文档库 最新最全的文档下载
当前位置:文档库 › 一步法FDYPOY多异混纤复合纺丝研究

一步法FDYPOY多异混纤复合纺丝研究

一步法FDYPOY多异混纤复合纺丝研究
一步法FDYPOY多异混纤复合纺丝研究

研究论文

一步法FDY/POY多异混纤复合纺丝研究

戴建平

(吴江丝绸股份有限公司江苏215228)

摘 要:通过对帝人FDY卷绕设备的改造,采用双螺杆双箱复合纺丝设备,成功地开发了POY+FDY多异混纤复合长丝,其中POY组分和FDY组分结构及原料可以任意变更,探讨了纺丝、拉伸、卷绕工艺对各组分的影响。

关键词:多异混纤;一步法;干热收缩

中图分类号:T Q34016 文献标识码:A文章编号:10062334X(2003)0120011204

随着人们生活水平的提高,对服用纤维的性能要求越来越高,同时化纤产品的市场竞争空前激烈,这就要求我们不仅要提供具有优良性能的纤维,而且在生产工艺上要求减少工序,以降低纤维的生产成本,提高产品市场竞争力。近年来,市场畅销的面料,大多以同种或多种具有不同性能的纤维复合而成,如POY+FDY产品一般均在后道牵伸加捻工序用两种单一品种复合而成,这类方法存在如下问题: a.生产工艺流程长;b.设备投资大;c.效率低、生产成本高;d.产品质量稳定性差,因其收缩比、混合比等无法控制而限制了织造产品档次的提高。

一步法FDY/POY多异混纤复合纺丝一直是化纤行业研究方向,一步法复合纺丝工艺解决了二步法未能解决的缺陷,且具备设备投资少,工艺流程短,生产成本低,高速化生产,产品质量稳定,各组分及性能任意复合,定重定长等特点。

1 实 验Ξ

111 原料

吴江丝绸股份有限公司产半消光聚酯切片,质量指标见表1。

表1 半消光聚酯切片质量指标

项 目指标数值

特性粘数/d L?g-101670

—COOH含量/m ol?t-123

熔点/℃260

T iO2含量,ω013

DEG/mt%113

水份/mt%012

112 主要生产设备

干燥机:大连合成纤维研究所(集团)产仿BM 干燥(800kg/h、600kg/h各一套)。

纺丝机:大连合成纤维研究所(集团)制双螺杆、双箱体(双联苯炉独立温控)复合纺丝机。

113 生产工艺

11311 工艺流程

PET1切片→干燥→螺杆挤出机A→纺丝箱A→纺丝组件A→冷却→M O上油→G R1

PET2切片→干燥→螺杆挤出机B→纺丝箱B→纺丝组件B→冷却→M O上油→G R0

G R2→网络→卷绕→成品。

11312 工艺示意

由于品种的变化,A螺杆和B螺杆的挤出量不尽一致,且纺丝温度略有差异,故采用图1所示A、B 组合式复合箱体。由于纺丝卷绕过程中A组分为FDY,B组分为POY,纺丝卷绕工艺方式如图2所示。114 测试与检测

11411 纤维单丝线密度测定

采用德国产textron单片强力纤度仪。

11412 纤维收缩率的测定

用缕纱测长机绕50圈,在一定张力下测得长度L0,然后在沸水中煮30min,自然干燥后,在相同的条件下测得长度为L1。在80℃的水浴中煮30min 及在150℃的恒温柜中松弛30℃,在相同条件下测得长度为L2、L3:

第18卷第1期2003年3月

合成技术及应用

SY NTHETIC TECH NO LOGY AND APP LIC ATI ON

V ol118 N o11

Mar.2003

Ξ收稿日期:2002-10-10; 修回日期:2002-11-13

作者简介:戴建平(1967-),江苏吴江人,高级工程师,已发表

论文十篇,从事聚酯及聚酯纤维的研究开发工作。

图1 组合式纺丝箱体示意图

1.主箱体

2.副箱体

3.纺丝组件

4.FDY 熔体管

5.FDY 计量泵

6.FDY 熔体管

7.POY 熔体管

8.POY 计量泵 9.POY 熔体管

图2 工艺流程图

1.纺丝组件

2.POY 导丝器

3.FDY 6槽导丝棒

4.FDY 导丝棒

5.预网络器

6.梳状导丝器

7.梳状导丝器

8.网络喷嘴

沸水收缩率=L 0-L 1

L 0×100%干热收缩率=

L 2-L 3

L 2

×100%11413 纤维的张力和伸力

采用常州第二纺织仪器厂的YG 203全自动单纱强力机。11414 网络度测定

采用钩针法测定1米长丝条中的网络点个数作为产品的网络度。11415 张力及记录

瑞士TECH NO -M AC 公司产P -1586型数显张力仪(带记录仪远传通讯口);

日本HI OKI8838高速记录仪。

2 结果与讨论

211 工艺评价

本工艺采用复合双箱体,可单独控制复合比例及纺丝条件,产品异收缩及复合比例调整自如,品种

范围广,同时更换原料聚合物(如C DP +PET 等)及

喷丝板的规格,可真正满足柔性生产多异纤维的要求。

在FDY 卷绕机上增加喷嘴上油,并在卷绕机原油轮位置增加POY 导丝器使与FDY 丝条前后分丝路分别进行各自的工艺,最后在G R 2上复合后合股、网络实现一步法同步卷绕,其中G R 0安装于G R 1的上方,且使用一把吸枪即可实现一步生头。212 异收缩原理

经双螺杆双箱体及各自喷丝板纺出的丝,A 组分经G R 1、G R 2进行FDY 工艺加工,B 组分经G R 0、G R 2进行POY 工艺加工,最终复合而成为双组分异收缩纤维。

含有两性能纤维组分的异收缩纤维,经后加工制取高档毛感面料。

后加工工艺:

异收缩纤维→加捻→定型(85℃)→织造→炼染

→定型(150℃)→成品面料。

异收缩纤维中FDY 组分经加捻定型后剩余干热收缩率较高而成为高收缩纤维,并在面料150℃以上定型时形成高收缩而形成芯丝。相反,POY 组分经加捻定型后剩余干热收缩率较小而成为低收缩纤维,并在面料150℃以上热定型时形成低收缩而成为皮丝,皮芯复合便形成毛感织物。FDY 138dtex/36f +POY 222dtex/96f 的物理指标如表2。

表2 FDY 138dtex/36f +POY 222dtex/96f 中组分指标

组 分

断裂强力

cN/dtex 断裂伸长率,%

85℃定型后剩余沸水收缩率,%85℃定

型后的干热收缩率,%

干热收缩差

FDY 138dtex/36f 4130311061514151POY 222dtex/96f

2101

12811

018

0162

13189

213 纺丝21311 纺丝温度

研究资料表明[1]:纺丝温度的高低直接影响纤

维的取向与结晶性能。同一速度下,纺丝温度高,得到纤维的取向度相对要小,条干均匀性好,有利于纤维定型后干热收缩率减小。纺丝温度低,则得到纤维的取向度及结晶度相对高,喷丝头拉伸倍数增加,取向结晶增大;对POY 组分来讲,对纤维定型后应力消除不利,干热收缩率相对大。所以适当提高纺丝温度,有利于POY 组分干热收缩率的减小,从而增加与FDY 干热收缩率的差。

实验证明,适应提高纺丝温度对POY 组分有利。相对FDY 组分影响较小,故在不影响纺丝稳定的状态下,纺丝温度宜高一些,一般为295~297℃为

2

1合成技术及应用第18卷 

宜。21312 冷却条件

冷却条件是纤维成形的关键,直接关系到纤维的结晶、取向及条干[1],侧吹风冷却越好,丝条的取向、结晶就增加,反之丝条的取向、结晶就减小。故对POY 组分要得到定型后收缩率小的纤维,必须缓和冷却条件,才能减小丝条的结晶与取向,即适当提高侧吹风的温度,

减小风速等都有利于减小初生纤维的取向与结晶。实验证明,在生产138dtex/36fFDY+222dtex/96fPOY 多异纤维时,风温28℃,相对温度65%,风速0136m/s 为宜,且对FDY 组分影响较小。

214 (拉伸)卷绕21411 POY 组分工艺

随着纺丝速度的变化,POY 的取向度改变,弹性

模量也随着改变[2],对纤维定型后干热收缩影响大,见图3。

图3 222dtex/96f POY 的干热收缩率与纺速关系

从图3可以看出,纺速在3000m/min ~3200m/min 之间,制得的纤维在85℃定型后的160℃干

热收缩为最小。21412 FDY 组分工艺2.4.2.1 纺丝速度(G R 1速度)

由于FDY 组分与POY 组分采用同一纺丝条件,即相同的冷却条件、上油及卷绕方式,故G R 1速度直接关系到FDY 成形过程中丝束的取向度和结晶度,也就是说直接影响FDY 组分最终干热收缩率(见表3):

表3 不同纺速下138dtex/36f FDY 的干热收缩率

纺速/m ?min -1

800100012001400085℃定型后的干热收缩率,%

1511

1417

121

3

1210

从表3可以看出:在本研究一步法生产多异混纤维丝时,在恒定的G R 2速度下,FDY 组分随着纺速的增加,牵伸倍数减少,干热收缩率减少,可见适当减低纺丝速度对FDY 组分的干热收缩率增大有利,但纺丝速度不能无限减小,太小则纺丝张力变小,条干变差,可纺性差。故宜采用800~1000m/min 的纺速

,可保证生产顺利进行。2.4.2.2 G R 1温度

G R 1的温度也称拉伸温度,聚酯初生纤维在加

热条件下可均匀拉伸,在加热条件下,大分子链和链

段活动增加,分子链段开始活动的最低温度必须高于玻璃化转变温度,拉伸温度过低,链段处于冻结状态,单丝表面容易破裂,易产生毛丝和断头,拉伸产生不匀,染色性变差。但是,G R 1温度不易过高,G R 1温度过高,分子链的活动能力太强,大分子的取向度随温度的升高而降低,结晶度增加,拉伸不稳定性增加,成品丝的沸水收缩率及干热收缩率变小,同时生产不稳定性增加,断头增多,见图4。

图4 生产FDY 138dtex/36f 时G R 1

温度与干热收缩率的关系

2.4.2.3 G R 2的温度

G R 2的温度即定型温度,纺丝丝束经拉伸后,分

子链的排列发生了变化,在G R 2处进行稳定调整后,以满足卷绕要求。

G R 2的温度对干热收缩率的影响见图5。

图5 G R2温度与干热收缩率关系

从图5中可以看出,G R 2的温度对FDY 组分干

热收缩率影响较大,随G R 2温度的升高,干热收缩率降低,研究中,关闭G R 2加热可得到较高干热收缩率的纤维且强力不受影响。

G R 2不加热即为常温运行,起到稳定导丝的作用,是我们希望得到的工艺,因为POY 组分在G R 2上与FDY 组分合股对POY 组分结构性能不会产生影响,有利于顺利卷绕成型。2.4.2.4 网络

纤维经过网络喷嘴,在高压气流的作用下,纤维相互交缠,将POY 组分对FDY 有效地结合起来,有利于后道织造加工。

网络度的数量越大,纤维后加工性及织物毛绒效果越好,由于一步法网络加工速度在3200m/min ,网络空气压力控制在4kg/cm 2以上,网络度可达25个以上。2.4.2.5 同步卷绕

本研究采用帝人AW909/6A 卷绕头,该卷绕头切换时,丝条的运动方向与切换方向相反,生产FDY +POY 产品时按常规方法卷绕切换成功率低。为

3

1第1期戴建平.一步法FDY /POY 多异混纤复合纺丝研究

此,必须调整卷绕头的P 组、W 组运行数据,以确保卷绕张力的变化与丝条的运行相符才能保证切换成功,图6、图7为调整前后切换过程卷绕张力与丝条速度的变化记录曲线,只有当丝条的速度变化曲线与卷绕张力变化一致时,切换成功率为最高

图6 

卷绕运行数据调整前张力与卷绕速度切换过程曲线

1.张力曲线

2.卷绕速度曲线

图7 卷绕头运行数据调整后张力与卷绕速度切换过程曲线

1.张力曲线

2.卷绕速度曲线

3 结论

a )通过对FDY 设备的改善,采用双螺杆、双箱

体可成功地生产一步法POY+FDY 多异混纤复合长丝。

b )本一步法生产的多异混纤复合长丝,各组分可任意变更,且组分工艺条件可单独调整,生产稳定,工艺操作方便。

c )调整变更各组分原料可生产不同结构性能合股长丝,真正实现柔性纺丝。

参考文献:

1 戴建平.江苏丝绸[J ],2001,(2):15

2 董纪震,等.合纤维生产工艺学[M].纺织工业出版社,1980.2263 孙林,等.合成技术及应用[J ],1997,(4):8

Study on one step FDY/POY multihetero blended filament composite spinning

DAI Jian 2ping

(Wujiang Silk Co.Ltd.,Wujiang 215228,China )

Abstract :Through m odification on T eijin FDY take 2up machine ,using the com posite spinning equipment with dou 2ble screws and double manifolds ,FDY /POY multihetero blended com posite filament yarn is developed success fully.The structure and raw material of the POY and FDY com ponent can be changed freely.E ffects of spinning ,drawing and wind 2ing technology on each com ponent are discussed.

K ey w ords :multihetero blended filament ;one step method ;dry shrinkage

国内外消息

高速POY 生产用新PET 添加剂

油剂生产商Dako 与EFFECI 工程公司合作,开发并提供一种新添加剂,它可使聚酯POY 用普通POY 设备在高达4

500m/min 速度下生产,无需对现有设备进行特别变动。

可用常规计量系统以侧挤压机(Dako -ADD M B -W )添加或在结晶和干燥前将母粒与切片混合(Dako -ADD M B -W30)。

除使用特殊油剂Dakolub D469PHS ,并调节冷却空气和超喂装置外,无需特别措施生产这种高速POY 。

较高卷绕速度及随之而来的成本降低是该系统的优点之一。另一优点是POY 的伸长可通过添加量和/或卷速调节。

使用Dako -ADD M B -W30的高速POY 的物理数据与常规3000m/min 的POY 类似。但用母粒M B -W 和M B -W30,乌斯特值有提高。

(王爱梅译自《CFI 》2002,6)

4

1合成技术及应用第18卷 

静电纺丝技术及其研究进展_杨恩龙

静电纺丝技术及其研究进展*杨恩龙 王善元 李 妮 赵丛涛 (东华大学纺织学院,上海,201620) 摘 要:静电纺丝是目前唯一能够直接、连续制备聚合物纳米纤维的方法。概述了静电纺丝技术及其发展历程,静电纺丝射流的稳态和非稳态的研究成果。介绍了静电纺丝机、静电纺丝技术的新进展及静电纺纳米纤维膜的应用。最后指出静电纺丝的研究方向。 关键词:静电纺丝,纳米纤维,进展 中图分类号:TQ340.6;TS176 文献标识码:A 文章编号:1004-7093(2007)08-0007-05 近几年来,由于纳米材料研究的迅速升温,激起了人们对静电纺丝(又称电纺)进行深入研究的浓厚兴趣。和拉伸、相分离等方法相比,静电纺丝已成为制取纳米纤维最重要、最有效的方法。静电纺纳米纤维的发展历程见表1。 1 静电纺丝技术 1.1 静电纺丝的基本原理 使聚合物溶液或熔体带上高压静电,当电场力足够大时,聚合物液滴可克服表面张力形成喷射细流。带电的聚合物射流拉伸细化,同时弯曲、劈裂,溶剂蒸发或固化,沉积于基布上形成纳米纤维膜。 1.2 静电纺丝的影响因素 静电纺丝的影响因素列于表2。 1.3 静电纺丝的优缺点 静电纺丝法简单、易操作。但是有如下缺点:第一,静电纺丝难以得到彼此分离的纳米纤维长丝或短纤维;第二,目前静电纺丝机的产量很低;第三,静电纺纳米纤维的强度较低。 2 静电纺丝机 2.1 喷丝头与收集板垂直排布的静电纺丝机 喷丝头与收集板垂直排布(立式)的静电纺丝 *国家自然科学基金资助项目(10602014) 收稿日期:2006-10-26 作者简介:杨恩龙,男,1980年生,在读博士研究生。主要从事静电纺纳米纤维的研究工作。 表1 静电纺丝的发展历程 年 份发 展 历 程 1934 Fo r mha ls申请了制备聚合物超细纤维的 静电纺丝装置专利[1] 1966 S i m ons申请了由静电纺丝法制备超薄、 超细非织造膜的专利[2] 1981 L arrondo等对聚乙烯和聚丙烯进行了熔 融静电纺丝的研究[3] 1995 R eneker研究组开始对静电纺丝进行研 究。静电纺丝迅速发展[4] 1999 Fong等对静电纺丝纳米纤维串珠现象及 微观结构作了研究[5~6] 2000 Spivak等首次采用流体动力学描述静电 纺丝过程,并且提出了静电纺丝的工艺 参数。R eneker等研究了静电纺丝过程 的不稳定性[7~8] 2003 全面系统地研究静电纺丝超细纤维微观 形貌的影响因素、表征、过程参数的改 进,以及静电纺丝制取纳米纤维后通过 煅烧制备无机氧化物超细纤维等 2004~2006 开发静电纺纳米纤维的原料。多组分聚 合物的静电纺丝。静电纺丝和其他方法 结合开发新型纳米纤维。捷克利贝雷茨 技术大学与爱勒马可(EL M ARCO)公司 合作生产的纳米纤维纺丝机 纳米蜘蛛 问世 机[9],主要用于静电纺丝的基础研究。 2.2 喷丝头与收集板水平排布的静电纺丝机 喷丝头与收集板水平排布的静电纺丝机(卧

无机纳米相_纳米纤维素杂化纳米材料的研究进展

第48卷第1期 2014年1月生物质化学工程Biomass Chemical Engineering Vol.48No.1 Jan.2014 doi :10.3969/j.issn.1673-5854.2014.01.006 ·综述评论———生物质材料· 无机纳米相-纳米纤维素杂化纳米材料的研究进展 收稿日期:2013-09-16 基金项目:国家自然科学基金(31000276);福建省高校杰出青年人才基金(JA11071);福建省高校新世纪优秀人才基金(JA12088); 福建农林大学杰出青年人才基金(xjq201208) 作者简介:吴巧妹(1987—),女,福建三明人, 硕士生,主要从事植物纳米纤维素复合材料的研究*通讯作者:陈燕丹,博士,副教授,硕士生导师,主要研究方向是生物质材料的制备与功能化设计;E- mail :fjaucyd@163.com 。吴巧妹,陈燕丹*,黄彪,陈学榕 (福建农林大学材料工程学院,福建福州350002) 摘要:分别介绍了近年来利用贵金属纳米粒子、无机陶瓷纳米相(包括金属氧化物、金属硫化物、黏土类、纳米羟基磷灰石和纳米碳酸钙)、磁性纳米纤维素、 碳纳米相与纳米纤维素进行复合的研究进展,并建议加强对纳米纤维素基杂化材料的基础理论研究,改进现有制备方法并开发出更加节能减耗的新方法,以及更多极具应用前景的无机纳米材料实现优势互补的分子级复合,定向设计合成出适用不同场合、满足不同需求的高性能、多功能新型先进复合材料。 关键词:纳米纤维素;杂化纳米材料;无机纳米粒子;碳纳米相 中图分类号:TQ35;O636.1文献标识码:A 文章编号:1673- 5854(2014)01-0028-09Advances in Inorganic-nanocellulose Hybrid Nanomaterials WU Qiao-mei ,CHEN Yan-dan ,HUANG Biao ,CHEN Xue-rong (College of Materials Engineering ,Fujian Agriculture and Forestry University ,Fuzhou 350002,China ) Abstract :This paper summarized the recent R&D progresses on nanocellulose hybrid composites incorporated with noble metal nanoparticles ,nano ceramic compounds (including metal oxides ,metal sulfides ,nano-clay ,nano-hydroxyapatite ,nano-calcium carbonate ),magnetic nanoparticles and nano-carbon materials ,respectively.An overview on the challenge and development prospects of the nanocellulose-based hybrid composites was discussed ,too. Key words :nanocellulose ;hybrid nanocomposites ;inorganic nanoparticles ;nano-carbon materials 无机-有机杂化纳米材料是继单组分材料、复合材料和梯度功能材料之后的第四代新材料[1]。纳米纤维素是一种新型的生物纳米材料,具有特殊的结构特点和优良的性能。无机纳米相-纳米纤维素杂化纳米材料因兼具或超越了纳米纤维素和无机纳米材料单一组分的性能优点,而成为纳米纤维素复合材料的研究热点。利用物理、化学、生物方法制备获得的天然纳米纤维素依次为微纤丝化纤维素(MFC )或纳纤丝化纤维素(NFC )、纳米晶体纤维素(NCC )和细菌纳米纤维素(BNC )。以纳米纤维素作为结构增强相和兼具生物大分子模板效应的天然高分子基体,在绿色高性能纳米复合材料的设计组装中日益扮演重要角色。在过去的十几年里,国内外针对纳米纤维素的制备、表征、表面修饰及其复合材料开展了较多的研究工作[2-4]。目前,交叉结合纳米科学、化学、物理学、材料学、生物学及仿生学等学科,利用共混法、溶胶-凝胶法、插层法、模板组装法、非共价弱相互作用复合法和仿生矿化等方法,进一步将纳米纤维素优越的机械性能与功能性无机纳米材料进行优势互补,构筑结构可塑、稳定,集轻质和强韧于一身的新型无机纳米相-纳米纤维素杂化纳米材料,正在成为国内外科学家竞相开展的研究课题。本文主要针对国内外纳米纤维素与各种无机纳米相杂化复合,制备功能型纳米纤维素新材料的研究进展进行综述。

微晶纤维素制备、应用及市场前景的研究

微晶纤维素制备、应用及市场前景的研究 曲阜天利药用辅料有限公司生产技术部,山东曲阜273105 摘要:纤维素是自然界中最丰富的天然高分子材料。对解决目前世界面临的资源短缺、环境恶化、可持续发展等问题具有重要意义。纤维素在一定条件下进行酸水解,当聚合度下降到趋于平衡时所得到的产品称为微晶纤维素( micro.crystalline cellulose,MCC)。微晶纤维素为白色或类白色、无臭、无味的多孔性微晶状颗粒或粉末,具有高度可变形性,是可自由流动的纤维素晶体组成的天然聚合物,通常 MCC的粒径大小一般在20-80微米之间,它广泛用于食品、医药及其他工业领域。 关键词:微晶纤维素;MCC;制备;应用;市场前景。 Microcrystalline cellulose preparation, application and market prospect of research QuFuTianLi medicinal materials co., LTD., production technology department shandong qufu 273105 Abstract:Cellulose is the most abundant natural polymer materials in the nature。To solve the shortage of resources in the world, the problem such as environmental degradation, sustainable development is of great significance。Cellulose under certain conditions with acid hydrolysis,When the polymerization degree decline to tend to balance the resulting product is called the microcrystalline cellulose(micro.crystalline cellulose,MCC)。Microcrystalline cellulose is white or kind of white, odorless, tasteless porous micro crystalline granular or powder,With high deformability,Is the free flow of natural polymer composed of cellulose crystal,Usually the particle size of MCC generally between 20 to 80 microns,It is widely used in food, medicine and other industrial fields。 Key words: microcrystalline cellulose, MCC. Preparation; Application; Market prospect 正文:微晶纤维素[1]为白色或类白色无臭、无味的多孔性微晶状颗粒或粉末,具有高度可变形性 ,对主药具有较大的容纳性 ,可作为片剂的填充剂、干燥粘合剂 ,同时具有崩解作用 ,广泛应用于医药、食品、轻工业等国民经济各部门。 在生产微晶纤维素时国外主要采用木材为原材料[2],先收集木浆纤维素酸部分水解后的结晶部分,再经干燥粉碎而得到聚合度约200的结晶纤维素,我国棉花产量较高,成本较木材低,因此国内多以棉浆为原材料。决定微晶纤维素性能的主要因素[3]是制备方法和产品的质量控制标准。随着科技的发展,为了更大程

探讨静电纺丝技术的研究进展

探讨静电纺丝技术的研究进展 摘要:静电纺丝工艺是目前能够直接、连续制备聚合物纳米纤维的方法,具有 工艺简单、操作方便、制造速度快等优点,在医学和环保等领域有广泛应用。介 绍了近年来静电纺丝技术及其应用的研究进展,对静电纺丝的原理、影响因素等 方面进行了综述,对静电纺丝技术在未来的应用提出展望。 关键词:静电纺丝;纳米纤维;进展 引言 纳米纤维严格意义上是指纤维直径小于100nm的超微细纤维。它具有比表面 积大、孔隙率高等特点,因而可广泛应用于高效过滤材料、生物材料、高精密仪器、防护材料、纳米复合材料等领域。20世纪90年代纳米技术研究的升温,使 纳米纤维的制备迅速成为研究热点。静电纺制备聚合物纳米纤维具有设备简单、 操作容易等特点,是目前为止制备聚合物连续纳米纤维最重要的方法之一。 1静电纺丝 静电纺丝设备的简图如图1所示,主要由3部分组成:高压电源、喷丝头和 纤维收集装置。一般采用直流电源供应高压电,而不是交流电源。静电纺丝所需 的高压电为 1~30kV。注射器(或者移液管)将溶液或熔体输送到其末端的喷丝 头处。喷丝头是非常细的金属管且装有电极。收集装置或接收板用于收集纳米纤维,通过改变收集装置的几何尺寸与形状,可调整纳米纤维的排列形态。 2静电纺丝技术的原理 早在1882年,Raleigh的研究发现,带电的液滴在电场中不稳定,进入电场之后,由于 电场力的作用,容易劈裂成较小的液滴。Taylor的研究表明,带电的液滴通过喷丝头进入电 场以后,在电场力以及液体表面张力的共同作用下,液滴逐渐被拉长,形成一个锥状体(Taylor锥),并确定其角度为49.3°。 静电纺丝过程中,聚合物溶液或熔体被挤压到喷丝头,由于电场力和表面张力的作用, 在喷丝头处形成Taylor锥,随着纺丝液不断的被推入电场,纺丝液便会从Taylor锥尖端喷出,在电场中受电场力的作用而被继续拉伸,当射流被拉伸到一定程度时,便会克服表面张力, 发生非稳定性弯曲进而被拉伸并分裂成更细的射流,此时射流的比表面积迅速增大而使溶剂 快速挥发,最终在收集装置上被收集并固化形成非织造布状的纤维毡。 3静电纺丝的影响因素 静电纺丝的影响因素主要包括溶液性质(如黏度、浓度、相对分子质量分布、弹性传导率、介电常数、表面张力等),过程条件(如电压、挤出率、喷丝头与接收装置之间的距离、喷丝头直径等)和环境因素(如温度、湿度、气体流速等)。对于这一方面,很多人进行了 研究。 现有的研究结果表明,在静电纺丝过程中,影响纤维性能的主要工艺参数主要有:聚合 物溶液浓度、纺丝电压、固化距离(喷嘴到接丝装置距离)、溶剂挥发性和挤出速度等。 (1)合物溶液浓度 聚合物溶液浓度越高,粘度越大,表面张力越大,而离开喷嘴后液滴分裂能力随表面张 力增大而减弱。通常在其它条件不变时,随着聚合物溶液浓度的增加纤维的直径也增大。 (2)纺丝电压 随着对聚合物溶液施加的电压增大,体系的静电力增大,液滴的分裂能力相应增强,所 得纤维的直径趋于减少。 (3)固化距离 聚合物液滴经喷嘴喷出后,在空气中伴随着溶剂挥发细流中的同时,合物浓缩固化成纤维,最后被接丝装置接受。对于不同的体系,固化距离对纤维直径的影响不同。例如,对于 聚苯乙烯(PS)/四氢呋喃(THF)体系研究表明,改变固化距离,对纤维直径的影响不明显。

熔融纺丝工艺试验报告

熔融纺丝工艺试验报告文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

熔融纺丝工艺实验 一,实验目的 合成纤维的成形普遍采用高聚物的熔体或浓溶液进行纺丝,前者称为熔体纺丝,后者称为溶液纺丝。本实验采用切片纺丝的方法,将聚合物熔体经过铸带,切粒等工序制成“切片”,然后在纺丝机上重新熔融成熔体并进行纺丝。 1.了解和掌握切片熔融纺丝的工艺路线和基本方法,通过熟悉并掌握常规纤维的成型条件和工艺参数。 2.了解熔融纺丝及牵伸设备的结构和各种部件的作用。 二,实验原理 整个熔体纺丝过程包括纺丝熔体的制备,熔体自喷丝孔挤出,熔体细流拉长变细,冷却固化,丝条的上油和卷绕。在切片熔融阶段,切片受热后结晶破坏,使其有一定结晶度的固体状态转变为均匀的粘流态,这是物理变化。在冷却形成阶段聚合体发生的主要是物理变化,熔融后的聚合体在一定的压力下通过喷丝孔,形成熔体细流,熔体细流刚离开喷丝板时,由于熔体的弹性效应而出现膨胀现象,使熔体直径逐渐扩大,在纺程上细流受到卷绕拉力的作用,这时纤维直径急剧变细,同时丝条运动速度逐步加快,又由于空气冷却的作用,使聚合体温度下降,粘度增高,速度增加减慢,直径变化较小,再往下聚合体凝固并逐渐冷却至玻璃化温度以下,进入玻璃态,纤维固化,又由于固化后的纤

维干燥而松散,以及纤维与设备,纤维与纤维之间相互摩擦产生静电,导致毛丝,给后加工带来困难,因此需经过给湿上油,增加纤维间抱合力,抗静电,使纤维变得柔软,平滑并获得良好的手感及弹性。 熔体纺丝过程的参数:指对纺丝过程的进行以及卷绕丝结构和性质起主导作用的参数。这类参数有:成纤高聚物的种类;挤出温度;喷丝孔直径;喷丝孔长度;纺丝线的单纤维根数;质量流量;纺丝线长度,卷绕速度;冷却条件。 三,实验仪器及工艺过程 1.纺丝工艺流程:切片、干燥、熔融挤出、冷却成形、上油、牵伸、卷绕。 2.切片干燥的目的:除去水分,提高切片的含水的均匀性,提高结晶度及软化点。 3.熔融挤出:①螺杆挤出机由螺杆,套筒,传动部分,加料斗,加热和冷却装置构成。螺杆机挤出机是纺丝机的主要部件。②从工作区来分,可分为三段,进料段,压缩段和计量段。在整个挤出过程中,螺杆完成三个操作:切片的供给,切片的熔融和熔体的计量挤出,同时使物料起到混匀和塑化作用。③螺杆高聚物的优点:螺杆的不断旋转,提高传热系数,使切片熔融过程强化,螺杆挤出机能强制输送各种粘度较高的熔体,螺杆旋转输送熔体,熔体被塑化搅拌均匀,在机内停留时间较短,一般为5-10分钟,大大减少了熔体热分解的可能性。

微晶纤维素的研究进展_何耀良

基金项目:广西科学基金资助项目(桂科自0991024Z);广西培养新世纪学术和技术带头人专项资金资助项目(2004224) 收稿日期:2009-06-19 综述与进展 微晶纤维素的研究进展 何耀良1,廖小新2,3,黄科林1,6,吴 睿4,王 5 ,刘宇宏1,黄尚顺1,李卫国1 (1.广西化工研究院,广西南宁 530001;2.广西大学商学院,广西南宁 530004; 3.广西桂林市建筑设计研究院,广西桂林 541002; 4.广西民族大学化学与生态工程学院,广西南宁 530006; 5.广西大学化学化工学院,广西南宁 530004; 6.广西新晶科技有限公司,广西南宁 530001) 摘 要:微晶纤维素是天然纤维素水解至极限聚合度得到的一种聚合物,广泛用于食品、医药及其他工业领域,本文综述了国内外微晶纤维素的制备研究进展。 关键词:微晶纤维素;研究进展;制备 中图分类号:T Q 352 文献标识码:A 文章编号:1671-9905(2010)01-0012-05 微晶纤维素(Microcrystalline cellulose,M CC)是天然纤维素经稀酸水解至极限聚合度(LOOP)的可自由流动的极细微的短棒状或粉末状多孔状颗粒,颜色为白色或近白色,无臭、无味,颗粒大小一般在20~80L m,极限聚合度(LODP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。 自1875年Girard 首次将纤维素稀酸水解的固体产物命名为/水解纤维素0后,100多年以来,微晶纤维素的研究,一直是纤维素高分子领域中的一个热点课题。美国粘胶纤维公司于1957年研究出微晶纤维素的生产方法,于1961年获得原始专利并工业化生产。美国FMC 公司于1961年研究开发生产微晶纤维素,目前已经是全美甚至世界上最大生产公司[1]。我国在微晶纤维素研究方面起步较晚,但从20世纪70年代开始我国在微晶纤维素方面生产已初见成效,20世纪80年代国内厂家生产的微晶纤维素逐步取代国外如西方石油公司、日本等公司的产品,到20世纪90年代我国研制的微晶纤维素质量达到国外同类产品的质量标准。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。本文主要根据国内外的有关文献报道综述了利用不同原料制备微晶纤维素的研究进展。 1 国内微晶纤维素研究进展 111 甘蔗渣微晶纤维素的制备研究 甘蔗渣纤维素的聚合度(DP)一般在500~700之间,水解后的平衡聚合度(DP)在100~200之间。甘蔗渣由于灰分高、白度低(灰分为112%~118%,白度为70%~80%),因此要用它来制备微晶纤维素必须进行增白和降低灰分处理。罗素娟[2]选择盐酸(工业级)来催化水解制备微晶纤维素,其流程见图1。其中固液比为1B 15,水解进行35min,即达到平衡聚合度。研究表明以甘蔗渣浆粕为原料生产微晶纤维素是可行的,产品质量符合标准要求,其中得率为82118%,聚合度为120,其颗粒数量分布较均匀,粒径较小,中位粒径1112L m,小于25L m 的产品占9211%,水分2142%,灰分0113%,白度90198%,经应用试验,效果良好,母液可以循环使用。生产废水经处理后达到排放要求。 第39卷 第1期2010年1月 化 工 技 术 与 开 发Technology &Development of Chemical Industry Vol 139 No 11 Jan 12010

PLA纤维熔融纺丝生产工艺探讨

PLA纤维熔融纺丝生产工艺探讨 合成纤维在纺织纤维中所占比重较高,现已广泛应用于工农业生产、服饰、家居等领域,但由于其原料大都取自石油、煤炭等不可再生资源,且使用后难降解,易造成污染,因此,可降解、再生的“绿色环保”纤维材料成为今后合成纤维研究的方向。近年来,随着聚乳酸(PLA)纤维聚合工艺的局部成熟,它被认为是最具发展前景的“绿色环保”纤维之一,它具有良好的生物降解性和循环再生性,同时又具有芯吸导湿性、良好的抗紫外线性和耐菌性、优良的阻燃性、出色的回弹性及悬垂性。PLA纤维POY—DT技术由于工艺路线简单、成本低、污染小,且常规设备进行适当改造后可以工业化生产,已经成为PLA纤维的一大生产方向。 浙江上虞新天龙化纤有限公司通过北京中丽POY纺丝线及山西晋中改造的平行牵伸机设备,已成功开发生产了50 D、98 D系列PLA长丝纤维,较大程度地克服了PLA可纺性差、易水解、纺丝成形温度窄等技术难题,提高了纤维织物的档次。本文将结合生产实例对PLA纤维的生产工艺作一定探讨。 一、生产实例 设备北京中丽POY纺丝试验线,日本汤浅导丝系统,山西晋中改造的平行牵伸机(KV 505)。 原料美国Largill Dow 公司生产的PLA切片,日本竹本公司生产的POY油剂。 工艺PLA切片→干燥→螺杆挤压→预过滤→纺丝箱→冷却上油→POY卷绕→热盘拉伸→DT纤维 二、工艺探讨 1. 切片干燥 像PET一样,PLA切片必须经过干燥处理后才能进行熔融纺丝。PLA属聚酯类产品,由于其聚合物在活跃和潮湿的环境中会通过酯键断裂发生水解而产生降解,造成分子量大幅下降,从而严重影响成品纤维的品质,因此纺丝前要严格控制PLA聚合物的含水率(<50×10-6)。PLA切片干燥后含水率与干切片特性粘度的控制尤为重要,因为含水率控制不当引起的分子量损失将给正常的熔融纺丝带来困难。 从生产试制55 dtex/24 f PLA纤维的工艺来看,长丝生产要求PLA干切片的含水率最好在30 ppm以下。适用的干燥条件为:结晶温度控制在105℃左右,切片经过脉动阀板和两两隔开的结晶热风循环通道的气流;再由氧化铝分子筛脱湿器和夹套式闭式热空气干燥;由于其熔点和玻璃化温度较低,干燥温度可控制在120℃左右,干燥时间6h以上,实现露点温度60℃。而从108 dtex/48 f PLA纤维的试纺情况来看,其预结晶和干燥温度可比55 dtex/24 f的略高3~4℃,干燥时间可略短。 2. 熔融纺丝

微晶纤维素的研究进展

微晶纤维素的研究进展

微晶纤维素的研究进展 高分子材料2班刘卓君 20080402B020 摘要:微晶纤维素是可自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经稀酸水解并经一系列处理后得到的极限聚合度的产物。广泛用于食品、医药及其他工业领域,本文综述了微晶纤维素的特性、理化性质、制备方法以及国内外微晶纤维素的研究进展。 关键词:微晶纤维素;结晶度;聚合度;可压性;流动性;制备;研究进展 正文:微晶纤维素(MCC)是由天然纤维素经稀无机酸水解达到极限聚合度的极细微的白色短棒状或无定形结晶粉末,无臭、无味。颗粒大小一般在20-80微米,极限聚合度(L0DP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。

微晶纤维素有两种主要形式:细粉末和胶体状。前者用于吸附剂或粘合剂,后者作为液体中的分散剂。粉末状微晶纤维素的应用范围是作为抗结块剂,它有防结块和帮助流动的作用。另外,微晶纤维素还是食品中非营养部分,用作健康食品中的食用纤维。作为功能食用纤维,微晶纤维素可起到诸多保健作用。微晶纤维素有吸油特性,所以粉末化的微晶纤维素还被用作香精和香料油的载体。另外,它常被用于某些挤出食品的助流剂。胶体状微晶纤维素的多功能性表现在:乳化和泡沫稳定性;高温下稳定性;非营养性填充物和增稠剂;液体的稳定和胶化剂;改善食品结构;悬浮剂;冷冻甜食中控制冰晶形成。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。 1.微晶纤维素的理化性质 MCC 的用途广泛,用以描述的指标很多,主要有聚合度、结晶度、粒度、吸水值、润湿热、比表面积、填积密度、过滤指数和特性粘数等。

PLA纤维熔融纺丝工艺

PLA纤维熔融纺丝生产工艺 合成纤维在纺织纤维中所占比重较高,现已广泛应用于工农业生产、服饰、家居等领域,但由于其原料大都取自石油、煤炭等不可再生资源,且使用后难 降解,易造成污染,因此,可降解、再生的“绿色环保”纤维材料成为今后合 成纤维研究的方向。 近年来,随着聚乳酸(PLA)纤维聚合工艺的局部成熟,它被认为是最具发 展前景的“绿色环保”纤维之一,它具有良好的生物降解性和循环再生性,同 时又具有芯吸导湿性、良好的抗紫外线性和耐菌性、优良的阻燃性、出色的回 弹性及悬垂性。 PLA纤维POY-DT技术由于工艺路线简单、成本低、污染小,且常规设备进 行适当改造后可以工业化生产,已经成为PLA纤维的一大生产方向。 浙江上虞新天龙化纤通过北京中丽POY纺丝线及山西晋中改造的平行牵伸 机设备,已成功开发生产了50D、98D系列PLA长丝纤维,较大程度地克服了PL A可纺性差、易水解、纺丝成形温度窄等技术难题,提高了纤维织物的档次。 一、生产实例 设备 北京中丽POY纺丝试验线, 日本汤浅导丝系统,山西晋中改造的平行牵伸机(KV 505)。

原料 美国Largill Dow 公司生产的PLA切片, 日本竹本公司生产的POY油剂。 工艺 PLA切片→干燥→螺杆挤压→预过滤→纺丝箱→冷却上油→POY卷绕→热盘拉伸→DT纤维 二、工艺探讨 1. 切片干燥 像PET一样,PLA切片必须经过干燥处理后才能进行熔融纺丝。 PLA属聚酯类产品,由于其聚合物在活跃和潮湿的环境中会通过酯键断裂发生水解而产生降解,造成分子量大幅下降,从而严重影响成品纤维的品质,因此纺丝前要严格控制PLA聚合物的含水率(<50×10-6)。 PLA切片干燥后含水率与干切片特性粘度的控制尤为重要,因为含水率控制不当引起的分子量损失将给正常的熔融纺丝带来困难。 从生产试制55dtex/24 f PLA纤维的工艺来看,长丝生产要求PLA干切片的含水率最好在30ppm以下。

微晶纤维素的研究进展思路

微晶纤维素的研究进展 高分子材料2班刘卓君 20080402B020 摘要:微晶纤维素是可自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经稀酸水解并经一系列处理后得到的极限聚合度的产物。广泛用于食品、医药及其他工业领域,本文综述了微晶纤维素的特性、理化性质、制备方法以及国内外微晶纤维素的研究进展。 关键词:微晶纤维素;结晶度;聚合度;可压性;流动性;制备;研究进展 正文:微晶纤维素(MCC)是由天然纤维素经稀无机酸水解达到极限聚合度的极细微的白色短棒状或无定形结晶粉末,无臭、无味。颗粒大小一般在20-80微米,极限聚合度(L0DP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。 微晶纤维素有两种主要形式:细粉末和胶体状。前者用于吸附剂或粘合剂,后者作为液体中的分散剂。粉末状微晶纤维素的应用范围是作为抗结块剂,它有防结块和帮助流动的作用。另外,微晶纤维素还是食品中非营养部分,用作健康食品中的食用纤维。作为功能食用纤维,微晶纤维素可起到诸多保健作用。微晶纤维素有吸油特性,所以粉末化的微晶纤维素还被用作香精和香料油的载体。另外,它常被用于某些挤出食品的助流剂。胶体状微晶纤维素的多功能性表现在:乳化和泡沫稳定性;高温下稳定性;非营养性填充物和增稠剂;液体的稳定和胶化剂;改善食品结构;悬浮剂;冷冻甜食中控制冰晶形成。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。 1.微晶纤维素的理化性质 MCC 的用途广泛,用以描述的指标很多,主要有聚合度、结晶度、粒度、吸水值、润湿热、比表面积、填积密度、过滤指数和特性粘数等。 1. 1 结晶度 结晶度是指结晶区占纤维素整体的百分率。结晶度的大小对纤维素纤维的尺寸稳定性和密度等都有影响,常规测量方法X2射线衍射法和红外光谱法。通过分析后表明,MCC 都保留有纤维素I 的结晶,结晶度与晶体大小都比纤维原料的要大,结晶度Kp 一般都在0. 60 以上。 1. 2 聚合度 聚合度是指纤维素中重复的葡萄糖结构单元的数目。不同原料得到的MCC 的聚合度差别较大,如表1所示。MCC 的分散性越小, 说明MCC 的分布均一。从理论上讲,纤维素原料都可以生产不同聚合度范围的MCC 产品。 1. 3 比表面积

明胶静电纺丝的研究进展

第33卷第1期明胶科学与技术2013年3月T he Sci ence and T echno l ogy of G e l a t i n V01.33.N o.1 M a r.2013. 明胶静电纺丝的研究进展 卢伟鹏张兵+郭燕川” 中国科学院理化技术研究所,北京,100190 摘要:作为天然高分子之一的明胶无毒无味,具有优异的生物相容性及生物可降解性。利用静电纺丝技术制备的明胶纳米纤维膜材料能最大程度地仿生天然细胞外基质的胶原蛋白结构,因此在生物医用材料领域具有广泛的应用,引起了国内外学者的普遍关注。本文介绍了明胶静电纺丝装置、工艺的研究进展,同时总结了明胶静电纺丝纳米纤维膜材料在生物医疗领域内的应用研究情况,并展望了明胶静电纺丝工艺与明胶纳米纤维膜材料的发展趋势和研究方向。 关键词:明胶;静电纺丝;纳米纤维;进展 静电纺丝技术(El ect r os pi nni ng f i ber t e ch—ni que)是指带电的高分子溶液(或熔体)在静电场力的作用下拉伸变形,再经溶剂挥发(或熔体冷却)而固化,从而获得纳米纤维的工艺。静电纺丝这一技术最早在1934年由美国For m hal s提出¨.2J。1966年,Si m ons发明了一种电纺装置,制备出超薄的无纺布∞J。1981年M anl ey和La=ondo利用静电纺丝将聚乙烯和聚丙烯熔体制备成连续纤维H“J。20世纪90年代初,美国阿克伦大学R ene ker课题组对该技术进行了进一步研究,利用静电纺丝技术制备了多种聚合物直径较小的纤维,推动了静电纺丝技术的发展o7,8|。近十年来随着对纳米材料的广泛应用及独特性能的开发,静电纺丝技 }e-m a i l:Z hangbi ng@m ai l.i pc.ac.cn {}e-m ai l:Y anchuanG uo@m ai l.i pc.ac.cn 术的实验和理论工作也得到了深入的研究。目前已有几百种聚合物通过静电纺丝技术制备出超细纤维材料,其中包括合成的可降解聚合物,例如聚乳酸、聚乙交酯、聚氧化乙烯、聚己内酯等及其共聚物,天然高分子如蚕丝蛋白、纤维蛋白、胶原蛋白、壳聚糖、透明质酸、D N A 等。天然高分子在生物相容性和生物可降解性方面比合成高分子具有更大的优势,更适合生物医疗方面的应用,受到国内外学者的青睐。 明胶是由动物体内的胶原蛋白水解制备而成,其氨基酸组成和胶原相似,具有良好的生物相容性、可降解性以及低免疫原性∽。11|。因此,明胶在国民的生产生活中应用具有重大的意义。目前常用的明胶加工手段(冻干、涂布、浸渍等)制备出各种明胶产品,例如明胶海绵、明胶膜、胶囊、胶片,其不具有纳米结构,因此产品在生物相容性、生物可降解性上具有一定的缺陷,造成其机械性能、防潮、抗湿、抗菌方面性能的降低;同时也影响明胶优良生物活性的发挥。利用静电纺丝技术,可简单快捷地制备具有纳米结构的纤维膜材料。从结构上讲,其具有明显的小尺寸效应,大的比表面积和超分子的排列效果。另外,明胶纤维膜材料表面形成很多微小的二次结构,这与细胞外基质的结构类似,更接近于生物体的结构尺寸;从性能上讲,由于其特殊的纳米结构,纤维膜材料具有很强的吸附力、良好的过滤性、阻隔性、粘合性、保湿性、良好的生物相容性及生物

化纤纺丝基础知识

化纤纺丝基础知识 将纺丝流体,用纺丝泵(或称计量泵)连续、定量而均匀地从喷丝头或喷丝板的毛细孔中挤出而成液态细流,再在空气、水或凝固浴中固化成丝条的过程称为纺丝或纤维成形。刚纺成的丝条称为初生纤维。纺丝是化学纤维生产过程中的关键工序,改变纺丝的工艺条件,可在较大范围内调节纤维的结构,从而相应地改变所得纤维的物理机械性能。 按成纤高聚物的性质不同,化学纤维的纺丝方法主要有熔体纺丝法和熔液纺丝法两大类,此外,还有特殊的或非常规的纺丝方法。其中,根据凝固方式的不同,熔液纺丝法又分为湿法纺丝和干法纺丝两种。在化学纤维的生产时,多数采用熔体纺丝法生产,其次为湿法纺丝生产,只有少量的采用了干法或其他非常规纺丝方法生产。 一.熔体纺丝法 熔体纺丝法是将纺丝熔体经螺杆挤压机由纺丝泵定量压出喷丝孔,使其成细流状射入空气中,并在纺丝甬道中冷却成丝。目前,熔体纺丝法的纺丝速度一般为1000~ 2000m/min。采用调整纺丝时,可达4000~6000m/min。喷丝板孔数:长丝为1~150孔,短纤维少的为400~800孔,多的可达1000~2000孔。喷丝板的孔径一般在0.2~0.4mm。 熔体纺丝法的主要特点是卷绕速度高,不需要溶剂和沉淀剂,设备简单,工艺流程短,是一种经济、方便和效率高的成形方法。但喷丝头孔数相对较少。近年来,我国在消化吸收引进技术的基础上,已发展了低速多孔和高速短程纺,以生产丙纶和涤纶。合成纤维中的涤纶、锦纶和丙纶都采用熔体纺丝法纺丝。 二.溶液纺丝法 1. 湿法纺丝湿法纺丝是将溶液法制得的纺丝熔液从喷丝头的细孔中压出呈细流状,然后在凝固液中固化成丝。由于丝条凝固慢,所以湿法纺丝的纺丝速度较低,一般为50~100m/min,而喷丝板的孔数较熔体纺丝多,一般达4000~2000孔。混法纺丝防得到纤维截面大多呈非圆形,且有较明显的皮芯结构,这主要是由凝固液的固化作用而造成的。 湿法纺丝的特点是工艺流程复杂,投次大、纺丝速度低,生产成本较高。一般在短纤维生产时,可采用多孔喷丝头或级装喷丝孔来提高生产能力,从而弥补纺丝速度低的缺陷。通常,不能用熔体法纺丝的成纤高聚物,才用湿法纺丝和生产短纤维和长丝束。腈纶、维纶、氯纶和粘胶多采用湿法纺丝。 2. 干法纺丝干法纺丝是将溶液纺丝制备的纺丝溶液从喷丝孔中压出,呈细流状,然后在热空气中因溶剂声速挥发而固化成丝。目前,干法纺丝的速度一般为200~500m/min,当增加纺丝甬道长度或纺纺制较细的纤维时,纺丝速度可提高到700~1500m/min。干法纺丝的喷头孔数较少,为300~600孔。 干法纺丝制得的纤维结构紧密,物理机械性能和染色性能较发,纤维质量高。但干法纺丝的投资比湿纺还要大,生产成本高,污染环境。目前用于干纺丝产生的合成纤维较少,仅醋酯纤维和维纶可用此法。另外,对于既能用于干法纺丝,又能用湿法纺丝的纤维,干法纺丝更适合于纺制长丝。

微晶纤维素的研究现状及发展趋势

微晶纤维素的研究现状及发展趋势 摘要:微晶纤维素(MCC)是可以自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经过稀酸水解并且经一系列处理后得到的极限聚合度产物。微晶纤维素作为天然植物纤维原料在化工、轻工、日用化学品等领域得到广泛的应用。本文论述了微晶纤维素的性质、研究现状、应用及其市场前景,较为全面地介绍了微晶纤维素。 关键词:微晶纤维素(MCC) 性质制备市场前景 微晶纤维素(Microcrystal1ine cellulose,MCC)是由可自由流动的纤维素晶体组成的天然聚合物,它是纤维原料经稀酸水解并且经一系列处理后得到的极限聚合度的产物[1]。自1875年Girard第一次将纤维素稀酸水解的固体产物命名为“水解纤维素”后,一百多年来,微晶纤维素的研究,一直是纤维素高分子领域中一个热点课题。随着科学技术不断进步,这一曾被视为无法利用的产品,如今却在生产与应用方面取得了迅速发展。人们对它的制备方法、结构、性质进行了不断深入的研究,并将其广泛应用于食品、医药、化妆品以及轻化工部门。由于纤维素广泛地存在于自然界,根据专家估计,全球每年可生产数千亿吨的纤维素,是石油无法比拟的可再生重大资源。 1 微晶纤维素的性质 微晶纤维素主要有三个基本的特征:①平均聚合度达极限聚合度值;②具有纤维素I的晶格特征(晶胞中:心与四角子链按同一方向平行排列),且结晶度高于原纤维素;③具有极强吸水性,且在水介质中经强力剪切作用后有生成凝胶体的能力。通常所说的水解纤维素是各类降解纤维素混合产物的总称,而微晶纤维素仅限于具有上述三个特征的水解纤维素。这个特征是衡量与检验是否是微晶纤维素的唯一标准,也是区分微晶纤维素与水解纤维素的主要的标准。 表明微晶纤维素性质的物化指标有很多,主要有结晶度、聚合度、结晶形态、吸水值、润湿热、容重、粒度、比表值、流动性、反应性能、凝胶性能、化学成

(完整word版)合成纤维工艺习题

纤维期末考试题: 1、概念题 1)、溶液纺丝2)、线密度3)、冷却长度L K4)、溶胀度D.S 5)、FDY 6)、空气变形纱7)、极限氧指数8)、湿法纺丝9)、断裂伸长率10)、浓缩凝固11)、卷曲作用12)、FOY 13)、缩醛度14)、拉伸曲线的基本类型15)、干法纺丝16)、回潮率17)、拉伸比18)、假捻变形19)、ZHENMOY 20)、复合纤维21)、凝固的临界浓度再生纤维23)短纤维24)长丝25)零强温度26)纤度27)结晶速率常数(K)28)动力学结晶能力(G)29)连续冷却相变曲线(CCT)30)熔体纺丝法31)直接纺丝法32)切片纺丝法33)牵切纤维34)线密度35)断裂长度36)打结强度37)钩接强度38)熔体纺丝39)湿法纺丝40)成纤聚合物41)断裂长度42)相对强度43)强度极限44)取向结晶45)双扩散46)POY 47)化学纤维48)含湿率49)天然纤维50)合成纤维2.填空题 1.化学纤维的制造可以概括的分为____,____,____,____四个工序。2.化学纤维按基本制造方法分_____,_____,_____三种。 3.化学纤维分为____,____,____。 4.纤维的染色性与_____,_____,_____三方面因素有关。 5.干法纺丝溶剂从纺丝线上除去三种机理_____,_____,_____。 6. 真空转鼓干燥机主要由_____,_____,_____三部分组成。 7.组合式干燥设备主要有_____,_____,_____三部分组成。 8.根据切片的结构变化把干燥划分为_____,_____,两个阶段。 9.喷丝板导孔形状有____,____,____,____四种。 10.熔体纺丝方法用于工业生产的有_____,_____,两种方法。 11.用于湿法纺丝的纺丝溶液浓度为_____,用于干法纺丝溶液浓度为_____。12.丝条的毛细破坏与_____引起的扰动及这种不稳定的滋长和传播有关。 13.纺丝流体断裂机理至少有两种分别是_____,_____。 14.内聚破坏是粘弹性流体的拉伸流动,当储存的_____超过某临界值时就发生破坏,这个临界值相当于液体的_____。 15.挤出细流类型分为_____,_____,_____,_____四种。 16.熔体纺丝过程中最主要的相转变是___。支配湿法纺丝成型的基本过程是____。17.按拉伸时纤维所处的介质来分纤维拉伸方式一般分为____,___,___三种。18.喷丝板主要参数_____,_____,_____,_____。 19.湿法纺丝组件_____,_____,_____,_____组成。 20. 湿法成型时纤维结构的形成可分为两个主要的过程即_____,_____。 21. PET在工业上纺丝采取_____法纺丝,腈纶在工业上采用_____法纺丝。 22. 细颈点处的局部变形倍数称为_____。 23.具有C型应力—应变曲线的拉伸过程叫_____。 24. 在生产拉伸工艺上,一定要控制纤维的实际拉伸倍数,使之大于___而小于___。 25. 在纤维后加工过程中影响其物理性能的最得要的两道工序是_____,_____。答:1原料制备,纺前准备,纺丝,后加工 答:2熔体纺丝法,干法纺丝法,湿法纺丝法。 答:3人造纤维,合成纤维,无机纤维。 答:4染色亲合力,染色速度,着色剂性质 答:5闪蒸,纺丝线内部的扩散,从纺丝线表面向周围介质的对流传质 答:6转鼓部分,抽真空部分,加热系统

静电纺丝原理研究进展

静电纺丝原理研究进展 薛聪,胡影影,黄争鸣* (同济大学航空航天与力学学院,上海200092) 摘要:纳米纤维具有直径小、比表面积大以及易于实现表面功能化的优点,受到广泛的关注。在众多制备纳米纤维的方法中,静电纺丝是一种高效的技术,其中同轴共纺技术由于能制备芯2壳(core2shell)结构的纳米纤 维,也越来越引起人们的关注。本文介绍了基于电流体动力学的静电纺丝原理,讨论了静电纺丝相关原理研究 进展,包括Taylor锥与喷射,纳米纤维的弯曲非稳定性,高聚物溶液P熔融体流动非稳定性,两相流流型及其转 换,高聚物两相流流型及其转换,非牛顿流体流动非稳定性以及两种非牛顿流体分层流动等,最后指出了尚待 解决的一些问题。 关键词:静电纺丝;流体动力学;非牛顿流体;两相流 引言 静电纺丝技术在1934年首先由Formhals[1]提出,随后的相当长一段时间又有多项专利出现。到了20世纪80年代,才有人开始对该技术进行大量的实验和理论研究。近年来,随着纳米材料研究的兴起,人们发现,由电纺制得的纤维的直径可以达到纳米级,使得这种技术重新受到重视并出现了大量的文献[2]。目前,主要是从事化工和高分子领域的科学家在研究静电纺丝,但显而易见的是,电纺过程中涉及了大量的流体动力学方面的内容,因此也受到了力学界的关注。 早在上世纪60年代,电纺过程中有关流体动力学方面的研究就已经开始了[3]。由于静电纺丝所使用的溶液或熔融体大多为非牛顿流体,因此随着流体力学研究的不断深入,特别是非牛顿流体相关研究的深入,推动了电纺理论的发展。近期,一种新的电纺方法)))同轴电纺及其紧密相关的同轴射流技术,引起了人们极大的关注[4~8],并被认为是静电纺丝技术最近的三大进展之一[9],因此对同轴电纺理论研究同样引起了包括力学家在内广大学者的极大兴趣。相比于传统单纺,同轴共纺的流体动力学问题更多也更复杂,并且如何将现有的研究成果与同轴共纺结合起来,需要广大学者进一步的研究和探讨。本文重点介绍了电纺中流体动力学的研究成果及进展,以期对该方面的研究现状和未来发展趋势有一个较好的认识。 本文首先介绍静电纺丝原理,包括Taylor锥与喷射、纳米纤维的非稳定性、高聚物溶液或熔融体在毛细管中流动的非稳定性,然后介绍了同轴电纺和单纺之间的异同、微重力条件下两相流流型与转换、非牛顿流体两相流流型与转换以及两种非牛顿流体分层流动非稳定性相关研究,最后为小结。 1静电纺丝实验装置与基本原理 111电纺过程 电纺装置包括:高压电源,溶液储存装置,喷射装置(如内径1mm的毛细管)和收集装置(如金属平板、铝箔等)。图1为本实验室所用的单纺装置。 高压静电场(一般在几千到几万伏)在毛细喷丝头和接地极间瞬时产生一个电位差,使毛细管内聚合物溶液或者熔融体(一般为非牛顿流体)克服自身的表面张力和粘弹性力,在喷丝头末断呈现半球状的液基金项目:国家自然科学基金(50773054、10402031); 作者简介:薛聪(1980-),男,硕士研究生,主要从事同轴静电纺丝制备透光复合材料的研究; *通讯联系人:E2mail:huangzm@https://www.wendangku.net/doc/d91561864.html,.

相关文档