相差的距离值 平均绝对误差:N次运算绝对误差的均值 相对误差:绝对误差与节点通信半径的比 平均绝对误差:N次运算相对误差的均值 平均盲节点比例:盲节点总数占总未知节点数的比例 将不能被定位的节点的估计位置全置为(0,0)

图XX.基于TDOA算法的定位仿真结果

图XX.基于TDOA算法的定位仿真定位出来的每个未知节点的对误差同样的因为已知节点和未知节点坐标均为随机产生,所以定位结果的误差也具有随机性,因此保持上述条件不变做多次运算求定位误差的平均值则可以表示在上述条件下定位的一般误差水平 1次10次20次40次50次100 次200 次 300 次 500 次 800 次 平均 绝对 误差 (米) ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 平均 相对 误差 (%) ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 平均盲节比例(%)0 0 0.062 50 0.031 25 0.050 00 0.037 50 0.068 75 0.087 50 0.077 50 0.130 00

人员定位系统技术方案

招远市黄金矿业工程有限责任公司矿用人员定位管理系统 目录

一、矿山基本情况 一、矿区概况 二、公司资质证书 见附件: 三、技术文件 第一节、概述 1.1背景和需求 煤矿安全生产事关人民群众的生命和财产安全,各级政府一贯高度重视煤矿安全生产问题,并采取一系列措施不断加强安全生产工作。通过不断的努力,近一时期煤矿安全生产状况总体上趋于稳定好转,但由于基础薄弱等种种原因,煤矿安全生产状况仍然不容乐观。如何改变目前煤矿企业对井下人员落后的管理模式,如何实现管理的现代化、信息化也成为所有煤矿企业关心的问题,因此建立以灾害预防、事故救助、电子信息化管理为主要目标的信息化和智能化建设势在必行。 1.2系统简述 (1)本系统是运用高科技手段开发研制。系统的核心识别设备采用了具有国际先进水平的微波技术,该技术采用了当今最先进的0.18uM的微波芯片技术,使产品的性能和原来的微波技术相比得到了本质的改进,彻底解决了远距离、大流量、超低功耗、高速移动的标识物的识别和数据传输难题,而且成本较以往大大降低,同时也解决了中低频电磁波技术感应距离短、防冲突能力差的致命弱点。 (2)系统能够及时、准确的将井下各个区域人员及设备的动态情况反映到地面计算机系统,使管理人员能够随时掌握井下人员、设备的分布状况和每个矿工的运动轨迹,以便于进行更加合理的调度管理。当事故发生时,救援人员也可根据矿用人员管理系统所提供的数据、图形,迅速

了解有关人员的位置情况,及时采取相应的救援措施,提高应急救援工作的效率。 (3)系统是集井下人员考勤、跟踪定位、井下信息发布、灾后急救、日常管理等一体的综合性运用系统,集合了国内识别技术、传输技术、软件技术等最顶尖的产品和技术,是目前国内技术最先进、运行最稳定、设计最专业化的井下人员定位系统。这一科技成果的实现,将为煤矿企业的安全生产和日常管理上台阶以及事故急救带来了新的契机。 1.3基本原理 1.3.1 系统应用原理说明 系统应由主机、传输接口、本安型读卡分站、识别卡、矿用隔爆兼本质安全型电源箱、电缆、接线盒、避雷器和其他必要设备组成。在井下主要巷道、交叉道口、必经之路等重要位置安装无线读卡分站,下井人员携带识别卡,识别卡能发射信号,当识别卡在接收器一定范围内时,读卡分站接收到识别卡发出的信号,将信号进行分析、处理,并把信号发送到地面,地面信号传输接口把信号进行转换,交给主机进行处理,从而实现目标的自动化管理。 识别卡具有双向通讯功能,当矿工遇到紧急事件时,可以按下紧急求救按钮,地面监控主机就会显示出求救人员的信息(包括在那个位置及人员情况),矿方可以在第一时间组织人员经行抢救及处理。 调度室综合所有安全因素,如果遇到大的问题,需要井下人员进行紧急撤离,可以向井下某人(或某地区人员)(或者全部人员)发出撤离命令,在第一时间保证人的安全。 管理者可以根据大屏幕上或电脑上的分布示意图查看某一区域,计算机即会把这一区域的人员情况统计并显示出来。中心站主机会根据一段时间的人员出入信息整理出这一时期的每个下井人员的各种出勤报表,作为工资发放的依据。同时全方位监控井下人员分布情况。 1.3.2 系统应用原理图 (一)设计原则 鉴于煤矿井下人员管理系统的重要性,我们以科学的方法、严谨的态度,认真对系统仔细的分析,力求达到系统设计的先进性、可靠性、实用性和可扩展性。

煤矿人员定位系统设计方案样本

郑煤集团( 登封) 教学二矿 矿井人员定位系统 设 计 方 案 编制单位: 郑煤集团( 登封) 教学二矿编制时间: 二0一0年十一月 郑煤集团( 登封) 教学二矿

矿井人员定位系统设计方案说明书 生产规模: 45万吨/年 矿长: 李同河 技术负责人: 刘建军 编写: 匡久刘超峰李海军 会审: 李同河刘建军郑勤峰邵吉利王俊营 编写单位: 郑煤集团( 登封) 教学二矿 编写时间: 二0一0年十一月 教学二矿人员定位系统设计方案 根据国家安全监管总局【】146号, 关于《建设完善煤矿井下安全避险”六大系统”的通知》文件要求和河南省、郑煤集团有关文件精神, 完善井下安全避险”六大系统”, 进步一提高我矿

安全生产保障能力, 结合我矿实际, 特编制人员定位系统设计方案: 一、煤矿人员监控工程设计编制依据 1、 AQ6201——《煤矿安全监控系统通用技术要求》 AQ6210——《煤矿井下作业人员位置监测与管理系统通用技术条件》 2、 AQ1018 ---- 《煤矿井下作业人员管理系统使用与管理规范》 3、《煤矿安全规程》 4、国家安全监管总局国家煤矿安监局关于《建设完善煤矿井下安全避险”六大系统”的通知》( 安监总煤装【】146号) 5、《教学二矿井下安全避险”六大系统”实施方案》 二、组织领导机构 成立人员定位系统管理领导组: 组长: 李同河 副组长: 刘建军、郑勤峰 成员: 邵吉利、王俊营、匡久、孙坤东、王克勋、徐少歌、卢付臣 办公室设在综合调度室, 综合调度室主任负责做好人员定位系统专项设计等日常工作。 三、人员管理系统组成 人员管理系统主要由监控计算机、系统软件、人员定位分站、

厂区人员定位系统解决方案(移动)(DOC)

厂区人员定位系统解决方案 软件技术有限公司 2015-6

目录 1.项目背景及意义 (2) 1.1系统背景 (2) 1.2项目意义 (2) 2.系统介绍 (3) 2.1系统简介 (3) 2.2系统特点 (3) 3.系统介绍 (4) 3.1系统概述 (4) 3.2功能实现 (5) 3.2.1职工权限设定 (5) 3.2.2全程区域定位 (6) 3.2.3记录考勤 (7) 4.产品配置 (7) 4.1测温腕带电子标签 (7) 综合版防水读写器 (8) 4.3定向分析仪 (10) 4.4数据采集器 (11) 5结束语 (12)

1.项目背景及意义 1.1系统背景 工厂由于人员较多,管理方面存在一定难度,很容易产生管理漏洞,引发不必要的管理难题;此外,工厂本身也是易燃易爆地带,很容易发生危险,造成不可挽回的损失和后果;加之工厂规模较大,如果由于人员管理涣散导致问题的发生,也无从追究责任,使肇事者存在侥幸心理,不加注意,导致问题更加严重,工厂制度将难以得到完善。 1.2项目意义 我们从化工厂存在的实际人员管理问题角度出发,研发出RFID 工厂人员管理定位系统,此系统重点解决了工厂全体员工的管理问题,实现简单的人员区域定位,为管理人员带来便捷,同时可以解决工厂的众多管理问题,对工厂工人进行严格管理,减少意外发生,保障工人的安全,避免因意外给工厂带来的经济损失,提高工厂的名誉,为工厂带来更大的效益。

2.1系统简介 本系统是运用无线传感网络和RFID射频识别技术,通过安装RFID硬件和对应的功能软件,针对工厂人员管理的实际情况,开发的一套完整高效的智能化管理系统。 2.2系统特点 (1)RFID设备技术先进 RFID电子腕带技术可以透过外部材料读取数据;使用寿命长,能在恶劣环境下工作;读取距离更远;可以写入及存取数据,写入时间快;腕带的内容可以动态改变;能够同时处理多个标签;腕带的数据存取有密码保护,安全性更高;可以对腕带附着物体进行追踪定位。 (2)本系统具备较高的成熟度 具有低成本.低功耗.稳定性和保密性特点,可独立运行,不依赖于其他系统。充分考虑网络.主机.操作系统.数据库等的可靠性和安全性设计。 (3)良好的兼容和可扩展性 采用先进的计算机应用技术,具有良好的可扩充性。开放的体系结构和长远的生命周期,能满足以后开发新功能需要;系统通过GPRS 或者串口得来的数据,能和系统实现无缝隙连接。

矿山人员实时定位系统解决方案

基于Wi-Fi实时定位技术 矿山人员资产定位应用方案说明

目录 1引言 (3) 1.1文档说明 (3) 1.2术语与缩写解释 (3) 2项目需求 (4) 2.1项目背景 (4) 2.2需求分析 (4) 2.3方案优势 (4) 3方案设计 (5) 3.1设计理念 (5) 3.2功能描述 (6) 3.2.1定位监控 (6) 3.2.2标签管理 (7) 3.2.3报警管理 (7) 3.2.4系统管理 (8) 3.2.5扩展功能 (8) 3.2.6统计报表 (8) 3.3定位网络设计 (9) 4井下Wi-Fi无线定位监控通讯系统 (11) 4.1井下矿工定位考勤系统 (12) 4.2井下电机车定位管理 (12) 4.3Wi-Fi无线语音数据通信系统及Wi-Fi手机定位系统 (13) 4.3.1Wi-Fi网络–数据传输、语音通信、无线视频 (13) 4.3.2无线语音功能模块 (14) 4.3.3手机实时定位主要功能 (15) 5方案实施 (17) 5.1网络部署设计 (17) 5.2网络安装 (17) 5.3实施计划 (17) 5.3.1实施说明 (17) 5.3.2施工进度安排 (17)

1引言 1.1 文档说明 本文档为基于Wi-Fi的实时定位解决方案。 1.2 术语与缩写解释

2项目需求 2.1 项目背景 矿井的分布是分层结构的,井下面积很大,井下人员较多,为了保证井下人员的安全,防患于未然,监控矿车运作,我们将采用基于Wi-Fi的无线局域网实时定位系统对井下的矿工和矿车进行跟踪定位,随时了解每个矿工、矿车的当前位置。同时需要实现对每个矿工上下勤的监控功能和矿车矿石运输监管统计工作。基于Wi-Fi的无线局域网,需要实行语音通信、视频传输、环境信息采集等功能。 2.2 需求分析 1、人员、车辆的实时精确定位系统:通过井下电子地图,实时显示人员和车辆位置,记录移动轨迹。 2、人员考勤系统:每日自动统计人员进出矿井的次数和时间,能识别其他未经允许的人员擅自入内,并且报警。 3、Wi-Fi无线井下环境参数实时监控传感系统:通过Wi-Fi模块连接各类传感器,可以采集井下温度、湿度等环境参数,并且无线传输。 4、无线车辆识别监控系统及采矿量监控系统:车辆上安装的定位标签,电机车在井下定位区域可随时查询每台车所在位置、运行区间。系统根据判断出的矿车载体,自动跟踪矿车的运行轨迹,在监控轨迹与事先设定路线不符和时报警。 5、Wi-Fi无线语音通信系统:企业员工使用WLAN/GSM双模手机可在WLAN覆盖区包括井下优先通过Wi-Fi网络实现内部通话,参加电话会议,也可拨打PSTN外线电话,代替座机和手机的功能;离开WLAN覆盖区采用GSM拨打电话。不但可节省通话费用,而且可以通过无线网络和Wi-Fi手机开展定位、视频电话、会议电话等多种增值业务。 6、Wi-Fi无线视频监控系统:带有Wi-Fi的无线视频摄像头可以按装在移动的车辆上或者由矿工携带,实时无线传输视频图像。 2.3 方案优势 ?网络覆盖范围广,容易覆盖整个区域,设备可集中管理,维护成本低; ?可定位带有Wi-Fi模块的手机、PDA等其他Wi-Fi终端; ?Wi-Fi在室内外都工作; ?Wi-Fi支持上网,可以通过Wi-Fi网络上传数据; ?定位精度高 ?本地化服务,软硬件可订制。

ZigBee技术网络层的路由算法分析(1).

ZigBee技术网络层的路由算法分析(1) 摘要基于IEEE802.15.4标准的 ZigBee网络是一种具有强大组网能力的新型无线个域网,其中的路由算法是研发工作的重点。本文介绍了IEEE802.15.4标准及ZigBee规范的协议模型,重点研究了ZigBee协议网络层的路由算法,分析了Tree路由及Z-AODV路由算法,在此基础上提出了ZigBee网格型网络中基于数据特性的路由选择机制,该机制在网络性能和低功耗方面有明显的优势,并且可以平衡节点能量,最后简单介绍了ZigBee节点的硬件实现。 关键词 ZigBee协议;网络;IEEE802.15.4;路由算法;Tree路由;Z-AODV路由 1 概述 ZigBee技术是由英国Invensys公司、日本三菱电气公司、美国摩托罗拉公司以及荷兰飞利浦等公司在2002年10月共同提出设计研究开发的具有低成本、体积小、能量消耗小和传输速率低的无线通信技术。 2000年12月,IEEE 802 无线个域网(WPAN,Wireless Personal Area Network)小组成立,致力于WPAN无线传输协议的建立。2003年12月,IEEE正式发布了该技术物理层和MAC层所采用的标准协议,即IEEE 802.15.4协议标准,作为ZigBee技术的网络层和媒体接入层的标准协议。2004年12月,ZigBee联盟在IEEE 802.15.4 定义的物理层(PHY)和媒体接入层(MAC)的基础上定义了网络层和应用层,正式发布了基于IEEE 802.15.4的ZigBee标准协议。 2 网络层的研究 ZigBee技术的体系结构主要由物理层(PHY)、媒体接入层(MAC)、网络/安全层以及应用框架层组成,各层之间的分布如图1所示。 图1 ZigBee技术协议组成 PHY层的特征是启动和关闭无线收发器、能量检测、链路质量、信道选择、清除信道评估(CCA)以及通过物理媒体对数据包进行发送和接收。MAC 层可以实现信标管理、信道接入、时隙管理、发送确认帧、发送连接及断开连接请求,还为应用合适的安全机制提供一些方法。它包含具有时间同步信标的可选超帧结构,采用免碰撞的载波侦听多址访问(CSMA-CA)。安全层主要实现密钥管理、存取等功能。网络层主要用于ZigBee的LR-WPAN网的组网连接、数据管理等。应用框架层主要负责向用户提供简单的应用软件接口(API),包括应用子层支持APS(Application Sub-layer Support)、ZigBee设备对象ZDO (ZigBee Device Object)等,实现应用层对设备的管理,为ZigBee技术的实际应用提供一些应用框架模型等,以便对ZigBee技术的开发应用。 网络层的定义包括网络拓扑、网络建立、网络维护、路由及路由的维护。

ZIGBEE无线定位技术

ZIGBEE无线定位技术 大多数无线传感器网络都要求具备一种确定网络节点位置的方法。因此在设备安装期间,需要弄清楚哪些节点相互之间直接进行数据交换,或者确定哪些节点直接与中央数据采集点进行数据交换。 当通过基于软件的计算方法来确定网络节点位置时,就需要考虑到市场化解决方案(market solution)。这些具体的计算方法是:节点首先读取计算节点位置的参数,然后将相关信息传送到中央数据采集点,对节点位置进行计算,最后,再将节点位置的相关参数传回至该节点。这就是典型的数据密集型计算,并且需要配置一台PC 或高性能的MCU。 这种计算节点位置的方法之所以只适用于小型的网络和有 限的节点数量,是因为进行相关计算所需的流量将随着节点数量的增加而呈指数级速度增加。因此,高流量负载加上带宽的不足限制了这种方法在电池供电网络中的应用。 针对上述问题,CC2431 采用了一种分布式定位计算方法。这种计算方法根据从距离最近的参考节点(其位置是已知的)接收到的信息,对节点进行本地计算,确定相关节点的位置。因此,网络流量的多少将由待测节点范围中节点的数量决定。另外,由于网络流量会随着待测节点数量的增加而成比例递增,因此,C C2431 还允许同一网络中存在大量的待测节点。 本文所提供的结果是根据对ZigBee 网络的测量得出的,然

而,这些测量结果同样适用于基于IEEE 802.15.4协议构建的更简单的网络。 定位引擎技术 定位引擎根据无线网络中临近射频的接收信号强度指示(R SSI),计算所需定位的位置。在不同的环境中,两个射频之间的RSSI 信号会发生明显的变化。例如,当两个射频之间有一位行人时,接收信号将会降低30dBm。为了补偿这种差异,以及出于对定位结果精确性的考虑,定位引擎将根据来自多达16 个射频的RSSI 值,进行相关的定位计算。其依据的理论是:当采用大量的节点后,RSSI 的变化最终将达到平均值。 在RF 网络中,具有已知位置的定位引擎射频称为参考节点,而需要计算定位位置的节点称为待测节点。 要求在参考节点和待测节点之间传输的唯一信息就是参考节点的X 和Y 坐标。定位引擎根据接收到的X 和Y 坐标,并结合根据参考节点的数据测量得出的RSSI 值,计算定位位置。 将定位技术纳入网络协议 一些采用定位引擎的应用可能要求放置若干个参考节点,以作为基础设施设置不可或缺的一部分。ZigBee 技术能够实现对家庭、办公以及工业等应用的无线控制。随着ZigBee 设备在楼宇基础设施中的安装数量不断增多,ZigBee 将会在家庭和办公自动化方面拥有更为广阔的应用前景。

Zigbee定位测量

应用笔记AN042 CC2431 定位引擎by Aamodt 1 关键字 .CC2430 .ZigBee .CC2431 .定位引擎 2 简介 本文描述了CC2431的定位引擎,CC2431是一个在片ZigBee系统,所以它自然地被用于ZigBee网络的定位工程。这个手册尽可能地写得通俗并且不描述任何有关协议的特殊概念。本文的主要目的是提供一些定位技术的基本概念,并且提供一些使用CC2431定位工程的简易开发系统的线索和提示。本文应被作为CC2431和CC2430数据手册之外的扩展。 3 定位工程 在CC2431定位工程中使用的算法基于接收信号强度指示器(RSSI)的数值。RSSI值随距离增加而减小。 图片1显示了一个简单的定位检测系统,“参考点”是一个被放在已知地点的静态结点。为简化起见这个结点知道它自己的位置并且能告诉其他节点。参考节点不需要执行硬件的位置

检测,它甚至不需要执行任何计算。一个“盲节点”是基于CC2431建立的,这个节点向参考节点发出请求并接收参考节电的响应信号,读出接收到的RSSI数值,并送入硬件引擎,然后读出计算后的位置并发送位置信息到一个应用软件。 从参考节点发送到盲节点的数据包的最少数据是参考节点的“X”和“Y”参数。RSSI值由接收端计算,如“盲节点”。 定位工程的主要特性是定位计算能够被每一个盲节点运行,因此运算被分散了。这个特性减少了在网络中传输数据的总量,所以只有计算后的位置被传送,而不是用于计算位置的数据。 在自然环境中为了映射每个特殊区域为一个明确的位置,两个空间栅格被使用。方向将表示为X,Y。在所有的图片中X定义为横向,Y为纵向。CC2431定位引擎只能掌握两个维度,但是软件有可能掌握第三维度(例如:表现建筑的天花板)。坐标点(X,Y)=(0,0)是栅格的左上角。 3.1 节点类型 3.1.1 参考节点 具有静态位置的节点叫做参考节点,参考节点必须配置反映物理位置的X和Y值。 参考节点的主要任务是提供包含XY坐标的“参考”包给盲节点,也可做为锚定节点被查阅。由于这个节点一点也不需要使用硬件定位引擎,所以不必使用CC2431作为这样的用途。这意味着参考节点能在CC2430或CC2431上运行。因为CC2430/31是基于与CC2420同样的收发器,所以即使是CC2420配合一个适当的MPU就能用于参考节点。 3.1.2 盲节点 一个盲节点与离它最近的参考节点通信,收集每个参考节点的X,Y,RSSI,并使用硬件定位引擎计算它自己的位置。然后计算出的位置被发送到一个控制站。这个控制站应该是一个PC或系统内的另一个节点。 盲节点必须使用CC2431。 3.2 定位硬件 定位引擎利用了一个从软件层面看来极端简单的接口,写入参数,等待计算,读出计算后的位置。这章将讨论参数的区别和如何被解释的。

人员定位系统方案

人员定位系统方案(总20页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

上海秀派电子科技有限公司 SHANGHAI SUPER ELECTRONIC S TECHNOLOGY CO.,LTD Easy Trace系统 方案说明书 编制: 2014 年5月09日 审核:年月日 批准:年月日 发文日期:年月日 生效日期:年月日 修订记录

1. Easy Trace系统概述 目前养老地产概念在国内风起云涌,各大地产商及地方政府都不遗余力的进行各种推广活动,但事实上目前市场上面真正成熟的系统并没有,各家还只是停留在概念阶段,真正应用得实属凤毛麟角。其中就有由上海秀派电子科技有限公司为上海亲和源开发的针对老人的整体解决方案。该方案经过四年的运行,已经充分证明了该系统的实用性,并且也在运行的过程中暴露了种种不足。 基于此上海秀派电子科技有限公司在原来亲和源人员定位系统的基础上结合近年技术的进步以及市场上的需求,开发出Easy Trace的人员位置追踪服务信息系统,有效地改善和优化了原有系统存在的不足。极大地提高了原有系统的有效使用价值。为国内的各养老机构提供了信息化的监控平台,在降低成本的同时有效地改善了服务质量。 系统的主要的目的是能准确及时的反映被监护人的位置信息以及在监护人发出帮助信息时系统能及时的做出响应。 2. Easy Trace系统技术方案的描述 2.1 Easy Trace系统技术方案的架构如下图示

通讯转 换箱 通讯转换箱 通讯转换箱 通信 链路 通信链路 通信链路 通信 链路 通信链路 通 信链 路 通信链路 通 信链 路 TCP/IP 服务器 监视器 地埋式地标器86盒地标器 Easy Trace 阅读器 标签 通用固定式阅读器通讯电源转换箱 具体的工作原理如下: A 、 有地标器的方案 标签在通过地标器感应的范围(直径约6~8m )时,迅速的将该含有该地标器ID 的信息发出,处于附近的阅读器接收到该标签的信息后,迅速的上传到系统平台,平台软件根据设备的地址便可标明该标签的所处的位置 B 、 纯2.4G 方案 标签在通过Easy Trace 阅读器接收的范围(直径约40m )时,Easy Trace 阅读器会及时将该标签的信息上传到系统平台,以表明该标签处于某Easy Trace 阅读器的附近,该阅读器的位置已经在系统软件中做好标识。 2.2 Easy Trace 系统技术方案的具体应用 2.2.1 社区道路(行车道)的位置服务场景

工厂人员定位系统项目解决方案

工厂人员定位系统 方案建议书

摘要 当前大型工厂制造企业,人员管理除考勤管理外主要依靠监管人员进行现场管理的方式,这种方式不但需要监管人员亲临现场,而且并不能从根本上解决人员管理问题,比如车间分布较分散,监管人员需要不断巡视各车间;人员较多时,并不能对每个人员起到监管作用。随着企业规模扩大,人员的增多,随之而来的是如何提高监管人员的工作效率,管理好每个人员,对企业管理来说至关重要。 针对工厂人员管理的难题,结合了ZigBee无线技术,开发出工厂人员定位系统,可以从根本上解决工厂人员管理的问题。系统不但解决了监管人员要到现场进行巡查的麻烦,并且能够解决对每个人的实时监管。监管人员只要坐在电脑旁,即可实现实时监控。系统不仅节省大量人力,而且极大的提高了工作效率。工厂人员定位系统还可以扩展工厂人员考勤系统,实现人员从上班打卡考勤到下班打卡考勤整个过程中的实时监控、历史信息查看,从而让管理者能够对人员在工作期间的活动情况一幕了然,当出现紧急情况时可立刻定位到人员,进行及时处理。 工厂人员定位系统是基于SQL大型数据库,在充分理解工厂人员管理的需求后,结合ZigBee技术,将原来的人员亲临现场管理变成智能化的系统监控管理。可解决人员管理难、工作效率低、无法实时监管到每个人、是否按时到岗、危险无法及时处理等问题,在很大程度上提高了企业的人员管理工作效率。

目录 1. 项目背景及意义 (1) 2. 需求分析 (2) 2.1. 人员定位系统的用户需求 (2) 2.2. 人员定位系统的功能性需求 (3) 2.3. 人员定位系统的非功能性需求 (4) 3. 系统总体设计 (5) 3.1. 系统示意图 (5) 3.2. 系统架构 (5) 3.3. 系统设计要点 (6) 4. 系统设计与实现 (6) 4.1. 系统主要功能 (6) 4.2. 系统特点 (13) 5. 系统设计方案 (14) 5.1. 设计原理 (14) 5.2. 定位原理 (14) 5.3. 设备布置规则 (15) 5.4. 路面定位示意图 (17) 5.5. 车间定位示意图 (17) 6. 系统技术规格 (18) 7. 系统组成 (20) 7.1. 系统拓补图 (20) 7.2. 主要设备 (20) 7.3. 系统软件 (31)

人员定位、无线通信系统工程施工方案

内蒙古伊泰塔拉壕煤矿人员定位、无线通信系统 施工方案 天地()自动化股份有限公司 二〇一六年六月

确认签字 经内蒙古伊泰塔拉壕煤矿、天地()自动化股份有限公司双方共同努力,在现场进行勘察的基础上,最终形成详细施工方案,其内容将作为“塔拉壕煤矿人员定位、无线通信系统”后续实施的依据之一。 建设单位: 签字: 日期: 承建单位: 签字: 日期:

目录 1 编制说明 (1) 2 编制依据 (1) 3 工程范围 (2) 3.1人员定位系统部分: (2) 3.1.1 设备安装位置 (2) 3.1.2 线缆敷设线路 (5) 3.1.3 取电方法 (6) 3.2无线通信系统部分 (6) 3.2.1 设备安装位置 (6) 3.2.2 线缆敷设线路 (8) 3.2.3 设备取电方法 (9) 4 施工方法 (9) 4.1井下设备安装方法 (9) 4.2设备接线方法 (10) 4.2.1 人员定位系统设备 (10) 4.2.2 无线通信系统设备 (10) 4.3缆线敷设实施方法 (10)

详细施工方案 1 编制说明 本方案是在现场勘察的基础上,经甲、乙双方共同共同商定的情况下制定的,用于规范塔拉壕煤矿人员定位、无线通信系统施工的依据。 2 编制依据 塔拉壕煤矿矿井相关设计图纸 《煤矿安全规程》2014版 《煤矿井下作业人员管理系统使用与管理规范》AQ 1048-2007 《煤矿井下作业人员管理系统通用技术条件》AQ 6210-2007 《煤矿通信、检测、控制用电工电子产品通用技术要求》MT 209-90 《爆炸性环境用防爆电器设备本质安全性电路和电气设备要求》 《MT/T899-1999 煤矿用信息传输装置通用技术条件》 《煤矿安全装备基本要求》 《软件开发规范》 《煤炭工业矿井设计规范》 《煤矿监控系统总体设计规范》 《煤矿监控系统中心站软件开发规范》 《计算机软件开发规范》GB 8566 《电子计算机房设计规范》 《煤炭工业信息化“十一五”发展规划》 《EIA/TIA 568工业标准及国际商务建筑布线标准》

zigbee路由算法研究

毕业设计(论文) 题目:zig bee路由算法研究(zigbee R outing algorithm research) 姓名:王龙龙 学号:0904010117 指导教师:郝毫毫(副教授) 专业:测控技术与仪器 班级:测控01 所在学院:电气信息学院 年月

目录 摘要.....................................................................................................II Abstract................................................................................................ III 第一章绪论.......................................................................................... (1) 1.1 XXXX ............................................................................................. . (1) 1.2 XXXX ............................................................................................... .. x 第二章 XXXX .. (x) 2.1 XXXX .............................................................................................. (x) 2.2 XXXX .............................................................................................. (x) 2.3 XXXX .............................................................................................. (x) 第三章 XXXX............................................................................................. ..x 3.1 XXXX .............................................................................................. (x) 3.2 XXXX .............................................................................................. (x) 第四章 XXXX (x) 4.1 XXXX .............................................................................................. (x) 4.2 XXXX .............................................................................................. (x) 4.3 XXXX .............................................................................................. (x) 总结 (x) 致谢 (x) 参考文献 (x) 附录(可选项) (x) 说明:目录中的标题只列出2级标题(如1.1, 2.3等),不要出现3级及以上标题(如 2.1.2等)。章节不宜划分过细,目录内容不宜超过一页。

zigbee定位方案(16个参考节点)

ZigBee定位解决方案 技术分类:通信 | 2008-07-29 Jarle Boe 设想一下,您冲进购物中心,急切地想为您的另一半选购他(她)称心如意的生日礼物。在这种情况下,该从何下手?您会很自然地掏出手机或PDA 来选择选购生日礼物的最佳方案。此时,您的移动手持终端设备将显示出购物中心的导购图,并在图上标明您需前往的采购区。当您在购物中心转悠时,移动手持终端设备上将显示出您可能会感兴趣的商品。 当今的射频(RF) 技术有望使上述设想成为现实。TI ZigBee RF 设备中内嵌的定位引擎可以与室内GPS系统相媲美,其内嵌的定位引擎使用ZigBee 网络的RF 基础设施来计算事物或人们所处的位置。与GPS 相比较而言,定位引擎在单芯片RF 收发器中与MCU 集成在一起,成本也不及GPS 硬件的十分之一,功耗也只是GPS 硬件的一小部分。该定位引擎既可用于室内,也可用于室外,而且只要有现成的ZigBee 网络,就无需安装移动的接收天线。 典型的应用包括: ?遥控开/关房屋中所有房间的灯具; ?跟踪码头仓库的集装箱起运情况; ?跟踪网站的设备。 另外,当新设备接入网络时,该定位引擎能够确定其物理位置,因此定位引擎还能用于简化无线网络的设置。 后台设备 大多数的无线传感器网络都要求具备一种确定网络节点位置的方法。因此在设备安装期间,您需要弄清楚哪些节点相互之间直接进行数据交换,或者确定哪些节点直接与中央数据采集点进行数据交换。 当通过基于软件的计算方法来确定网络节点位置时,我们就会考虑到市场化解决方案(market solution)。这些具体的计算方法是:节点首先读取计算节点位置的参数,然后将相关信息传送到中央数据采集点对节点位置进行计算,最后,又将节点位置的有关参数传回至该节点。这就是典型的数据密集型计算,并且需要配置一台PC 或高性能的MCU。 这种计算节点位置的方法之所以只适用于小型的网络和有限的节点数量,是因为进行相关计算所需的流量将随着节点数量的增加而呈指数级速度增加。因此,高流量负载加上带宽的不足限制了这种方法在以电池供电的网络中的应用。

工厂人员定位系统解决方案

工厂人员定位系统 方案建议书 摘要 当前大型工厂制造企业,人员管理除考勤管理外主要依靠监管人员进行现场管理的方式,这种方式不但需要监管人员亲临现场,而且并不能从根本上解决人员管理问题,比如车间分布较分散,监管人员需要不断巡视各车间;人员较多时,并不能对每个人员起到监管作用。随着企业规模扩大,人员的增多,随之而来的是如何提高监管人员的工作效率,管理好每个人员,对企业管理来说至关重要。 针对工厂人员管理的难题,结合了ZigBee无线技术,开发出工厂人员定位系统,可以从根本上解决工厂人员管理的问题。系统不但解决了监管人员要到现场进行巡查的麻烦,并且能够解决对每个人的实时监管。监管人员只要坐在电脑旁,即可实现实时监控。系统不仅节省大量人力,而且极大的提高了工作效率。工厂人员定位系统还可以扩展工厂人员考勤系统,实现人员从上班打卡考勤到下班打卡考勤整个过程中的实时监控、历史信息查看,从而让管理者能够对人员在工作期间的活动情况一幕了然,当出现紧急情况时可立刻定位到人员,进行及时处理。 工厂人员定位系统是基于SQL大型数据库,在充分理解工厂人员管理的需求后,结合ZigBee技术,将原来的人员亲临现场管理变成智能化的系统监控管理。可解决人员管理难、工作效率低、无法实时监管到每个人、是否按时到岗、危险无法及时处理等问题,在很大程度上提高了企业的人员管理工作效率。

目录 1.项目背景及意义................................................................................................................................ 2.需求分析............................................................................................................................................ 2.1.人员定位系统的用户需求 ................................................................................................... 2.2.人员定位系统的功能性需求 ............................................................................................... 2.3.人员定位系统的非功能性需求 ........................................................................................... 3.系统总体设计.................................................................................................................................... 3.1.系统示意图 ........................................................................................................................... 3.2.系统架构 ............................................................................................................................... 3.3.系统设计要点 ....................................................................................................................... 4.系统设计与实现................................................................................................................................ 4.1.系统主要功能 ....................................................................................................................... 4.2.系统特点 ............................................................................................................................... 5.系统设计方案.................................................................................................................................... 5.1.设计原理 ............................................................................................................................... 5.2.定位原理 ............................................................................................................................... 5.3.设备布置规则 ....................................................................................................................... 5.4.路面定位示意图 ................................................................................................................... 5.5.车间定位示意图 ................................................................................................................... 6.系统技术规格.................................................................................................................................... 7.系统组成............................................................................................................................................ 7.1.系统拓补图 ........................................................................................................................... 7.2.主要设备 ............................................................................................................................... 7.3.系统软件 ...............................................................................................................................

相关文档
相关文档 最新文档