文档库 最新最全的文档下载
当前位置:文档库 › 直接数字频率合成低频信号源的设计与实现

直接数字频率合成低频信号源的设计与实现

直接数字频率合成低频信号源的设计与实现
直接数字频率合成低频信号源的设计与实现

基于LM324的简易信号发生器的设计

模拟电子技术 研究性学习论文 基于LM324的简易函数发生器的设计 学院:电子信息工程学院 专业:通信工程 学生姓名: 学号: 指导教师:白双 2014 年06 月03 日

中文摘要 信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。本文设计了以运算放大器LM324为核心器件的一个能产生正弦波、矩形波、三角波的简易低频信号发生器。通过对电路分析,确定了元器件的参数,并利用Multisim软件仿真电路的理想输出结果。 关键词:信号发生器、RC桥式振荡电路、运算放大器 Abstract Signal generator is widely used in measurement, communication, auto-control and other electric fields. This paper using operational amplifier LM324 as core device to design a simple low-frequency signal generator, which can generate sine, square, triangular. The parameters of the circuit are tested and recognized. Multisim software simulates the output of the three waves. Keywords:signal generator, RC bridge oscillator circuit, operational amplifier

低频信号发生器设计开题报告

1 研究的目的及其意义 随着电子测量及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类增多,性能提高。尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。现在,信号发生器带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能,可以和控制计算机及其他测量仪器一起方便的构成自动测试系统。当前信号发生器总的趋势是向着宽频率覆盖、低功耗、高频率、精度、多功能、自动化和智能化方向发展。在科学研究、工程教育及生产实践中,如工业过程控制、教学实验、机械振动试验、动态分析、材料试验、生物医学等领域,常常需要用到低频信号发生器。而在我们日常生活中,以及一些科学研究中,锯齿波和正弦波、矩形波信号是常用的基本测试信号。譬如在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波产生器作为时基电路。信号发生器作为一种通用的电子仪器,在生产、科研、测控、通讯等领域都得到了广泛的应用。但市面上能看到的仪器在频率精度、带宽、波形种类及程控方面都已不能满足许多方面实际应用的需求。加之各类功能的半导体集成芯片的快速生产,都使我们研制一种低功耗、宽频带,能产生多种波形并具有程控等低频的信号发生器成为可能。 便携式和智能化越来越成为仪器的基本要求,对传统仪器的数字化,智能化,集成化也就明显得尤为重要。平时常用信号源产生正弦波,方波,三角波等常见波形作为待测系统的输入,测试系统的性能。单在某些场合,我们需要特殊波形对系统进行测试,这是传统的模拟信号发生器和数字信号发生器很难胜任的。利用单片机,设计合适的人机交互界面,使用户能够通过手动的设定,设置所需波形。该设计课题的研究和制作全面说明对低频信号发生系统要有一个全面的了解、对低频信号的发生原理要理解掌握,以及低频信号发生器工作流程:波形的设定,D/A 转换,显示和各模块的连接通信等各个部分要熟练联接调试,能够正确的了解常规芯片的使用方法、掌握简单信号发生器应用系统软硬件的设计方法,进一步锻炼了我们在信号处理方面的实际工作能力。 2 国内外研究现状 在 70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信

基于FPGA的简易DDS信号源设计

基于FPGA的简易DDS信号源设计 一、设计方案背景 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器的实现方法通常是采用分立元件或单片专用集成芯片,但其频率不高,稳定性较差,且不易调试,开发和使用上都受到较大限制。随着可编程逻辑器件(FPGA)的不断发展,直接频率合成(DDS)技术应用的愈加成熟,利用DDS原理在FPGA平台上开发高性能的多种波形信号发生器与基于DDS芯片的信号发生器相比,成本更低,操作更加灵活,而且还能根据要求在线更新配置,系统开发趋于软件化、自定义化。本设计用大赛要求的赛灵思芯片,研究基于FPGA的DDS信号发生器设计,实现了满足预定指标的多波形输出。 二、设计方案论证 2.1 总体方案论证与比较 方案一:采用模拟锁相环实现 模拟锁相环技术是一项比较成熟的技术。应用模拟锁相环,可将基准频率倍频,或分频得到所需的频率,且调节精度可以做到相当高、稳定性也比较好。但模拟锁相环模拟电路复杂,不易调节,成本较高,并且频率调节不便且调节范围小,输出波形的毛刺较多,得不到满意的效果。 方案二:采用直接数字频率合成,用单片机作为核心控制部件,能达到较高的要求,实现各种波形输出,但受限于运算位数和运算速度,产生的波形往往达不到满意效果,并且频率可调范围小,很难得到较高频率,并且单片机的引脚少,存储容量少,这就导致了外围电路复杂。 方案三:采用直接数字频率合成,用FPGA器件作为核心控制部件,精度高稳定性好,得到波形平滑,特别是由于FPGA的高速度,能实现较高频率的波形。控制上更方便,可得到较宽频率范围的波形输出,步进小,外围电路简单易实现。因此采用方案三。 2.2 DDS模块方案论证 方案一:采用高性能DDS 单片电路的解决方案 随着微电子技术的飞速发展,目前高超性能优良的DDS 产品不断推出,主要有Qualcomm 、AD、Sciteg 和Stanford 等公司单片电路(monolithic)。Qualcomm 公司推出了DDS 系列Q2220 、Q2230 、Q2334 、Q2240 、Q2368 ,其中Q2368 的时钟频率为130MHz,分辨率为0.03Hz,变频时间为0.1μs;美国AD 公司也相继推出了他们的DDS 系列:AD9850 、AD9851 、可以实现线性调频

低频信号发生器设计报告

低频信号发生器设计报告 一.设计要求 (一)设计题目要求 1.分析电路的功能并设计电路的单元电路 2.查找图中相应元件的参数,找出国外对应元件的型号 3.用EWB或Multisim软件进行电路仿真,打印仿真原理图和仿真结果 4.用A3图纸绘出系统电路原理图 (二)其他要求 1.必须独立完成设计课题 2.合理选用元器件 3.要求有目录、参考资料、结语 4.论文页数不少于20页 二.设计的作用、目的 (一)设计的作用 低频信号发生器是电子测量中不可缺少的设备之一。完成一个低频信号发生器的设计,可以达到对模拟电路知识较全面的运用和掌握。 (二)设计的目的 电子电路设计及制作课程设计是电子技术基础课程的实践性教学环节,通过该教学环节,要求达到以下目的: 1.进一步掌握模拟电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力; 2.基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。

三.设计的具体实现 (一)系统概述 根据课题任务,所要设计的低频信号发生器由三大部分组成: ⑴正弦信号发生部分 ⑵信号输出部分 ⑶稳幅部分 其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。 1.正弦信号发生部分可以有以下实现方案: ⑴以晶体管(晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。开关速度可以非常快) 为核心元件,加RC(文氏桥或移相式)或变压器反LC(馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。

直接数字频率合成知识点汇总(原理_组成_优缺点_实现)

直接数字频率合成知识点汇总(原理_组成_优缺点_实现) 直接数字频率合概述DDS同DSP(数字信号处理)一样,也是一项关键的数字化技术。DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。DDS 是从相位概念出发直接合成所需要波形的一种新的频率合成技术。 直接数字频率合成是一种新的频率合成技术和信号产生的方法,具有超高速的频率转换时间、极高的频率分辨率分辨率和较低的相位噪声,在频率改变与调频时,DDS能够保持相位的连续,因此很容易实现频率、相位和幅度调制。此外,DDS技术大部分是基于数字电路技术的,具有可编程控制的突出优点。因此,这种信号产生技术得到了越来越广泛的应用,很多厂家已经生产出了DDS专用芯片,这种器件成为当今电子系统及设各中频率源的首选器件。 直接数字频率合成原理工作过程为: 1、将存于数表中的数字波形,经数模转换器D/A,形成模拟量波形。 2、两种方法可以改变输出信号的频率: (1)改变查表寻址的时钟CLOCK的频率,可以改变输出波形的频率。 (2)、改变寻址的步长来改变输出信号的频率.DDS即采用此法。步长即为对数字波形查表的相位增量。由累加器对相位增量进行累加,累加器的值作为查表地址。 3、D/A输出的阶梯形波形,经低通(带通)滤波,成为质量符合需要的模拟波形。 直接数字频率合成系统的构成直接数字频率合成主要由标准参考频率源、相位累加器、波形存储器、数/模转换器、低通平滑滤波器等构成。其中,参考频率源一般是一个高稳定度的晶体振荡器,其输出信号用于DDS中各部件同步工作。DDS的实质是对相位进行可控等间隔的采样。 直接数字频率合成优缺点优点:(1)输出频率相对带宽较宽 输出频率带宽为50%fs(理论值)。但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到40%fs。 (2)频率转换时间短

基于单片机的低频信号发生器设计

龙源期刊网 https://www.wendangku.net/doc/d07249210.html, 基于单片机的低频信号发生器设计 作者:任小青王晓娟田芳 来源:《现代电子技术》2014年第16期 摘要:主要介绍以AT89C51单片机为核心部件的低频信号发生器的设计方法及工作原理。系统采用单片机扩展外部存储器和DAC接口技术,简化了仪器硬件设计。通过波形选择电路读取波形信号经离散化处理之后的波代码,并通过D/ A 转换,还原成所需要的波形。通过改变存储器输出波代码的速度来调节输出信号的频率,改变放大器的放大倍数来调节输出信号的幅值。此外还讨论了波形离散化处理方法及数据采样点数与存储容量的关系,并给出了 系统结构图和软件框图。 关键词:低频信号;数据离散化;幅值;典型信号 中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2014)16?0014?04 Design on low?frequency signal generator based on SCM REN Xiao?qing1, WANG Xiao?juan1, TAN Fang2 (1. School of Mechanical Engineering, Qinghai University, Xining 810016, China; 2. Modern Education Technology Center, Qinghai University, Xining 810016, China) Abstract: The design approach and working principle of a low?frequency signal generator based on AT89C51 are introduced. The hardware design was simplified by using external memory extended with SCM and DAC interface technology. The wave code after discretization processing of waveform signal is read out though a waveform selection circuit, and reverted to the needed waveform by the D/A converter. The output signal frequency is adjusted by changing the wave code output speed of the memory. The amplitude is adjusted by changing the magnification of the amplifier. The waveform discretization processing method, and the relation between data sampling number and storage capacity are discussed. The system structure chart and software flow chart are given. Keywords: low?frequency signal; data discretization; amplitude; typical signal 0 引言 在工业测量控制系统的开发过程中,常需要采用信号发生器为控制系统提供输入信号来 模拟实际输入,并根据输出的频率响应特性来对系统进行调校。该系统不但能提供多种波形信号,而且信号的频率和幅值的大小也很容易控制。用它来模拟多种工况下的真实输入信号, 以达到降低开发成本、提高项目开发效率的目的。本文介绍了以AT89C51单片机为控制核心

低频正弦信号发生器 (1) (1)

《电子技术》课程设计报告 题目低频正弦信号发生器 学院(部)电子与控制工程学院 专业建筑电气与智能化 班级2013320602 学生姓名吴会从 学号201332060225 6 月29 日至 7 月10 日共2 周 指导教师(签字)

前言 正弦交流信号是一种应用极为广泛的信号,它通常作为标准信号,用于电子电路的性能试验或参数测量。另外,在许多测试仪中也需要用标准的正弦信号检测一些物理量,正弦信号用作标准信号时,要求正弦信号必须有较高的精度,稳定度及低的失真率。 本次电子课程设计的低频正弦信号发生器的要求为:信号的频率范围为20HZ~20KHZ;输出电压幅度为 5V;输出信号频率数字显示;输出电压幅度显示。 针对以上设计要求,我们从图书馆收集,借阅了大量相关书籍,从网上下载了诸多相关资料,其次安装并学习使用了电路设计中所常使用的Multisim仿真软件。在设计的要求下,画出了整体电路的框图,将其分为正弦信号发生器,输出信号频率和其数字显示,输出电压和幅度数字显示三大部分。其中,正弦信号发生器部分主要由我负责,输出信号频率和其数字显示部分主要由刘琪负责,输出电压和幅度数字显示部分主要由李光辉负责。其次我们对每个单元电路进行设计分析,对其工作原理进行介绍,通过对电路分析,确定了元器件的参数,并利用Multisim 软件仿真电路的理想输出结果,克服了设计低频信号发生器电路方面存在的技术难题,使得设计的低频信号发生器结构简单,实现方便。 完成电路的设计与分析后,对资料与设计电路进行整理,排版,完成课程设计报告。

目录 摘要 (4) 关键字 (4) 技术要求 (4) 第一章系统概述 (5) 第二章单元电路设计 (6) 第一节正弦信号产生和放大电路模块设计 (6) 第二节数字的频率显示 (10) 第三节数字电压表设计 (17) 第三章结束语 (23) 参考文献 (23) 鸣谢 (23) 元器件明细表 (24) 收获与体会,存在的问题 (24) 评语 (26)

直接数字频率合成器开题报告

毕业设计(论文)开题报告 题目基于FPGA的直接数字频率合成 专业名称通信工程 班级学号09042138 学生姓名周忠 指导教师刘敏 填表日期2013 年 1 月8 日

一、选题的依据及意义: 直接数字频率合成器(Direct Digital Frequency Synthesizer)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。其电路系统具有较高的频率分辨率,可以实现快速的频率切换(<20ns),频率分辨率高(0.01HZ),频率稳定度高,输出信号的频率和相位可以快速程控切换,输出相位可连续,可编程以及灵活性大等优点。DDS技术很容易实现频率、相位和幅度的数控调制,广泛用于接收本振、信号发生器、仪器、通信系统、雷达系统等,尤其适合调频无线通信系统 本课题使用可编程器件实现直接数字频率合成设计,它比传统的数字频率合成方式有着显著的优越性,与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。 二、国内外研究概况及发展趋势(含文献综述): 直接数字频率合成(DDS)技术是第三代频率合成技术。20世纪70年代以来,随着数字集成电路和电子技术的发展,出现了一种新的合成方法——直接数字频率合成。它从相位的概念出发进行频率合成,采用了数字采样存储技术,具有精确的相位,频率分辨率,快速的转换时间等突出优点,是频率合成技术的新一代技术。直接数字频率合成作为新一代数字频率技术发展迅速,并显示了很大的优越性,已经在军事和民用领域得到广泛的应用,例如在雷达(捷变频雷达、有源相控雷达、低截获概率雷达)、通信(跳频通信、扩频通信)、电子对抗(干扰和反干扰)、仪器和仪表(各种合成信号源)、任意波形发生器、产品测试、冲击和振动、医学等方面的应用。 DDS技术作为一项具有广泛前景和生命力的频率合成技术,越来越受到人们的重视。随着微电子技术的飞速发展,国外一些大公司Qualcomm、ADI等竞相推出DDS芯片,来满足设计人员的要求。许多性能优良的DDS产品不断的推向市场。 Qualcomm公司推出了DDS系列Q2220Q2230等其中Q2368的时钟频率

简易低频信号源的设计

天津理工大学中环信息学院电子系单片机课程设计报告 题目:简易低频信号源的设计 班级09信科2班 指导教师 设计成员 电子系 2012年6 月18 日

一.课程设计意义 二.课程设计任务书

三、课程设计进度计划及检查情况记录表 四、成绩评定与评语

题目: 低频信号发生器的实现主要有如下几种: 一:利用单片机与精密函数发生器构成的程控信号发生器。这种信号发生器能够克服常规信号发生器的缺陷,保证在某个信号的频带内正弦波的失真度小于0.5%。它的输出信号频率调整和幅值调整都由单片机完成。但是,由于数模转换器的非线性误差和函数发生器本身的非线性误差,这种信号发生器输出信号的频率与理论值会有一定的偏差。 二:利用DSP处理器,根据幅值,频率参数,计算产生高精度的信号所需数据表,经数模转换后输出,形成需要的信号波形。这种信号发生器可实现程控调幅,调频。但这种信号发生器输出频率不能连续可调,计算烦琐,控制也不便。 三:基于单片机,锁相环,可编程分频、相位累加、存储器波形存储以及D/A转换器等组成的数字式函数信号发生器。输出的频率的大小由锁相环和可编程计数器来控制,最终由地址发生器对存储器中的波形数据硬件扫描,单片机提供要输出的波形数据给存储器。这种方案电路简洁,不受单片机的时钟频率的限制,输出信号精度高,频率“连续”,稳定性好,可靠性高,功耗低,调频,调

幅都很方便,而且可简化软件设计,实现模块化设计的要求。 四:考虑到输出信号的频率较低,使用单片机作为控制器使用单片机作为控制器,用中断查表法完成波形数据的输出,再用D/A转换器输出规定的波形信号。方波信号直接由单片机的端口输出。结合功能要求情况,使用80C51单片机作为控制器,用DAC0832作为D/A转换器。功能按键使用单片机的3个端口。能使输出频率有较好的稳定性,元器件比较常见,价格低廉,电路设计方便。 综合考虑,方案四各项性能和指标都优于其他几种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片及器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案四。其系统组成原理框图如图2.1所示。 图2.1 简易低频信号源系统结构框图 3系统电路设计 3.1 系统控制电路 控制芯片选择80C51单片机。芯片为40脚双列直插式封装,工作电压为2.7~6V,具有13个I/O口,完全满足系统设计要求。控制系统按最小化工作模式设计,p3.2为波形选择,p3.3为频率变换。LM324在图中不接电源,只起到跟随器的作用,节能环保。

基于单片机的低频信号发生器设计毕业设计论文

淮阴工学院 毕业设计说明书(论文) 作者: 学号: 学院: 电子与电气工程学院 专业: 电子信息工程 题目: 基于单片机的低频 信号发生器 张月红讲师 指导者: (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 年月

毕业设计说明书(论文)中文摘要

毕业设计说明书(论文)外文摘要

淮阴工学院毕业设计说明书(论文)第Ⅰ页共Ⅰ页4 目录 1 绪论................................................. 错误!未定义书签。 1.1 信号发生器综述..................................... 错误!未定义书签。 1.2信号发生器的发展历史............................... 错误!未定义书签。 2 硬件设计............................................. 错误!未定义书签。 2.1总体设计框图....................................... 错误!未定义书签。 2.2单片机最小系统..................................... 错误!未定义书签。 2.3 数模转换模块....................................... 错误!未定义书签。 2.4运算放大模块....................................... 错误!未定义书签。 2.5 键盘电路设计模块................................... 错误!未定义书签。 2.6显示电路设计模块................................... 错误!未定义书签。 3 软件设计............................................. 错误!未定义书签。 3.1 主程序流程图....................................... 错误!未定义书签。 3.2 子程序流程图....................................... 错误!未定义书签。 4 系统调试............................................. 错误!未定义书签。 4.1软件调试........................................... 错误!未定义书签。 4.2生成hex文件....................................... 错误!未定义书签。 4.3 Protues硬件电路仿真调试........................... 错误!未定义书签。 结论................................................... 错误!未定义书签。致谢................................................... 错误!未定义书签。参考文献............................................... 错误!未定义书签。附录................................................... 错误!未定义书签。附录A 电路原理图.仿真图............................... 错误!未定义书签。附录B 程序清单........................................ 错误!未定义书签。

自制低频信号发生器

电子报/2010年/1月/10日/第015版 智能电子 自制低频信号发生器 广东王聪 电子爱好者在日常电子电路设计中,经常要用到各种波形的信号源,本文介绍一款用单片机设计的低频信号发生器。 该低频信号发生器可以产生锯齿波、三角波、正弦波、方波等常用波形,并可以方便地改变各种波形的周期或频率,具有线路简单、结构紧凑、成本低、性能优越、操作方便等优点。 一、系统硬件设计 1.电路组成及芯片选择 本设计的总体框图如图1所示。选用AT89C51单片机作控制器;D/A转换器选用8位D/A 转换芯片DAC0832它与微处理器完全兼容,价格低廉、接口简单、转换控制容易;输出运算放大器选用NE5532P芯片,它的DC和AC特性良好,其特点是低噪声、高输出驱动、高增益、低失真、高转换率,具有输入保护二极管和输出保护电路。 2.电路工作原理 电路如图2所示。单片机的P1口接按键S1~S4和四只发光二极管,S1~S4分别控制产生锯齿波、三角波、正弦波和矩形波(含方波),而四只发光二极管则作为不同波形的指示灯;单片机的外部中断口P3.2和P3.3分别接按键S5、S6,用于调整各信号的频率;D/A转换器的数据输入端与单片机的P0口相连,将单片机产生的各种波形的数字信号送人DAC0832进行数模转换,DAC0832的输入寄存器选择信号CS、输入寄存器写选通信号WR1受单片机P2口控制,DAC0832的DAC寄存器写选通信号WR2和数据传送信号XFER直接接地,单片机与DAC0832形成“单缓冲”方式连接;经DAC0832数模转换的模拟信号送人运算放大器NE5532P进行二级放大输出,得到最终的输出信号波形。 二、系统软件设计 系统程序流程如图3所示。程序运行时,依次判断S1~S4按键是否按下,当S1按下时输出锯齿波,当按键S2按下时输出三角波,当按键S3按下时输出正弦波,当按键S4按下时输出方波。每个波形输出后都要查询按键S6、S7,看是否进行频率调整。 1.锯齿波设计产生锯齿波的原理,是逐步向单片机P0口加1,同时通过DAC0832进行实时的数模转换输出,直到P0的值溢出为零,这样周而复始,从而输出锯齿波信号。锯齿波程序流程如图4所示。 2.三角波设计 产生三角波的原理,是逐步向单片机P0口加1,到P0的值为FFH时,又逐步递减,直到P0的值为零,同时通过DAC0832进行实时的数模转换输出,这样周而复始,从而输出三角波信号。三角波设计程序如图5所示。 3.正弦波设计 产生正弦波的原理,是将一个周期的正弦波均匀地取255个值,用这些对应的幅度值构成一个查值表,单片机通过查表,将这些值逐一通过P0口输出到DAC0832进行实时的数模转换输出,这样周而复始,从而输出正弦波信号。正弦波程序流程如图6所示。 4.方波设计 经过实物制作调试,单片机输出的方波信号通过DAC0832进行了数模转换后,再送到NE5532P进行信号放大输出的效果不是很理想,故将单片机产生的方波信号直接送到NE5532P 进行信号放大输出。当进入正弦波产生程序后,先将P2.0口置高电平,进行延时,再将P2.0口

第4章数字频率合成器的设计讲解

第4章数字频率合成器的设计 随着通信、雷达、宇航和遥控遥测技术的不断发展,对频率源的频率稳定度、频谱纯度、频率范围和输出频率的个数提出越来越高的要求。为了提高频率稳定度,经常采用晶体振荡器等方法来解决,但它不能满足频率个数多的要求,因此,目前大量采用频率合成技术。 频率合成是通信、测量系统中常用的一种技术,它是将一个或若干个高稳定度和高准确度的参考频率经过各种处理技术生成具有同样稳定度和准确度的大量离散频率的技术。频率合成的方法很多,可分为直接式频率合成器、间接式频率合成器、直接式数字频率合成器( DDS)。直接合成法是通过倍频器、分频器、混频器对频率进行加、减、乘、除运算,得到各种所需频率。该方法频率转换时间快(小于100ns),但是体积大、功耗大,目前已基本不被采用。 锁相式频率合成器是利用锁相环(PLL)的窄带跟踪特性来得到不同的频率。该方法结构简化、便于集成,且频谱纯度高,目前使用比较广泛。 直接数字频率合成器(Direct Digital Frequency Synthesis简称:DDS)是一种全数字化的频率合成器,由相位累加器、波形ROM,D/A转换器和低通滤波器构成,DDS技术是一种新的频率合成方法,它具有频率分辨率高、频率切换速度快、频率切换时相位连续、输出相位噪声低和可以产生任意波形等优点。但合成信号频率较低、频谱不纯、输出杂散等。 这里将重点研究锁相式频率合成器。本章采用锁相环,进行频率

合成器的设计与制作。 4.1 设计任务与要求 1.设计任务:利用锁相环,进行频率合成器的设计与制作 2.设计指标: (1)要求频率合成器输出的频率范围f0为1kHz~99kHz; (2)频率间隔 f 为1kHz; (3)基准频率采用晶体振荡频率,要求用数字电路设计,频率稳定度应优于10-4; (4)数字显示频率; (5)频率调节采用计数方式。 3.设计要求: (1)要求设计出数字锁相式频率合成器的完整电路。 (2)数字锁相式频率合成器的各部分参数计算和器件选择。 (3)画出锁相式数字频率合成器的原理方框图、电路图 (4)数字锁相式频率合成器的仿真与调试。 4.制作要求: 自行装配和调试,并能发现问题解决问题。测试主要参数:包括晶体振荡器输出频率;1/M分频器输出频率;1/N可编程分频器的测试;锁相环的捕捉带和同步带测试。 5.课程设计报告要求。 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 6.答辩要求

低频信号发生器设计方案

低频信号发生器设计方案 一. 设计要求 1.方案设计,根据设计任务选择合理的设计设计方案。 2.硬件设计。选择硬件元件,说明其工作原理及设计过程,使用protel软件画出硬件电路pcb 板。 3.要求有目录,参考资料,结语。 4.设计也数不少于20页。 5.按照规范要求,及时提交课程设计报告,并完成课程设计答辩。 二. 设计的作用,目的 1.学习掌握电子电路设计的方法和步骤。 2.掌握protel等常用设计软件的使用方法。 三?设计的具体实现 (一)系统概述 根据课题任务,所要设计的低频信号发生器由三大部分组成: ⑴正弦信号发生部分 ⑵信号输出部分 ⑶稳幅部分 其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,

再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。 1?正弦信号发生部分可以有以下实现方案: ⑴以晶体管为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、 电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。 ⑵以集成运放为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的正弦波振荡电路。这种电路的优点是 更为简单,性价比较好,但频率精度和稳定性较差。 ⑶以集成函数信号发生器为核心元件,加适当的外围元件构成正弦波产生电路。例如函数发生器ICL8038芯片加电阻、电容元件,在一定电压控制下,可以产生一定频率的方波、三角波和正弦波。这种电路的优点时调节方便,在所采用的外围元件稳定性好的情况下,可以得到较宽频率范围的,且稳定性、失真度和现行度很好的正弦信号。 ⑷利用锁相环(PLL )技术构成的高频率精度的频率合成器。其框图如下图所示。 这种电路主要是利用锁相,即使现象未同步技术来获得频率高稳定度,且频率可步进变化的 振荡源。 现在已有集成锁相环电路芯片,例如CC4046,辅以参考频率源、分频器等外围电路后,即 可构成频率合成器。 ⑸直接数字合成(DDS)正弦信号源。下图为DDS的原理框图。

直接数字频率合成器

电子线路课程设计直接数字频率合成器 学号: 姓名: 2011年11月

摘要 本篇论文主要讲了用eda设计dds。用quartus 软件模拟仿真电路,并下载到芯片。使电路能输出正余弦波,并可调节频率和相位。并在这基础上进行一部分扩展,如能输入矩形三角形波。 关键词eda设计 dds quartus Abstract: This report introduces the EDA design is completed with Direct Digital Synthesis DDS process. This design uses DDS QuartusII 7.0 software design, and downloads SmartSOPC experimental system hardware. Key word eda design dds quartus

目录 设计要求 (4) 方案论证 (4) 各子模块设计原理 (6) 调试,仿真及下载 (12) 结论 (13)

一.设计要求 基本要求: 1、利用QuartusII软件和SmartSOPC实验箱实现DDS的设计; 2、DDS中的波形存储器模块用Altera公司的Cyclone系列FPGA芯片中的RAM 实现,RAM结构配置成212×10类型; 3、具体参数要求:频率控制字K取4位;基准频率fc=1MHz,由实验板上的系统时钟分频得到; 4、系统具有使能功能; 5、利用实验箱上的D/A转换器件将ROM输出的数字信号转换为模拟信号,能够通过示波器观察到正弦波形; 6、过开关(实验箱上的Ki)输入DDS的频率和相位控制字,并能用示波器观察加以验证; 提高部分: 1、通过按键(实验箱上的Si)输入DDS的频率和相位控制字,以扩大频率控制和相位控制的范围;(注意:按键后有消颤电路) 2、能够同时输出正余弦两路正交信号; 3、在数码管上显示生成的波形频率; 4、充分考虑ROM结构及正弦函数的特点,进行合理的配置,提高计算精度; 5、设计能输出多种波形(三角波、锯齿波、方波等)的多功能波形发生器; 6、基于DDS的AM调制器的设计; 7、自己添加其他功能。 二、方案论证 直接数字频率合成器(Direct Digital Frequency Synthesizer)是一种基

简易低频信号源的设计

湖南人文科技学院 课程设计报告 课程名称:单片机原理及应用课程设计 设计题目:简易低频信号源的设计 系别:通信与控制工程系 专业:电子信息工程 班级:2005级电信本1班 学生姓名: 魏庆 学号: 05409327 起止日期:2008年6月16日~ 2008年6月27日 指导教师:陈新方智文 教研室主任:谢四莲

摘要 函数信号发生器是一种能能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。现在我们通过对函数信号发生器的原理以及构成设计一个能变换出三角波、正弦波、方波的简易发生器。我们通过对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济、最方便、最优化的设计策略。按照设计的方案选择具体的原件,焊接出具体的实物图,并在实验室对焊接好的实物图进行调试,观察效果并与课题要求的性能指标作对比。最后分析出现误差的原因以及影响因素。 关键字:方案确定、参数计算、调试、误差分析。

目录 设计要求 (1) 1 方案论证与对比 (1) 1.1方案1 (1) 1.2方案2 (1) 1.3两种方案对比 (2) 2 系统分块模块结构 (2) 2.1 控制部分 (2) 2.2数/模转换部分 (3) 2.3系统硬件电路 (4) 3 系统的软件设计 (4) 3.1设计思路 (4) 3.2初始化子程序流程图 (4) 3.3键位扫描子程序流程图 (5) 3.4波形数据产生子程序流程图 (5) 4 最小系统制作与测试 (6) 4.1调试及性能分析 (6) 4.2试验板调试步骤 (7) 4.3 开机调试与步骤: (7) 5 程序编译与下载 (7) 6 心得体会 (8) 7 致谢 (9) 8. 元器件及仪器设备明细表 (9) 参考文献 (11) 附录 1 原理图 (12) 附录 2 PCB图 (12) 附录 3 程序清单 (12)

直接数字频率合成(DDS)方法

摘要 多功能信号发生器是信号发生器中的一种,广泛应用于电子测量、电力工程、物矿勘探、医疗、振动分析、声学分析、故障诊断及教学科研等多方面,是工程师进行产品研发和生产的必备仪器之一。它的主要功能是为待测设备提供稳定、可靠并可以人工调节和控制的信号源。 本文采用由美国学者J.TierncyC.M.Rader和B.Gold1971年提出来的直接数字频率合成(DDS)方法,在CPLD可编程逻辑器件利用VHDL编写波形发生程序,实现多功能信号发生器。 本课题设计的多功能信号发生器利用CPLD可在线编程的特点、DDS的原理,可以实现多种频率、相位的方波、正弦波、三角波、锯齿波,甚至任意波形。在输出端接入可编程运放后,还能实现多种幅值的波形。 关键词:多功能信号发生器 DDS 可编程逻辑器件 VHDL 数字系统设计

Abstract The multi-function signal take place the machine to is in the signal occurrence machine a kind of, being apply in the electronics to measure extensively, the electric power engineering, the thing mineral 勘 explore, medical treatment, vibration analysis, the voice learns analysis, breaks down to examine a patient and the teaching research etc. is various, is one of the essential instruments that the engineer carries on the product development and produce.Its main function is for treat to measure the equipments to provide the stability, the credibility is also can with the signal of artificial regulate and control source. The direct numerical frequency that this literary grace use to be put forward by the American scholar J.TierncyC.M.Rader and B.Gold1971 year synthesize( DDS) the method, making use of the VHDL plait to write a form occurrence procedure in the CPLD programmable logic machine piece, carrying out the multi-function signal occurrence machine. Multi-function signal the occurrence machine of this topic design make use of CPLD can on-line plait distance of principle of characteristics, DDS, can carry out various frequencies, mutually the square wave, sine wave, triangle wave, the teeth of a saw wave of, even arbitrarily a form.After exportation carry connect to go into the programmable luck to put, can still carry out a form for be worth of various. Keywords:Multi-functional signal generator DDS CPLD VHDL The design of digital system

直接数字频率合成芯片AD9832原理及其典型应用设计

《测控技术》2004年第23卷第12期·68· 文章编号:1000–8829(2004)12–0068–03 直接数字频率合成芯片AD9832原理及其典型应用设计DDS AD9832 and It’s Typical Application (同济大学交通信息工程系,上海 200331)沈拓,董德存 摘要:直接数字式频率合成技术可以提供快速的信号建立时间,纯净的信号频谱,方便地产生各种波形,实现各种调制方式,在通信与电子系统中广泛应用。笔者介绍了直接数字频率合成芯片AD9832的组成结构、转换原理和典型应用电路,分析了与80C51的接口时序,并给出了C驱动源代码。 关键词:直接数字频率合成;AD9832;开关电容滤波器; 80C51 中图分类号:TN74 文献标识码:B Abstract:Direct digital synthesis can offer high converting speed,pure singal spectrum,and generate many types of wave-form,realize some modulations. It is widely used in communica-tion and electronic systems because of these special advantages. The composition,operational principle and typical application circuit of AD9832 are introduced. AD9832 to 80C51 interface,timing and C driver source code are discussed. Key words:direct digital synthesis ; AD9832 ; switched capacitor filter ; 80C51 直接数字式频率合成(DDS,direct digital synthesis)是近年出现的新一代频率合成方法,采用全数字化VLSI技术设计,与传统的直接频率合成及PLL锁相环频率合成相比,信号建立时间快,一般在几ns到几μs;频率分辨率高;频率转换时相位保持连续;容易实现QAM、FSK、PSK和GMSK等各种调制方式[1]。AD9832是一款完备的DDS芯片,只需要1个外部参考时钟、2个电阻和几个退耦电容就可以产生高达12.5 MHz的正弦波,并且采用串行接口设计,使用方便,已经越来越多地应用到各种通信与电子系统中。 1 DDS基本转换原理 DDS的基本转换原理见图1。 系统初始化时,首先设置频率控制字和起始相位。相位累加器在每个时钟周期与频率控制字K累加一次,当累加器数值 收稿日期:2004–03–22 作者简介:沈拓(1976—),男,安徽五河县人,工学学士,助教,主要从事嵌入式系统开发研究;董德存(1960—),男,上海人,教授,博士生导师,主要从事通信与电子系统研究。 图1 DDS原理图 大于2N 则溢出,累加器仅保留后面的N位数字。该N位数字作为地址信息输入到正弦查找表。正弦查找表包含一个周期正弦波的数字幅度信息,每个地址对应0~2π范围内一个相位点,存放该相位点的幅度数值。从正弦查找表取出的幅度数值被送到高速数字模拟转换器中转换成模拟量(阶梯波),通过后级的低通滤波器滤除杂散高次谐波加以平滑,就可以得到正弦波。综上所述,可以看出DDS具有几个突出特点: ①输出频率f out 由时钟频率f clk 和频率控制字K决定。 f out =(K/2N)f clk(1)N为相位累加器的位数。频率控制字K 由N 位的二进制数组成,0 f out > f clk/2N,高的频率转换速度(μs 至ns 量级),极高的频率分辨率,以及频率转换时相位保持连续,可以输出宽带的正交信号,易单片集成,易实现FSK、PSK数字调制,可以产生一般频率合成器难以产生的波形,易于微处理器控制。 ④优秀的频率稳定性,输出频率只受频率控制字和时钟频率f clk 频率的稳定性完全取决于时钟频率。DDS系统中时钟频率通常由独立的石英晶体振荡器提供。在0~70 ℃温度范围内,普通石英晶体振荡器输出频率漂移≤100×10-6,如果使用温度补偿型晶体振荡器,则漂移还可以降低一个数量级。因此DDS的输出频率可以达到很高的稳定性。 ⑤影响DDS主要技术性能的因素:其一,根据取样定理,输输出信号基波的最高频率将低于参考时钟的一半,故若要提高输出频率将受到内部器件(如包括DAC、正弦查找表

相关文档
相关文档 最新文档