文档库 最新最全的文档下载
当前位置:文档库 › 常用的P沟道场效应管

常用的P沟道场效应管

常用的P沟道场效应管
常用的P沟道场效应管

常用大功率P沟道场效应管的选型

2009-11-16 14:24

IRF系列 POWER MOSFET 功率场效应管型号参数查询及代换

带有"-"号的参数为P沟道场效应管,带有/的参数的为P沟道,N沟道双管封装在一起的场效应管,没注明的均为N沟道场效应管.

型号 Drain-to-Source Voltage漏极到源极电压 Static Drain-Source

On-State Resistance静态漏源

通态电阻 Continuous Drain Current漏极连续电流(TC=25℃) PD Total Power Dissipation 总功率耗散(TC=25℃) Package 封装 Toshiba Replacement 替换东芝型号 Vender 供应商

型号---V ---A---W----封装

IRF48 60 - 50 190 TO-220AB - IR

IRF024 60 - 17 60 TO-204AA - IR

IRF034 60 - 30 90 TO-204AE - IR

IRF035 60 - 25 90 TO-204AE - IR

IRF044 60 - 30 150 TO-204AE - IR

IRF045 60 - 30 150 TO-204AE - IR

IRF054 60 - 30 180 TO-204AA - IR

IRF120 100 - 8.0 40 TO-3 - IR

IRF121 60 - 8.0 40 TO-3 - IR

IRF122 100 - 7.0 40 TO-3 - IR

IRF123 60 - 7.0 40 TO-3 - IR

IRF130 100 - 14 75 TO-3 - IR

IRF131 60 - 14 75 TO-3 - IR

IRF132 100 - 12 75 TO-3 - IR

IRF133 60 - 12 75 TO-3 - IR

IRF140 100 - 27 125 TO-204AE - IR

IRF141 60 - 27 125 TO-204AE - IR

IRF142 100 - 24 125 TO-204AE - IR

IRF143 60 - 24 125 TO-204AE - IR

IRF150 100 - 40 150 TO-204AE - IR

IRF151 60 - 40 150 TO-204AE - IR

IRF152 100 - 33 150 TO-204AE - IR

IRF153 60 - 33 150 TO-204AE - IR

IRF220 200 - 5.0 40 TO-3 - IR

IRF221 150 - 5.0 40 TO-3 - IR

IRF222 200 - 4.0 4.0 TO-3 - IR

IRF223 150 - 4.0 40 TO-3 - IR

IRF224 250 - 3.8 40 TO-204AA - IR

IRF225 250 - 3.3 40 TO-204AA - IR

IRF231 150 - 9.0 75 TO-3 - IR

IRF232 200 - 8.0 75 TO-3 - IR

IRF233 150 - 8.0 75 TO-3 - IR

IRF234 250 - 8.1 75 TO-204AA - IR IRF235 250 - 6.5 75 TO-204AA - IR IRF240 200 - 18 125 TO-204AE - IR IRF241 150 - 18 125 TO-204AE - IR IRF242 200 - 16 125 TO-204AE - IR IRF243 150 - 16 125 TO-204AE - IR IRF244 250 - 14 125 TO-204AA - IR IRF245 250 - 13 125 TO-204AA - IR IRF250 200 - 30 150 TO-204AE - IR IRF251 150 - 30 150 TO-204AE - IR IRF252 200 - 25 150 TO-204AE - IR IRF253 150 - 25 150 TO-204AE - IR IRF254 250 - 22 150 TO-204AE - IR IRF255 250 - 20 150 TO-204AE - IR IRF320 400 - 3.0 40 TO-3 - IR

IRF321 350 - 3.0 40 TO-3 - IR

IRF322 400 - 2.5 40 TO-3 - IR

IRF323 350 - 2.5 40 TO-3 - IR

IRF330 400 - 5.5 75 TO-3 - IR

IRF331 350 - 5.5 75 TO-3 - IR

IRF332 400 - 4.5 75 TO-3 - IR

IRF333 350 - 4.5 75 TO-3 - IR

IRF340 400 - 10 125 TO-3 - IR

IRF341 350 - 10 125 TO-3 - IR

IRF342 400 - 8.0 125 TO-3 - IR IRF343 350 - 8.0 125 TO-3 - IR IRF350 400 - 15 150 TO-3 - IR

IRF351 350 - 15 150 TO-3 - IR

IRF352 400 - 13 150 TO-3 - IR

IRF353 350 - 13 150 TO-3 - IR

IRF360 400 - 25 300 TO-204AE - IR IRF362 400 - 22 300 TO-204AE - IR IRF420 500 - 2.5 50 TO-3 - IR

IRF421 450 - 2.5 50 TO-3 - IR

IRF422 500 - 2.0 50 TO-3 - IR

IRF423 450 - 2.0 50 TO-3 - IR

IRF430 500 - 4.5 75 TO-3 - IR

IRF431 450 - 4.5 75 TO-3 - IR

IRF432 500 - 4.0 75 TO-3 - IR

IRF433 450 - 4.0 75 TO-3 - IR

IRF441 450 - 8.0 125 TO-3 - IR

IRF442 500 - 7.0 125 TO-3 - IR

IRF443 450 - 7.0 125 TO-3 - IR

IRF448 500 - 9.6 130 TO-204AA - IR

IRF449 500 - 8.6 130 TO-204AA - IR

IRF450 500 - 13 150 TO-3 - IR

IRF451 450 - 13 150 TO-3 - IR

IRF452 500 - 12 150 TO-3 - IR

IRF453 450 - 12 150 TO-3 - IR

IRF460 500 - 21 300 TO-204AE - IR

IRF462 500 - 19 300 TO-204AE - IR

IRF1010 55 0.014 75 150 TO-220AB 2SK2312 IR

IRF1010E 60 0.012 81 170 TO-220AB 2SK2985 IR IRF1010EL 60 0.012 83 170 TO-262 2SK2986 IR

IRF1010ES 60 0.012 83 170 D2PAK 2SK2986 IR

IRF1010N 55 0.012 72 130 TO-220AB - IR

IRF1010NL 55 0.011 84 170 TO-262 - IR

IRF1010NS 55 0.011 84 3.8 D2PAK - IR

IRF1010S 55 0.014 75 150 D2PAK 2SK2376 IR

IRF1310 100 0.04 43 150 TO-220AB 2SK2466 IR

IRF1310N 100 0.036 36 120 TO-220AB - IR

IRF1310NS 100 0.036 36 120 D2PAK - IR

IRF1310S 100 0.04 43 150 D2PAK 2SK2466 IR

IRF2807 75 0.013 71 150 TO-220AB - IR

IRF2807L 75 0.013 71 150 TO-262 - IR

IRF2807S 75 0.013 71 150 D2PAK - IR

IRF3205 55 0.008 98 150 TO-220AB 2SK2985 IR

IRF3205L 55 0.008 110 200 TO-262 2SK2986 IR

IRF3205S 55 0.008 110 200 D2PAK 2SK2986 IR

IRF3315 150 0.082 21 94 TO-220AB - IR

IRF3315L 150 0.082 21 94 TO-262 - IR

IRF3315S 150 0.082 21 94 D2PAK - IR

IRF3415 150 0.042 37 150 TO-220AB - IR

IRF3415S 150 0.042 37 150 D2PAK - IR

IRF3710 100 0.028 46 150 TO-220AB - IR

IRF3710S 100 0.028 46 150 D2PAK - IR

IRF4905 -55 0.02 64 150 TO-220AB - IR

IRF4905L -55 0.02 -74 200 TO-262 - IR

IRF4905S -55 0.02 -74 3.8 D2PAK - IR

IRF510 100 0.54 5.6 43 TO-220AB 2SK2399 IR

IRF510A 100 0.4 5.6 33 TO-220AB 2SK2399 Samsung IRF510S 100 0.54 5.6 43 D2PAK 2SK2399 IR

IRF511(R) 80 0.54 5.6 - TO-220AB 2SK2399 Harris

IRF512(R) 100 0.74 4.9 - TO-220AB 2SK2399 Harris IRF513(R) 80 0.74 4.9 - TO-220AB 2SK2399 Harris IRF520 100 0.27 9.2 60 TO-220AB 2SK2399 IR

IRF520 100 0.27 10 - TO-220AB 2SK2399 ST

IRF520A 100 0.2 9.2 45 TO-220AB 2SK2399 Samsung IRF520FI 100 0.27 7 - TO-220FP 2SK2399 ST

IRF520N 100 0.2 9.5 47 TO-220AB 2SK2399 IR

IRF520NS 100 0.2 9.5 47 D2PAK 2SK2399 IR

IRF520S 100 0.27 9.2 60 D2PAK 2SK2399 IR

IRF521(R) 80 0.27 9.2 - TO-220AB 2SK2399 Harris IRF5210 -100 0.06 -35 150 TO-220AB - IR

IRF5210S -100 0.06 -35 150 D2PAK - IR

IRF522(R) 100 0.36 8 - TO-220AB - Harris

IRF523(R) 80 0.36 8 - TO-220AB 2SK2399 Harris

IRF530 100 0.16 14 88 TO-220AB 2SK2314 IR

IRF530 100 0.16 16 - TO-220AB 2SK2314 ST

IRF5305 -55 0.06 -31 110 TO-220AB 2SJ349 IR

IRF5305L -55 0.06 -31 110 TO-262 2SJ401 IR

IRF5305S -55 0.06 -31 110 D2PAK 2SJ401 IR

IRF530A 100 0.11 14 55 TO-220AB 2SK2314 Samsung IRF530FI 100 0.16 10 - TO-220FP 2SK2391 ST

IRF530N 100 0.11 15 60 TO-220AB 2SK2314 IR

IRF530NS 100 0.11 15 63 D2PAK 2SK2789 IR

IRF530S 100 0.16 14 88 D2PAK 2SK2789 IR

IRF531(R) 80 0.16 14 - TO-220AB 2SK2314 Harris IRF532(R) 100 0.23 12 - TO-220AB 2SK2399 Harris IRF533(R) 80 0.23 12 - TO-220AB 2SK2314 Harris IRF540 100 0.077 28 150 TO-220AB 2SK2314 IR

IRF540 100 0.077 30 - TO-220AB 2SK2314 ST

IRF540A 100 0.052 28 107 TO-220AB 2SK2466 Samsung IRF540FI 100 0.077 16 - TO-220FP 2SK2391 ST

IRF540N 100 0.052 27 94 TO-220AB 2SK2466 IR

IRF540NS 100 0.052 27 110 D2PAK 2SK2466 IR

IRF540S 100 0.077 28 150 D2PAK 2SK2789 IR

IRF541(R) 80 0.077 28 - TO-220AB 2SK2314 Harris IRF542(R) 100 0.1 25 - TO-220AB 2SK2314 Harris IRF543(R) 80 0.1 25 - TO-220AB 2SK2314 Harris

IRF550A 100 0.04 40 167 TO-220AB 2SK2466 Samsung IRF610 200 1.5 3.3 36 TO-220AB 2SK2381 IR

IRF610A 200 1.5 3.3 38 TO-220AB 2SK2381 Samsung IRF610S 200 1.5 3.3 36 D2PAK 2SK2920 IR

IRF611(R) 150 1.5 3.3 - TO-220AB 2SK2381 Harris IRF612(R) 200 2.4 2.6 - TO-220AB 2SK2381 Harris IRF613(R) 150 2.4 2.6 - TO-220AB 2SK2381 Harris

IRF614 250 2 2.7 36 TO-220AB 2SK2840 IR

IRF614A 250 2 2.8 40 TO-220AB 2SK2840 Samsung IRF614S 250 2 2.7 36 D2PAK - IR

IRF620 200 0.8 5.2 50 TO-220AB 2SK2381 IR

IRF620 200 0.8 7 - TO-220AB 2SK2381 ST

IRF620A 200 0.8 5 47 TO-220AB 2SK2381 Samsung IRF620FI 200 0.8 4.3 - TO-220FP 2SK2381 ST

IRF620S 200 0.8 5.2 50 D2PAK 2SK2920 IR

IRF621(R) 150 0.8 5 - TO-220AB 2SK2381 Harris IRF6215 -150 0.29 -11 83 TO-220AB - IR

IRF622(R) 200 1.2 4 - TO-220AB 2SK2381 Harris IRF623(R) 150 1.2 4 - TO-220AB 2SK2381 Harris IRF624 250 1.1 4.4 50 TO-220AB 2SK2840 IR

IRF624A 250 1.1 4.1 49 TO-220AB 2SK2840 Samsung IRF624S 250 1.1 4.4 50 D2PAK - IR

IRF625 250 1.1 3.8 - TO-220AB 2SK2840 Harris

IRF626 275 0.68 6.5 - TO-220AB - Harris

IRF627 275 1.1 3.8 - TO-220AB - Harris

IRF630 200 0.4 9 74 TO-220AB YTA630 IR

IRF630A 200 0.4 9 72 TO-220AB YTA630 Samsung

IRF630S 200 0.4 9 74 D2PAK 2SK2401 IR

IRF631(R) 150 0.4 9 - TO-220AB 2SK2350 Harris IRF632(R) 200 0.4 9 - TO-220AB YTA630 Harris

IRF633(R) 150 0.6 8 - TO-220AB 2SK2350 Harris IRF634 250 0.45 8.1 74 TO-220AB 2SK2914 IR

IRF634A 250 0.45 8.1 74 TO-220AB 2SK2914 Samsung IRF634S 250 0.45 8.1 74 D2PAK 2SK2598 IR

IRF635 250 0.45 8.1 - TO-220AB 2SK2914 Harris IRF636 275 0.34 13 - TO-220AB - Harris

IRF637 275 0.45 8.1 - TO-220AB - Harris

IRF640 200 0.18 18 125 TO-220AB YTA640 IR

IRF640A 200 0.18 18 139 TO-220AB YTA640 Samsung IRF640S 200 0.18 18 125 D2PAK 2SK2401 IR

IRF641(R) 150 0.18 18 - TO-220AB 2SK2382 Harris IRF642(R) 200 0.18 18 - TO-220AB 2SK2382 Harris IRF643(R) 150 0.22 16 - TO-220AB 2SK2382 Harris IRF644 250 0.28 14 125 TO-220AB 2SK2508 IR

IRF644A 250 0.28 14 139 TO-220AB 2SK2508 Samsung IRF644S 250 0.28 14 125 D2PAK 2SK2598 IR

IRF645 250 0.28 14 - TO-220AB 2SK2508 Harris

IRF646 275 0.28 15 - TO-220AB - Harris

IRF647 275 0.28 14 - TO-220AB - Harris

IRF650A 200 0.085 28 156 TO-220AB - Samsung

IRF654A 250 0.14 21 156 TO-220AB - Samsung 2SJ112 100 10 100

2SJ113 100 10 100

2SJ114 200 8 100

2SJ115 160 8 100

2SJ116 400 8 125

2SJ118 140 8 100

2SJ119 160 8 100

2SJ131 170 10 100

2SJ200 180 10 120

2SJ201 200 12 150

2SJ351 180 8 100

2SJ352 200 8 100

2SJ459 450 4 70

IRF9130 100 12 75

IRF9132 100 10 75

IRF9140 100 19 125

IRF9142 100 15 125

IRF9230 200 6.5 75

IRF9231 150 6.5 75

IRF9232 200 5.5 75

IRF9233 150 5.5 75

IRF9240 200 11 125

IRF9241 150 11 125 IRF9242 200 9 125 IRF9243 150 9 125 IRF9540 100 19 125 IRF9541 60 19 125 IRF9542 100 15 125 IRF9543 60 15 125 IRF9640 200 11 125 IRF9641 100 11 125 IRF9642 200 9 125 IRF9643 150 9 125 IRF9630 200 6.5 75 IRF9631 150 6.5 75 IRF9632 200 5.5 75 IRF9633 150 5.5 75 MTM2P45 450 2 75 MTM2P50 500 2 75 MTM5P18 180 5 75 MTM5P20 200 5 75 MTM5P25 250 5 75 MTM8P10 100 8 75 MTM8P18 180 8 125 MTM20P10 100 20 125

MTP2P45 450 2 75 MTP2P50 500 2 75 MTP5P18 180 8 75 MTP5P20 200 5 75 MTP5P25 250 5 75 MTP8P18 100 8 75 MTP8P20 200 8 75 MTP8P25 250 8 75 MTP2P50E 500 2 75 SSM11P20 200 11 125 SSM20P10 100 20 125 SMP3P10 100 3 20 SMP11P20 200 11 125 SMP20P10 100 20 125 VPO335N1 350 2.7 125 IXTM5P50A 500 5 125 IXTM6P25A 250 6 75 IXTM7P15A 150 7 125 IXTM7P20A 200 7 75 IXTM7P45A 450 7 125 IXTM7P50A 500 7 125 IXTM8P25A 250 8 125 IXTM8P45A 450 8 150

IXTM8P50A 500 8 150 IXTM9P15A 150 9 125 IXTM9P20A 200 9 125 IXTM9P25A 250 9 125 IXTM10P45A 450 10 200 IXTM10P50A 500 10 200 IXTM11P15A 100 15 125 IXTM11P20A 200 15 125 IXTMQQP45A 450 11 200 IXTM11P50A 500 11 200 IXTM12P25A 250 12 125 IXTM13P15A 150 13 125 IXTM13P20A 200 13 125 IXTM13P25A 250 13 125 IXTM15P15A 150 15 150 IXTM15P20A 200 15 150

MOS管工作原理及其驱动电路

功率场效应晶体管MOSFET 技术分类:电源技术模拟设计 | 2007-06-07 来源:全网电子 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的 MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET 器件的耐压和耐电流能力。

MOS管的结构和工作原理

在P 型衬底上,制作两个高掺杂浓度的N 型区,形成源极(Source )和漏极(Drian ),另外一个是栅极(Gate ).当Vi=VgsVgs 并且在Vds 较高的情况下,MOS 管工作在恒流区,随着Vi 的升高Id 增大,而Vo 随这下降。 常用逻辑电平:TTL 、CMOS 、LVTTL 、LVCMOS 、ECL (Emitter Coupled Logic )、PECL (Pseudo/Positive Emitter Coupled Logic )、LVDS (Low Voltage Differential Signaling )、GTL (Gunning Transceiver Logic )、BTL (Backplane Transceiver Logic )、ETL (enhanced transceiver logic )、GTLP (Gunning Transceiver Logic Plus );RS232、RS422、RS485(12V ,5V , 3.3V );TTL 和CMOS 不可以直接互连,由于TTL 是在0.3-3.6V 之间,而CMOS 则是有在12V 的有在5V 的。CMOS 输出接到TTL 是可以直接互连。TTL 接到CMOS 需要在输出端口加一上拉电阻接到5V 或者12V 。 cmos 的高低电平分别 为:Vih>=0.7VDD,Vil<=0.3VDD;Voh>=0.9VDD,Vol<=0.1VDD. ttl 的为:Vih>=2.0v,Vil<=0.8v;Voh>=2.4v,Vol<=0.4v. 用cmos 可直接驱动ttl;加上拉电阻后,ttl 可驱动cmos. 1、当TTL 电路驱动COMS 电路时,如果TTL 电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V ),这时就需要在TTL 的输出

MOS管工作原理及其驱动电路

MOS管工作原理及其驱动电路 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导 体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的 栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS 型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。 结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单, 需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流 容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值 可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对 于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的 载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同, 但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂 直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET器件 的耐压和耐电流能力。

MOS管工作原理及芯片汇总

MOS管工作原理及芯片汇总 一:MOS管参数解释 MOS管介绍 在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素。 MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。 这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。 在MOS管内部,漏极和源极之间会寄生一个二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要,并且只在单个的MOS管中存在此二极管,在集成电路芯片内部通常是没有的。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免。 MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V, 其他电压,看手册)就可以了。PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率M OS管导通电阻一般在几毫欧,几十毫欧左右 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,导通瞬间电压和电流的乘积很大,造成的损失也就很大。降低开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 MOS管驱动 MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。但是,我们还需要速度。

场效应管工作原理

场效应管工作原理 MOS场效应管电源开关电路。 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP 型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P 型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。 对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在

场效应管介绍

场效应管原理 场效应管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。有N沟道器件和P沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide Semiconductor FET)。1.1 1.1.1 MOS场效应管 MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 一、工作原理 1.沟道形成原理 当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。 当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加VGS,当VGS>VGS(th)时(VGS(th) 称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟 1 线性电子电路教案 道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 转移特性曲线的斜率gm的大小反映了栅源电压对漏极电流的控制作用。gm 的量纲为mA/V,所以gm也称为跨导。 跨导的定义式如下:constDS==VGSDVIgmΔΔ (单位mS) 2.VDS对沟道导电能力的控制 当VGS>VGS(th),且固定为某一值时,来分析漏源电压VDS对漏极电流ID的影响。VDS的不同变化对沟道的影响如图3-2所示。根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS VGD=VGS—VDS 当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,漏源之间有电流通过。 当VDS增加到使VGD=VGS(th)时,相当于VDS增加使漏极处沟道缩减到刚刚开启的情况,称为预夹断,此时的漏极电流ID基本饱和。当VDS增加到VGDVGS(th)、

P沟道MOS管工作原理

P沟道MOS管工作原理 金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类, P沟道硅MOS 场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间不通导,柵极上加有足够的正电压(源极接地)时,柵极下的N型硅表面呈现P型反型层,成为连接源极和漏极的沟道。改变栅压可以改变沟道中的电子密度,从而改变沟道的电阻。这种MOS场效应晶体管称为P沟道增强型场效应晶体管。如果N型硅衬底表面不加栅压就已存在P型反型层沟道,加上适当的偏压,可使沟道的电阻增大或减小。这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。统称为PMOS晶体管。 P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为NMOS电路所取代。只是,因PMOS电路工艺简单,价格便宜,有些中规模和小规模数字控制电路仍采用PMOS电路技术。PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 正常工作时,P沟道增强型MOS管的衬底必须与源极相连,而漏心极的电压Vds应为负值,以保证两个P区与衬底之间的PN结均为反偏,同时为了在衬底顶表面附近形成导电沟道,栅极对源极的电压Vgs也应为负。 1.导电沟道的形成(Vds=0) 当Vds=0时,在栅源之间加负电压Vgs,由于绝缘层的存在,故没有电流,但是金属栅极被补充电而聚集负电荷,N型半导体中的多子电子被负电荷排斥向体内运动,表面留下带正电的离子,形成耗尽层,随着G、S间负电压的增加,耗尽层加宽,当Vgs增大到一定值时,衬底中的空穴(少子)被栅极中的负电荷吸引到表面,在耗尽层和绝缘层之间形成一个P型薄层,称反型层,这个反型层就构成漏源之间的导电沟道,这时的Vgs称为开启电压Vgs(th),Vgs到Vgs(th)后再增加,衬底表面感应的空穴越多,反型层加宽,而耗尽层的宽度却不再变化,这样我们可以用Vgs的大小控制导电沟道的宽度。 2.Vds≠O的情况 导电沟道形成以后,D,S间加负向电压时,那么在源极与漏极之间将有漏极电流Id 流通,而且Id随Vds而增加.Id沿沟道产生的压降使沟道上各点与栅极间的电压不再相等,该电压削弱了栅极中负电荷电场的作用,使沟道从漏极到源极逐渐变窄.当Vds增大到使Vgd=Vgs(TH),沟道在漏极附近出现预夹断.

详细讲解MOS管工作原理

详细讲解MOSFET管驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

结型场效应管_百度文库.

1、结型场效应管的管脚识别 场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。将万用表置于R×1k档,用两表笔分别测量每两个管脚间的正、反向电阻。当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。 2、判定栅极(红表笔接表内电池的负极,黑表笔接表内电池的正极) 用万用表黑表笔碰触管子的栅极,红表笔分别碰触另外两个电极。若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管。 制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。若要区分,则可根据在源—漏之间有一个PN结,通过测量PN结正、反向电阻存在差异,识别S极与D极。将万用表拨到R×100档,用交换表笔法测两次电阻,相当于给场效应管加上1.5V的电源电压,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻。此时黑表笔的是S极,红表笔接D 极。 注意不能用此法判定绝缘栅型场效应管的栅极。因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。 3、估测场效应管的放大能力 将万用表拨到R×100档,相当于给场效应管加上1.5V的

电源电压。这时表针指示出的是D-S极间电阻值。然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。由于管子的放大作用,UDS 和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。 由于人体感应的50Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。 本方法也适用于测MOS管。为了保护MOS场效应管,必须用手握住金属杆,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。

MOS管工作原理动画示意图也有N沟道和P沟道两类

MOS管工作原理动画示意图也有N沟道和P沟道两类 绝缘型场效应管的栅极与源极、栅极和漏极之间均采用SiO2绝缘层隔离,因此而得名。又因栅极为金属铝,故又称为MOS管。它的栅极-源极之间的电阻比结型场效应管大得多,可达1010Ω以上,还因为它比结型场效应管温度稳定性好、集成化时温度简单,而广泛应用于大规模和超大规模集成电路中。 与结型场效应管相同,MOS管工作原理动画示意图也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种,因此MOS管的四种类型为:N沟道增强型管、N沟道耗尽型管、P沟道增强型管、P沟道耗尽型管。凡栅极-源极电压UGS为零时漏极电流也为零的管子均属于增强型管,凡栅极-源极电压UGS为零时漏极电流不为零的管子均属于耗尽型管。 根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。 N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S 间形成电流。 当栅极加有电压时,若0VGS(th)时( VGS(th)称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层。随着VGS的继续增加,ID

N沟道MOS管的结构及工作原理

N 沟道 MOS 管的结构及工作原理
N 沟道金属-氧化物-半导体场效应管(MOS 管)的结构及工作原理 结型场效应管的输入电阻虽然可达 106~109W,但在要求输入电阻更高的场合,还 是不能满足要求。而且,由于它的输入电阻是 PN 结的反偏电阻,在高温条件下工作时, PN 结反向电流增大,反偏电阻的阻值明显下降。与结型场效应管不同,金属-氧化物半导体场效应管(MOSFET)的栅极与半导体之间隔有二氧化硅(SiO2)绝缘介质,使栅 极处于绝缘状态(故又称绝缘栅场效应管),因而它的输入电阻可高达 1015W。它的另 一个优点是制造工艺简单,适于制造大规模及超大规模集成电路。 MOS 管也有 N 沟道和 P 沟道之分,而且每一类又分为增强型和耗尽型两种,二者的 区别是增强型 MOS 管在栅-源电压 vGS=0 时,漏-源极之间没有导电沟道存在,即使加上 电压 vDS(在一定的数值范围内),也没有漏极电流产生(iD=0)。而耗尽型 MOS 管在 vGS=0 时,漏-源极间就有导电沟道存在。 一、N 沟道增强型场效应管结构
a) N 沟道增强型 MOS 管结构示意图

(b) N 沟道增强型 MOS 管代表符号
(c) P 沟道增强型 MOS 管代表符号
在一块掺杂浓度较低的 P 型硅衬底上, 用光刻、 扩散工艺制作两个高掺杂浓度的 N+ 区,并用金属铝引出两个电极,分别作漏极 d 和源极 s。然后在半导体表面复盖一层很 薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装上一个铝电极,作为栅极 g。 另外在衬底上也引出一个电极 B,这就构成了一个 N 沟道增强型 MOS 管。显然它的栅极 与其它电极间是绝缘的。图 1(a)、(b)分别是它的结构示意图和代表符号。代表符号中 的箭头方向表示由 P(衬底)指向 N(沟道)。P 沟道增强型 MOS 管的箭头方向与上述相反, 如图 1(c)所示。 二、N 沟道增强型场效应管工作原理 1.vGS 对 iD 及沟道的控制作用 MOS 管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。 从图 1(a) 可以看出, 增强型 MOS 管的漏极 d 和源极 s 之间有两个背靠背的 PN 结。 当栅-源电压 vGS=0 时,即使加上漏-源电压 vDS,而且不论 vDS 的极性如何,总有一个 PN 结处于反偏状态, 漏-源极间没有导电沟道,所以这时漏极电流 iD≈0。 若在栅-源极间加上正向电压, vGS>0, 即 则栅极和衬底之间的 SiO2 绝缘层中便产 生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子, 因而使栅极附近的 P 型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成 耗尽层,同时 P 衬底中的电子(少子)被吸引到衬底表面。当 vGS 数值较小,吸引电子 的能力不强时,漏-源极之间仍无导电沟道出现,如图 1(b)所示。vGS 增加时,吸引到 P 衬底表面层的电子就增多,当 vGS 达到某一数值时,这些电子在栅极附近的 P 衬底表面 便形成一个 N 型薄层,且与两个 N+区相连通,在漏-源极间形成 N 型导电沟道,其导电 类型与 P 衬底相反,故又称为反型层,如图 1(c)所示。vGS 越大,作用于半导体表面的

场效应管的分类

场效应管的分类 场效应管(FET)是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。 场效应管的种类很多,按结构可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET).结型场效应管又分为N沟道和P沟道两种。绝缘栅场效应管主要指金属--氧化物--半导体场效应管(MOS管)。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电 流的,输入电阻(105~1015)之间; 绝缘栅型是利用感应电荷的多少来控制导电沟道的宽窄从而控制电流的大小,其输入阻抗很高(栅极与其它电极互相绝缘)。它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。 场效应管的型号命名方法现行场效应管有两种命名方法。 第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D 是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场

效应三极管。 第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 场效应管所有厂家的中英文对照表在场效应管对照表中,收编了美国、日本及欧洲等近百家半导体厂家生产的结型场效应晶体管(JFET)、金属氧化物半导体场次晶体管(MOSFET)、肖特基势垒控制栅场效应晶体管(SB)、金属半导体场效应晶体管(MES)、高电子迁移率晶体管(HEMT)、静电感应晶体管(SIT)、绝缘栅双极晶体管(IGBT)等属于场效应晶体管系列的单管、对管及组件等,型号达数万种之多。每种型号的场效应晶体管都示出其主要生产厂家、材料与极性、外型与管脚排列、用途与主要特性参数。同时还在备注栏列出世界各国可供代换的场效应晶体管型号,其中含国产场效应晶体管型号。 1."型号"栏 表中所列各种场效应晶体管型号按英文字母和阿拉伯数 字顺序排列。同一类型的场效应晶体型号编为一组,处于同一格子内,不用细线分开。 2."厂家"栏 为了节省篇幅,仅列入主要厂家,且厂家名称采用缩写的形式表示。)

N沟道和P沟道MOS管工作原理

MOS/CMOS集成电路简介及N沟道MOS管和P沟道MOS管 在实际项目中,我们基本都用增强型mos管,分为N沟道和P沟道两种。 我们常用的是NMOS,因为其导通电阻小,且容易制造。在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 1.导通特性 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低

端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 2.MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越高,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 3.MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极

结型场效应管

结型场效应管 场效应管 场效应管(Fjeld Effect Transistor简 称FET )是利用电 场效应来控制半导 体中电流的一种半 导体器件,故因此 而得名。场效应管 是一种电压控制器 件,只依靠一种载 流子参与导电,故 又称为单极型晶体 管。与双极型晶体三极管相比,它具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗小、制造工艺简单和便于集成化等优点。 场效应管有两大类,结型场效应管JFET和绝缘栅型场效应管IGFET,后者性能更为优越,发展迅速,应用广泛。图Z0121 为场效应管的类型及图形、符号。 一、结构与分类 图Z0122为N沟道结型场效应管结构示意图和它的图形、符号。它是在同一块N型硅片的两侧分别制作掺杂浓度较高的P型区(用P+表示),形成两个对称的PN结,将两个P区的引出线连在一起作为一个电极,称为栅极(g),在N型硅片两端各引出一个电极,分别称为源极(s)和漏极(d)。在形成PN结过程中,由于P+区是重掺杂区,所以N一区侧的空间电荷层宽度远大二、工作原理 N沟道和P沟道结型场效应管的工作原理完全相同,只是偏置电压的极性和载流子的类型不同而已。下面以N沟道结型场效应管为例来分析其工作原理。电路如图Z0123所示。由于栅源间加反向电压,所以两侧PN结均处于反向偏置,栅源电流几乎为零。 漏源之间加正向电压使N型半导体中的多数载流子-电子由源极出发,经过沟道到达漏极形成漏极电流I D。 1.栅源电压U GS对导电沟道的影响(设U DS=0) 在图Z0123所示电路中,U GS<0,两个PN结处于反向偏置,耗尽层有一定宽度,I D=0。若|U GS| 增大,耗尽层变宽,沟道被压缩,截面积减小,沟道电阻增大;若|U GS| 减小,耗尽层变窄,沟道变宽,电阻减小。这表明U GS控制着漏源之间的导电沟道。当U GS负值增加到某一数值V P时,两边耗尽层合拢,整个沟道被耗尽层完全夹断。(V P称为夹断电压)此时,漏源之间的电阻趋于无穷大。管子处于截止状态,I D=0。 2.漏源电压U GS对漏极电流ID的影响(设U GS=0) 当U GS=0时,显然I D=0;当U DS>0且尚小对,P+N结因加反向电压,使耗尽层具有一定宽度,但宽度上下不均匀,这是由于漏源之间的导电沟道具有一定电阻,因而漏源电压U DS沿沟道递降,造成漏端电位高于源端电位,使近漏端PN结上的反向偏压大于近源端,因而近漏端耗尽层宽度大于近源端。显然,在U DS较小时,沟道呈现一定电阻,I D随U DS成线性规律变化(如图Z0124曲线OA段);若U GS再继续增大,耗尽层也随之增宽,导电沟道相应变窄,尤其是近漏端更加明显。由于沟道电阻的增大,I D增长变慢了(如图曲线AB段),当U DS增大到等于|V P|时,沟道在近漏端首先发生耗尽层相碰的现象。这种状态称为预夹断。这时管子并不截止,因为漏源两极间的场强已足够大,完全可以把向漏极漂移的全部电子吸引过去形成漏极饱和电流I DSS (这种情况如曲线B点):当U DS>|V P|再增加时,耗尽层从近漏端开始沿沟道加长它的接触部分,形成夹断区。由于耗尽层的电阻比沟道电阻大得多,所以比|V P|大的那部分电压基本上降在夹断区上,使夹断区形成很强的电场,它完全可以把沟道中向漏极漂移的电子拉向漏极,形成漏极电流。因为未被夹断的沟道上的电压基本保持不变,于是向漏极方向漂移的电子也基本保持不

N沟道增强型MOS管的工作原理

N沟道增强型MOS管的工作原理 发布时间:2010.04.28 | 查看次数:484 N沟道增强型MOS管的工作原理 (1)vGS对iD及沟道的控制作用 ① vGS=0 的情况 增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅——源电压vGS=0时,即使加上漏——源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏——源极间没有导电沟道,所以这时漏极电流iD≈0。 ② vGS>0 的情况 若vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个电场。电场方向垂直于半导体表面的由栅极指向衬底的电场。这个电场能排斥空穴而吸引电子。 排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表面。 (2)导电沟道的形成: 当vGS数值较小,吸引电子的能力不强时,漏——源极之间仍无导电沟道出现。vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏——源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层。vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。 开始形成沟道时的栅——源极电压称为开启电压,用VT表示。 上面讨论的N沟道MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。只有当vGS ≥VT时,才有沟道形成。这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS 管。沟道形成以后,在漏——源极间加上正向电压vDS,就有漏极电流产生。 vDS对iD的影响 当vGS>VT且为一确定值时,漏——源电压vDS对导电沟道及电流iD的影响与结型场效应管相似。 漏极电流iD沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为VGD=vGS-vDS,因而这里沟道最薄。但当vDS较小(vDS随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使VGD=vGS-vDS=VT(或vDS=vGS-VT)时,沟道在漏极一端出现预夹断。再继续增大vDS,夹断点将向源极方向移动。由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎仅由vGS决定。 N沟道耗尽型MOS管的基本结构 (1)结构: N沟道耗尽型MOS管与N沟道增强型MOS管基本相似。 (2)区别: 耗尽型MOS管在vGS=0时,漏——源极间已有导电沟道产生,而增强型MOS管要在vGS≥VT 时才出现导电沟道。 (3)原因:

场效应管(MOS管)知识介绍

场效应管(MOS管)知识介绍 6.1场效应管英文缩写:FET(Field-effect transistor) 6.2 场效应管分类:结型场效应管和绝缘栅型场效应管 6.3 场效应管电路符号: 结型场效应管 S S N沟道 P沟道 6.4场效应管的三个引脚分别表示为:G(栅极),D(漏极),S(源极) D D D D G G G G 绝缘栅型场效应管 增强型 S 耗尽型 N沟道 P沟道 N沟道 P沟道 注:场效应管属于电压控制型元件,又利用多子导电故称单极型元件,且具有输入电阻高,噪声小,功耗低,无二次击穿现象等优点。 6.5场效应晶体管的优点:具有较高输入电阻高、输入电流低于零,几乎不要向信号源 吸取电流,在在基极注入电流的大小,直接影响集电极电流的大小,利用输出电流控制输出电源的半导体。 6.6场效应管与晶体管的比较 (1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。 (3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。 (4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管 6.7 场效应管好坏与极性判别:将万用表的量程选择在RX1K档,用黑表笔接D极,红表笔接S极,用手同时触及一下G,D极,场效应管应呈瞬时导通状态,即表针摆向阻值较小的位置,再用手触及一下G,S极, 场效应管应无反应,即表针回零位置不动.此时应可判断出场效应管

mos管工作原理及详解

万联芯城致力于打造一个方便快捷的电子物料采购平台。采购MOS管等电子元器件,就到万联芯城,万联芯城MOS场效应管主打 IR,AOS,VISHAY等知名国际品牌,均为原装进口货源,当天可发货。点击进入万联芯城 点击进入万联芯城

MOS管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS 管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。 下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管工作原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 MOS管工作原理图电源开关电路详解 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS的工作原理图。

它一般有耗尽型和增强型两种。本文使用的为增强型MOS MOS管,其内部结构见mos管工作原理图。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

p沟道mos管工作原理

P通道为空穴流,N通道为电子流,所以场效应三极管也称为单极性三极管。FET 乃是利用输入电压(Vgs)来控制输出电流(Id)的大小。所以场效应三极管是属于电压控制元件。它有两种类型,一是结型(接面型场效应管)(JFET),一是金氧半场效应三极管,简称MOSFET,MOSFET又可分为增强型与耗尽型两种。 N沟道,P沟道结型场效应管的D、S是由N(或P)中间是栅极夹持的通道,这个通道大小是受电压控制的,当然就有电流随栅极电压变化而变。可以看成栅极是控制电流阀门。 增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。栅极电压高低决定电场的变化,进而影响载流子的多少,引起通过S、D电流变化。 MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。 主板上的PWM(Plus Width Modulator,脉冲宽度调制器)芯片产生一个宽度可调的脉冲波形,这样可以使两只MOS管轮流导通。当负载两端的电压(如CPU需要的电压)要降低时,这时MOS管的开关作用开始生效,外部电源对电感进行充电并达到所需的额定电压。当负载两端的电压升高时,通过MOS管的开关作用,外部电源供电断开,电感释放出刚才充入的能量,这时的电感就变成了“电源”,当栅-源电压vGS=0时,即使加上漏-源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道。 MOS管 MOS管的英文全称叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金属氧化物半导体型场效应管,属于场效应晶体管中的绝缘栅型。因此,MOS管有时被称为场效应管。在一般电子电路中,MOS管通常被用于放大电路或开关电路。而在主板上的电源稳压电路中,MOSFET扮演的角色主要是判断电位,它在主板上常用“Q”加数字表示。 一、MOS管的作用是什么? 目前主板或显卡上所采用的MOS管并不是太多,一般有10个左右,主要原因是大部分MOS管被整合到IC芯片中去了。由于MOS管主要是为配件提供稳定的电压,所以它一般使用在CPU、AGP插槽和内存插槽附近。其中在CPU与AGP插槽附近各安排一组MOS管,而内存插槽则共用了一组MOS管,MOS管一般是以两个组成一组的形式出现主板上的。 二、MOS管的性能参数有哪些? 优质的MOS管能够承受的电流峰值更高。一般情况下我们要判断主板上MOS 管的质量高低,可以看它能承受的最大电流值。影响MOS管质量高低的参数非常多,像极端电流、极端电压等。但在MOS管上无法标注这么多参数,所以在MOS 管表面一般只标注了产品的型号,我们可以根据该型号上网查找具体的性能参数。 还要说明的是,温度也是MOS管一个非常重要的性能参数。主要包括环境温度、管壳温度、贮成温度等。由于CPU频率的提高,MOS管需要承受的电流也随

相关文档
相关文档 最新文档