文档库 最新最全的文档下载
当前位置:文档库 › 透水层深基坑降水技术

透水层深基坑降水技术

透水层深基坑降水技术
透水层深基坑降水技术

透水层深基坑降水技术

1.引言

近20年是我国高层建筑的发展高峰期,多数高层建筑都有一至三层地下室,基坑工程成为中要组成部分,深基坑围护结构和降水方案的365JT设计与365JT施工直接关系到工程成本和工期,关系到能否保证形成地下施工空间及施工安全,顺利保证基坑空间内地基及桩基的安全,保证空间外围安全。但岩土工程还是不够成熟的一门技术,经典理论都在某些简化假定的前提下确定的,具有一定的局限性,一些权威专著规定的应用条件及采用的系数不尽合理,无法正确指导实际施工需要,我们结合中铁十八局职工培训中心工程基坑施工,考虑各种施工荷载及相关因素,根据以往经验进行深入研究分析,对建筑施工手册,地基与基础等专著中规定界限有较大的突破,成功的在高水位,弱透水性深基坑降水围护进行应用,以最低的投入取得很好的实际效果.

二.工程概况

兰州化工厂306循环水改造位于兰州市西固区,主要包括半地下式泵房、地下式水池、冷却塔和变配电三层楼房等。其中,地下水池部分槽地标高-0.8m,挖深5.45m,其地层为第四系全新统及更新统地层属软弱场地土,地下水位埋深1m左右,土层分述如下:

1.素填土:以粘性黄土为主,含有少量砖渣,厚度为

2.5m,强度低且不均匀。

2.粉制黏土:灰黄色,饱和,可塑状态,大量锈染,顶部少量黑褐色粉制黏土,土质不均夹灰色软芯.厚度为

3.26m,土层底板埋深5. 12m左右。

3.粉制黏土:灰色,饱和,软塑状态,有较多锈染,夹有机物厚度为

4.57m,土层底板埋深9.69m左右。

4..粉土:灰色,饱和,中密状态,土质不均,夹黏土斑,本土层厚度为7.5m,底板埋深12.5m。

基坑施工必须采取边坡支护及降水,特别是主楼东西两侧是附楼施工的主要通道.由于场地的狭窄,无法放坡大开挖,更需重点加强。

三.支护及降水设计

(一)地质报告建议支护方式

经天津市地址工程勘察院研究和计算,建议基坑开挖时,采用砼灌注桩长度12.5m.

1.基坑边坡防护设计

根据拟建物基坑开挖深度H=5.0m,假设护坡桩总长度为11.0m.按规定的统计方法及地区经验,对11.0m范围内土层的C,φ值及容重r值进行厚度加权平均值计算,其统计结果见下表.

埋深(米)C(Kpa)Ф(0)R(KN/m3)

0.0----11.010.8419.2019.40

5.0----11.010,.5214.4019.42

根据朗金土压力理论,护坡桩所受土压力如图所示

其主动土压力参数:

Ka=tg2(450-Ф/2)=0.51

被动土压力参数:

Kp=tg2(450Ф/2)=1.66

临界深度:

Z0=2Cr(Ka)1/2

单宽主动土压力为:

Ea=1/2r(Ht)2Ka-2C(Ht)Ka1/22C/r

=442.2(KN/m)

单宽被动土压力为:Ep=Ep1Ep2=1/2rt2KP2C(Ht)Kp1/2

=884.25(KN/m)

现将主动土压力Ea,被动土压力Ep分别对桩端e点取矩,要求被动土压力Ep对e点产生的力矩安全系数K=1.5,则Ea,Ep对e点取矩的平衡条件为:

1/3(Ht-Z0)Ea=1/K(1/3tEp11/2tEp2)

经计算得t=6.21(m)

则:L=Ht=5.06.21=11.21(m)

经计算求得t=6.25m,护坡桩实际入土深度一般要比计算值增加20%则护坡桩长度:L=H1.2t≈12.5(m)

2.基坑开挖施工及降水

根据勘察结果,基坑开挖后,基坑下为粉土,为确保基坑不受扰动,并保证干场作业,需做好降水工作,建议采用砼桩围护,桩长1 2.5m.本场地地下水位埋深约1.0m,水位降幅较大,根据场地条件及

地区经验,建议采用井点降水方案,且先降水,后开挖,以保证干场作业.

3.基坑开挖砼桩围护方案工程造价为256万元.

(二).现场支护方案选择.

为了采用最简单便捷的方法,最少的投入形成安全,稳定的空间,使地下结构的施工得以顺利完成,我们选择了土层锚杆,砼灌注桩壁(结合支护壁),钢板桩,水泥深层搅拌桩等几种深基础方案进行比较,认为水泥深层搅拌桩围护结构:

1.经济技术指标比其他方案具有明显的优势.

2..由于深层搅拌帷幕墙改善了边坡土层的物理力学指标,较大幅度降低实际弯矩值Ma.

3.改善了施工条件,保证了工程质量.

4.起到围护,防水方案统一的效应.

5.速度快,工期短,一个台班可成桩400m.

6.施工时无震动,无噪音,无污染.

7.早期桩体强度增长快.

(三).深层搅拌桩围护结构设计

1.技术原理

本工程水泥搅拌桩围护结构是以水泥作为固化剂,水泥掺入量为15%,水灰比0.55,用高压将其输送到软弱地层中.通过GZB-600型双头深层搅拌机的钻头,在原位强制均匀搅拌,使水泥颗粒,土颗粒与土中孔隙水等物质相互作用的三相化学反应,在土颗粒或团粒周围

包络,并逐渐凝结硬化,凝结成具有整体性,水稳定和一定强度的桩状水泥土骨架结构,从而提高其受弯受剪承载力,达到土体稳定,基坑围护安全的目的.

2.设计与计算

在目前的基坑工程设计中,无论是悬臂支护结构,还是支撑的围护结构,土压力的计算多沿用于挡土墙的Rankine土压力理论,但水泥搅拌桩围护基坑工程中的土压力明显区别与刚性挡土墙的土压力.对于刚性挡土墙,是先筑墙,后填土.而在基坑工程中,是先在土中成桩,再开挖卸载,墙背后是原状土.特别是在墙后土压力作用下,基坑支护结构将产生不同于刚性土墙的水平位移形成.这时作用在结构上的土压力将由静止逐渐变为主动土压力减小,被动土压力增大,并引起土压力重新分布.因此,影响基坑工程中的土压力的因素更为复杂.我们依据新的情况深入研究,全面分析影响因素,科学的利用土体自身控制土层位移的潜力.

根据公式:

ezjk=σzjkKai-2Cik(Kai)1/2

σzjk=σrkσokσik

σrk=γmhZj

σok=q0

σ1k=q1b0/(b02b1)

Kai=tg2(450-φik/2)

Kpj=tg2(450-φik/2)

计算得到:

e0ajk=10.44

e1.45ajk=24.43

e2.76ajk=36.95e2.76pjk=40.25

e5.5ajk=47.45e5.5pjk=115.62

εEai=181.11εE=218.77

墙体厚度设计值b≥Kn[2(1.2γ0haεEai-hpεEpi)γcs(hhd)得b≥1.4 6m为了达到极限应力状态,准确描述施工状况,最大限度降低造价,考虑软土的流变性及土体的粘,弹,塑性及包括施工因素在内的各种影响系数,制订与开挖方式,空间,地层,土性条件,加固条件及环境有关的函数,为了便于工程应用,采用一等效的水平抗力系数Kn 来综合反应土体抵抗变形的能力,Kn=0.4796,得b=0.7m 经验验算压应力:1.25γ0γcsM\W≤fcs

拉应力:M\W-γcsz≤0.06fcs

剪应力:(Ea-W1u)\2b<(σtgΦC)\K

满足要求.

滑动稳定验算:KHL=(wtgφ0C02bEb)\EA≥1.2

倾覆稳定性验算:Kq=(wbEphp)\EAhA≥1.1

(四)降水设计及计算:

现场地下水位在地表下0.8m,基坑深度开挖为4.45m,降水深度约为地表下5.00m左右.为了改善坑壁的土性,减小土的流变变形,比较多种降水方案,选择无砂管井点降水方案.

水位降低值S=4.45m

土壤渗透系数K=2.3×104cm/s=0.2m/d

b/a=(1003.6)/27.6=3.75<10

井深H=H1hiL1=11m

抽水影响半径R=1.95S(HK)1/2=12.87m

井点管间距D=2(LB)/(n-1)=2×(105.629.6)/(18-1)=19.5m

取井间矩14m

共设无砂管井18口,孔径Φ700,管径Φ400,深度11m,布置位置详图所示.

四.基坑支护及降水的施工.

水泥搅拌桩围护及降水井布置如下图(略).

(一)围护桩施工

1.施工工艺:

桩位放样→就位对中→制备水泥浆→预拌下沉→喷浆搅拌提升→复搅下沉→复搅喷浆提升至孔口→关闭搅拌机→清洗→移至下一

根桩.

2.施工参数:桩径Ф700mm,咬合200mm,有效桩长5.5m(两山墙处6.5m).425号普通硅酸盐水泥,掺量15%,用量7

3.5Kg/m水灰比0.55,水泥浆量1.15m/根,灰浆经输浆管到达喷浆口的时间45s,注浆压力0.45Mpa,提升速度0.5m/min,下钻速度0.8m/min,转速60r/min,钻杆垂直度≤1%桩长,桩位偏差≤50mm3.质量控制:水泥搅拌桩成孔----喷浆----搅拌三道工序均在地下隐蔽完成,其质量状态在

目前设备上无直观的随机放映,因此,施工过程中要抓住工序管理管理中的质量控制点:

(1)施工人员必须即时准确的做好原始记录,工地技术负责人必须逐日检查,确保设计要求和具体措施真正落实;

(2)水泥质量应符合设计要求,在采购,进厂和使用时有人把关;

(3)在喷浆搅拌过程中,要保证送粉系统运转的连续性,以确保成桩质量,若遇到较硬土层,可采取使钻杆缓慢打入硬土层,在下钻过程中直接进行喷浆;

(4)打桩过程中应避免移机,以免影响围护桩的垂直度;

(5)尽量避免爆管,断桩现象,喷浆口球阀的间隙应适中,不得堵塞,及时清洗.

(6)采用水泥土侧限抗压强度实验,或轻型触探实验,水泥土取芯抗压强度实验,小应变动测实验,对工程桩的整体性,均匀性及各个龄期的强度进行了检测,各项指标均符合设计和规范要求;

(7)进行桩位变形量测,及时反映变形速度,一边采取应急措施;

(8)相临柱体搭接200m,每一施工段宜连续施工,相临柱体施工间隙不得超过24小时。

(二)井点降水施工

1.施工工艺:

泥浆护壁冲击式钻成孔,孔径700mm,孔深11m→注入清水,开启离心式泥浆清孔→移钻机→从井底开始往上设置无砂大孔透水

管(每米一节)透水管周围用麻布包裹→井底填50cm烁砂,管孔间填

土石屑→将Ф75潜水泵送入井底即可抽水→在开槽前十天昼夜降水至基础施工完毕;

2.施工时注意事项:

(1)昼夜进行降水;

(2)每周一次进行沉降观测,发现周围建筑物沉降数大时及时通知设计单位共同协商解决;

(3)防止雨季大量的地面水流入槽内;

(4)基坑开挖时,防止土块掉入井中;

五.实际效果与评价.

地下水池工程于1998年2月16日破土动工,约完成2.6万土石方,在基坑支护及降水上,做到因地制宜,科学创新,监测预控,比勘察报告建议的节省约200万元,于11月20日成功完成2000m 3地下室砼施工,受到有关方面和专家的高度评价。

六.结论

1.土的非线性抗剪强度

Rankine土压力理论以Mohr-Coulomb抗剪强度为基础,内摩擦角和内聚力是它的两个重要土性力学指标.可是粘性土压力计算中,人们发现当压力水平较小时计算结果会出现负的恻向土压力,而土体事实上并不能承受拉应力.这表明在应力水平较小时Mohr-Coulomb 准则是不合适的.考察Mohr-Coulomb准则可以发现,该准只适合较小一段应力,水平范围.在应力水平较大时Mohr-Coulomb准则都过高的估计了土体的抗剪能力,这对工程应用是不利的.对主动土压力情

况是这样,对被动土压力情况也是如此.在深基坑开挖工程中,不仅要涉及计算应力水平较小的浅层压力,而且设计计算应力水平较高的深层土压力,因此必要研究不同应力水平下的土压力计算问题.

2.支护结构水平位移土压力的影响

经典的Rankine土压力理论存在着两个明显的弱点,:一是要求土体变形达到极限状态的临界值条件.但在基坑过程中,过大的位移量尤其是被动状态的位移量是很难实现也不允许出现的.二是Rankine 土压力理论本身是在挡土墙条件下得出来的.挡土墙刚性很大,只允许产生平移或转动,不允许产生变形.而广泛用于基坑支护的连续墙,挖孔桩属于一种轻型的挡土结构,在荷载作用下,其工作状态一般为弹性嵌固.它与刚性墙的特点不同,由于内支撑系统及入土段土体的约束,在墙后土体的压力下,墙体产生挠曲变形,引起土压力重新分布.针对这两个弱点,在考虑支护结构水平位移因素时,需着重解决以下两个问题:

(1)悬臂式支护体系的基坑工程中的土压力与支护结构的位移之间的关系.

(2)悬臂式支护体系的基坑工程的土压力沿深度方向的分布形式.

3.基坑支护的空间效应对土压力的影响

基坑本身是一个具有长,宽和深的三维空间结构,因而其支护系统的设计是一个复杂的三维空间受力问题.大量的工程实践证明,基坑坑壁中央范围土压力和位移均大于两坑壁一定范围的土压力和位

移值.这是因为在基坑两端壁处存显著的空间效应,抑制了其临近区

域的土压力和位移的发展.在不同的部位处于不同的状态,因此有必要考虑非极限状态.

目前,基坑支护问题常忽略其空间效应带来的影响,视其为一个二维的平面问题,多借助传统的Rankine土压力理论进行支护系统的设计.虽然这偏于安全,但同时也造成了很大的浪费.

4.土的性质和土压力的影响

(1)软土具有流变性质,它的变形和强度都随时间而变化,在相对小的减切应力作用下,虽不增加应力,变形可长期发展,是其蠕变特性,变形速度是应力的函数,是其流动的特性或粘滞特性,变形恒定,应力随时间减小,是其应力松弛特性,在长期受荷条件下,强度随时间而变化,是其长期强度特性.在软土地区的基坑设计和施工中,如果忽视它的流变性,仅用一般方法计算,就可能发生工程事故,或造成很大的浪费.

(2)土具有结构性,这一特点对土的工程型号子有极其重要的影响.结构受到扰动将降低内聚力,降低的程度取决于受扰动的程度,对内摩擦角也有响应的影响,.所以,土的灵敏度也会影响土压力的大小.

5.地下水对土压力的影响,

目前,在基坑开挖过程中,一般要采用一些降水措施.,降低地下水位,以防止基坑开挖过程中产生流砂或管涌等现象,保证基坑干燥,便于施工.基坑降水会引起基坑内外地下水渗流,地下水状态随之改变,同时,也会引起土的物理,力学性质的改变,直接影响着土

压力的大小.

另外,传统的水土合算和水土分算是两种极端的处理方式,研究与含水量,饱和度相关的土压力计算方法将具有实际意义.

从以上讨论可以看出:基坑工程中土压力计算的影响因素十分复杂,经典土压力理论面临着严峻的挑战.国内外诸多学者对此作了大量的理论和实验研究,对经典土压力理论所存在的缺陷和基坑工程中土压力计算的主要影响因素目前已有一定的共识,但还没有一个简单,实用的理论公式能真正用于实践.本工程的实践成功,对土压力及支护理论的研究与发展,将产生重要影响对多层建筑深基坑施工具有重要指导意义.

透水层的分析研究

有些建筑物或构筑物如公路、贮油罐、堆场以及一些摆放振动机器的地基经常承受着变载的作用,这些变载与静载相比有明显的区别。在处理这种软弱饱和土层时,常常在软土层顶面铺上垫层以加快其排水速度,在求解固结问题时,将该垫层作为透水边界,然而当垫层透水性不是很理想时,边界条件必须处理为半透水边界。因此,研究半透水边界的层状土在周期荷载作用下的固结问题是一个与工程实际密切相关的问题。

Terzaghi[1]建立了饱和软土层在骤加恒载作用下的一维固结理论,用以求解土体在固结过程中任意时间的沉降。此后,Schiffman[2]

求得了荷载随时间呈线性增长情况下该问题的解,Wilson[3]等研究了矩形荷载作用下的饱和粘土一维固结问题并得到了解答,Alonso[4]等分析了随机荷载作用下弹性粘土层的沉降,Baligh[5]等基于Terza ghi的一维固结理论,对迭加原理作了非线性分析,吴世明[6]等推导了以积分形式表达的任意荷载的一维固结方程的通解,谢康和[7,8]

研究了双层及任意层地基在简单变化荷载作用下的固结问题,蔡袁强

[9]等得到了成层饱和地基在周期荷载下的有效应力的数值解,Rahal

[10]对因筒仓加载和卸载而产生的循环荷载下的沉降和孔隙水压进

行了分析,G.ZHU[11]研究了双层土在随深度变化的荷载下的固结问题。对于边界条件为半透水的固结问题,已有一些学者如Gray[12],Schiffman[2],谢康和[13],王奎华[14]等对静载情况进行了研究。但对于半透水边界和循环荷载同时存在的软粘土的固结问题还很少见之于诸文献。作者对该问题进行了研究,利用Laplace变换,得到时域内的通解,通过数值Laplace逆变换,结合算例进行讨论,得出了一些有用的结论,可用以指导工程实践。

1固结方程及其通解

图1为本文拟求解的层状土在半透水边界条件下的一维固结问题计算模型的简图。在图中,2H、kv、Cv、Es分别为饱和软粘土层的厚度、渗透系数、固结系数和压缩模量。L1、L2、k1、k2分别为上下半透水层的厚度和渗透系数,q(t)为随时间而变化的外加荷载。

采用Terzaghi一维固结理论中的全部假设,得到的一维固结方程可表示为

图1地基模型计算简图

(1)

式中:(z,t)是z处t时刻相对于初始有效应力的有效应力增量(简称有效应力);Cv=(kv×Es)/γw,其中γw为水的重度。

对式(1)进行Laplace变换可得

s·1(z,s)-1(z,0)=Cv

(2)

式中:(z,s)是(z,t)的Laplace变换。

式(2)的解为

1(z,s)=c1eβz+c2e-βz+1*(z,s)

(3)

式中:1*(z,s)是式(2)的一个特解;β=。

对于双面半透水地基,设孔隙水压力呈线性分布,问题的初值条件和边界条件为

(z,0)=0|z|≤H(4)

z=-H;t>0(5)

z=H;t>0(6)

式中:R=k1·2H/kv·L1;R′=k2·2H/kv·L2。

在任意时刻,外加应力都等于孔隙水压力与有效应力之和,即u (z,t)=q(t)-(z,t),故式(5)和式(6)又可表示为以下形式:

z=-H;t>0(7)

z=H;t>0(8)

将式(4)、式(7)、式(8)作Laplace变换后代入式(3)可得

1*(z,s)=0,C1=Q(s)/2H[α1R′+α4R]/α2α3-α1α4;C2=Q(s)/2H[α1R′+α3R]/α2α3-α1α4.

式中:Q(s)为荷载q(t)的Laplace变换式,α1=e-βH[β-R/2H];α2=eβH[β+R/2H];α3=eβH[β+R′/2H];α4=e-βH[β-R′/2H].

将以上结果代入式(3),可得有效应力的Laplace表达式为

1(z,s)=Q(s){[eβH(β+R/2H)R′+e-βH(β-R′/2H)R]eβz+[e-βH(β-R/ 2H)R′+eβH(β+R′/2H)R]e-βz}/[e2βH(β+R/2H)(β+R′/2H)-e-2βH(β-R/ 2H)(β-R′/2H)]×2H

(9)

对式(9)求Laplace逆变换即可得所求得的有效应力(z,t):

(z,t)=

(10)

式中:i=。当1(z,s)的表达式比较复杂时,解析解往往很难求得,对于数值Laplace逆变换问题,Durbin[15]进行了深入而细致的研究。在以下的叙述中,因为有效应力的解析式难以求出,采用Durbin所提出的数值Laplace逆变换方法。利用自编的程序,结合算例,讨论了各种参数对土体中有效应力比变化的影响。

2常见的循环荷载及Laplace变换

2.1骤加恒载作用下的情况所加荷载如图2(a)所示,

q(t)=σ0,t≥0(11)

Laplace变换为Q(s)=σ0/s(12)

图2常见循环荷载及Laplace变换

当R、R′→∞时,意味着此时是完全透水的边界条件。式(9)退化为

1(z,s)=Q(s)(eβz+eβz)/eβH+e-βH=sh[β(z+H)]-sh[β(z-H)]/sh(2β

H)Q(s)

(13)

将上式进行Laplace逆变换便可得骤加恒载作用下一维固结方程的解:

(z,t)=σ0[1+4/π=sinnπ/2cosnπz/2Hexp(-Cv/4H2n2π2t)]

(14)

U(z,t)=[1+4/πsinnπ/2cosnπz/2Hexp(-Cv/4H2n2π2t)]

(15)

土层的平均固结度(t)为:

(t)=1-exp(-M2Tv),M=π/2(2m+1),Tv=Cvt/4H2

(16)

可见,此情况下本文方法导出的解答与Terzaghi的理论解完全一致。

3.2正弦波形荷载作用下的情况所加荷载如图2(b)所示,

q(t)=σ0(1+sinωt),t≥0

(17)

Laplace变换式为:

Q(s)=σ0(1/s+ω/s2+ω2)

(18)

3.3三角形荷载作用下的情况所加荷载如图2(c)所示,

(19)

q(t+2T)=q(t)

Laplace变换式为:Q(s)=σ0/Ts2thTs/2

(20)

3.4矩形荷载作用下的情况所加荷载如图2(d)所示,

(21)

q(t+2T)=q(t)

Laplace变换式为:

Q(s)=σ0/2s(1+thTs/2)

(22)

3算例分析

某地基H=2.5m,L1=L2=0.5m,k1=k2=2×10-8m/s,kv=5×10-10m/s,Es=6MPa,T=20d,考察图(3)所示荷载作用下有效应力比σesr(=(z,t)/σ0)随时间的变化曲线。从图(3)可以看出:

当地基的各种参数相同,对于各种循环荷载,只要加载时间足够长,土体中的有效应力最终全部达到一个稳定状态,每一个加载卸载循环下有效应力比幅值的变化趋近于零,这是普遍的规律。由于饱和土是由两相介质(水、土)组成,土体中有效应力的变化相对外加荷载有滞后现象。循环荷载下土体的有效应力比曲线都近似以恒载σ0/2曲线为中心线来回振荡,变化幅度不随时间的发展而减少。其中以矩

形荷载下地基土中的有效应力变化幅值最大,三角形荷载次之。

图3不同波形的周期荷载下有效应力比变化曲线(z=2m)

图4骤加恒载下不同压缩模量有效应力比变化曲线(z=2m)图5E s对有效应力比的影响(z=2m)

图(4)表示骤加荷载下不同压缩模量的地基土在z=2m处的有效应力比增长曲线。可以看出:在其它条件相同的情况下,当土的压缩模量不同时,有效应力比的增长速度不同。压缩模量越大,有效应力比增长的速度越大,但是随着压缩模量值的增大,其对有效应力比变化的影响逐渐减小。

图5表示200d时不同压缩模量时有效应力比的变化。当Es从1.5MPa变化至4.5MPa时,σesr从0.38增长至0.46,变化了0.08;当Es从4.5MPa变化至7.5MPa时,σesr从0.46增长至0.487,仅变化了0.027,可见随着压缩模量的增加,有效应力比的增长速度变缓。

图(6)、图(7)表示的是不同压缩模量的地基土在三角形荷载下两米深处和中心处有效应力比σesr随时间的变化曲线。可以看出:在相同深度的情况下,压缩模量越小时,地基土中σesr的变化对荷载变化的滞后时间越长,即压缩模量较小的土对荷载变化不敏感;并且压缩模量越大,固结速度越快,有效应力比的变化幅值也越大,土体对外加荷载的变化反应越强烈。结合图(6)、图(7)可以看出:在不同的深度,当压缩模量相同时,有效应力的变化幅值也不相同,当地基中某一点离边界距离越大时,有效应力的变化幅值越小。在地基中心

处,有效应力比近似呈直线变化。

图(8)表示的是地基在三角形荷载下,z=2m处,垫层渗透系数不同时σesr随时间的变化曲线。可以看出:垫层的渗透系数越大,即R和R′值越大,有效应力的变化幅度越大,相对外加荷载的变化滞后时间也较小。这是因为:当地基的R和R′值较大时,表明地基的上下垫层排水性能较好,地基土可以在较短时间内固结。此时土体逐步承担有效应力,Terzaghi理论假设土颗粒是弹性的,固结度越大,土颗粒承担的有效应力也越大,较大的固结度外加荷载变化时,由于导致滞后效应的孔隙水减少,地基土表现出更多的弹性体特征。

图6三角形荷载下z=2m处不同压缩模量时有效应力比变化曲线图7三角形荷载下z=0m处不同压缩模量时有效应力比变化曲线还可以看出:当R和R′值很小时,即上下垫层接近不排水时,土体的有效应力增长速度很慢,由于孔隙水的存在,其变化幅度几乎为零。从图上看,曲线近似退化为一条斜率等于零的直线。还可看出,当R和R′值大于或小于某一数值时,有效应力变化基本上相同。在一定取值范围内时可以把上下垫层当作半透水地基。计算表明,当R 和R′值大于40时,可以看成是透水地基,当R和R′值小于0.4时,可以看成是不透水地基,R和R′值在0.4~40之间时,为半透水地基。当所求问题的边界条件为半透水时,若将其简单处理为透水或不透水条件,将导致较大的误差。由图可见,边界条件对循环荷载作用下地基土中σesr的影响是很大的。目前很多实际工程问题中的固结计算,一般都笼统地处理为透水边界或不透水边界,但很多都应属于半透水

边界的情况,应据边界的排水条件,相邻土层的渗透系数选择合适的边界参数R和R′,按半透水边界处理更合适。

图8三角形荷载下半透水层不同渗透系数时有效应力比变化曲线

以上是针对三角形周期荷载而言的,对于文中所提及的其它周期荷载,也有相类似的规律,在此不一一赘述。

4结论

(1)文中所给出的方法可以用于计算半透水层的地基在任意随时间变化的荷载作用下的有效应力的变化情况。求出其Laplace变换式,结合自编程序,便可求解。(2)在实际工程计算中,应根据土层和垫层的具体情况,确定边界条件究竟属于完全透水、半透水或者不透水,从而得到更为准确的结果。(3)在所有的荷载作用下,土体中的σesr都最终趋向于一稳定值。周期荷载作用下土体中的σesr的变化有相对滞后的现象。每一个加载卸载循环下有效应力比幅值的变化趋近于零。(4)外载作用下,土层中心处有效应力比的变化最慢。压缩模量越大,有效应力的变化越快。但随着压缩模量的增大,其对有效应力比变化的影响也越小。(5)垫层的渗透系数越大,有效应力的变化幅值也越大,相对外加荷载变化的滞后时间变短。

深基坑降水施工专项方案最终版

西安百货大厦停车楼工程基坑降水工程专项施工方案 编制:郝川 审核:唐勇 审定:魏乐军 陕西工勘院岩土工程有限公司 二○一五年四月十九日

目录 1 工程概 况 ....................................................... ......................................................... (3) 2 场地地层及水文地质条 件 ....................................................... .. (3) 3 施工方案编制依 据 ....................................................... ......................................................... .. (4) 4 基坑降水方案设 计 ....................................................... ......................................................... .. (4) 5 降水井施 工 ....................................................... ......................................................... .. (5) 6 地面排水系统设 计 ....................................................... ......................................................... .. (7) 7 群井降 水 ....................................................... ......................................................... (7) 8 降水检测与维

深基坑井点降水专项方案

深基坑井点降水专项方案 工程概况: 本工程位于仰天岗大道和中山北路交叉口,工程为一基地内地下车库,上部为一综合楼及三幢高层住宅楼,地下室最深处,低于附近孔目江。 一、为什么要井点降水 井点降水是深基础开挖前的一道必要工序,并且该工程靠近孔目江,地下水源非常丰富,基础开挖后,地下水会源源不断地流入该工程持力层的上方(高程45米之间),为了加快该工程的进度和确保该工程的质量,必须采取井点降水,井点降水时间为地下室后浇带混凝土全部浇捣完毕止,时间大约六个月。 二、井点降水的施工工艺: 1、本工艺采用150型冲击锤(10千瓦/小时)成孔,井口直径400㎜,井壁管采用直径300㎜的波纹管,出水口直径32水泵(单台泵功率为1.5千瓦/小时)。 2、波纹管的下端带管箍,在管身钻梅花型的滤管,以达到抽水效果,外缠8号铁丝,间距不大于20㎜,外包不锈钢丝网二层,以防泥砂流入管内。 3、滤料,采用粒径0.5-3.0㎝的石子,含泥量小于1%。 4、地下水位降低深度为4-6m间,降水管(透水管)底深度暂取高程为40米,具体施工中有变化时,可适当调整深度。 三、井点的布置: 井点布置根据基坑平面形状的大小、地质和水文情况、工程性质、降水深度等而定。设在基坑(槽)的边侧,间距30米,基坑中间每隔60米的降水井。埋设深度根据地质、水文、底板高程、含水层位置决定,但必须埋入含水层内,井点布置见附图,。

四、设备及人员的配置 1、该工程设一台150型钻机,孔成型后,每个井点配置一台扬程高、性能好的潜水泵。 2、150型钻机配置3-4人,每天完成3口井、孔全部成型后配9人24小时以三班倒的形成不间断的抽水。 五、安全措施: 1、冲钻机操作时安放平稳,防止机具突然倾倒或钻具下落,造成伤人或设备损坏。 2、已成孔尚未下井管前,井孔应用盖板封严,以免掉土或发生人员安全事故。 3、各机电设备应专人看管电气必须一机一闸,并严格按照临时施工用电及国家现行规范的要求及公司的规定。 六、井点降水报价: 雨滴穿石,不是靠蛮力,而是靠持之以恒。——拉蒂默

基坑降水施工方案57317

基坑降水井施工方案 第一节、工程概况 一、工程概况 工程名称:珠海市人民医院北区建设工程第二标段(主体总包)工程 建设单位:珠海市政府投资建设工程管理中心 设计单位:广东工业大学建筑设计研究院 监理单位:浙江江南工程管理股份有限公司 施工单位:南通四建集团有限公司 珠海市人民医院北区建设工程第二标段(主体总包)工程位于珠海市香洲区园山路;总建筑面积47497.94㎡,其中地下室建筑面积:17443.85㎡,三栋主楼,地上分别6层、5层和17层、建筑面积为30054.09㎡,建筑高度73.6m。首层高度为5m,四层以上标准层层高为3.8m。 结构类型为钢筋混凝土框架剪力墙结构,建筑结构类别为乙类,建筑使用年发50年,抗震设防烈度7度。 本工程±0.000相当于黄海高程11.50米。 二、场地条件 1、场地原地貌为地上覆第四系人工填土(Qml),其下为第四系坡积(Qdl)粉质粘土、粗砂、淤泥及淤泥质土,下伏燕山期花岗岩风化带(ry)。 根据设计要不,基坑底设计标高为-10.9~-12.8m(相当于高程0.6~-1.3M),基坑开挖深度约2.8m,桩承台基坑底设计标高土层多为粉质粘土、粗砂、淤泥及淤泥质土,天然地基承台基坑底设计标高土层多为风化岩。 2、场区地震基本烈度为7度,基本地震加速度峰值为0.10g,建筑场地类别为II类,建筑结构安全等级为二级,基础设计安全等级为二级。 根据现场钻探揭露及室内土工试验结果,场地内分布的地层有:地上覆第四系人工填土(Qml),其下为第四系坡积(Qdl)粉质粘土、粗砂、淤泥及淤泥质土,下伏燕山期花岗岩风化带(ry)。 三、场地地下水 本场地地下水据钻探揭露,地下水类型主要为上层滞水和基岩裂隙水。拟建场地地下水位变化较大,勘察期间测得场地地下水混合水位埋深为 1.20~41.40m,高程为6.56~9.82m,平均高程为8.67m,抗浮设计水位高程按9.0m考虑。拟建场地内地下水水质对钢结构均具弱腐蚀性,对混凝土结构、钢筋混凝土结构中钢筋无腐蚀性 四、基坑支护情况

建筑工程基坑降水技术

建筑工程基坑降水技术 1.建筑工程基坑降水理论综述 1.1 建筑工程基坑降水 高层建筑和地下工程的构筑物中,几乎每年都有因流砂、管涌、坑底失稳、坑壁坍塌等引起的工程事故,造成周围地下管线和建筑物不同程度的损坏。因此在基坑工程中中通常须降低地下水水位,以保证工程施工的顺利进行。 在基坑开挖施工中,为了避免上述的地下水对基坑产生的不良影响、防止坑壁土体坍塌、确保干作业下的施工环境、保证施工的安全和工程质量,必需降低地下水水位。基坑降水的作用,主要有截住基坑坡面及基底的渗水;增加边坡的稳定性,并防止基坑边坡或基底的土粒流失;减少板桩和支撑的压力,减少隧道内的空气压力;改善基坑和填土的特性;防止基底的隆起与破坏。 1.2 基坑降水的方法 降水方法是指采用各类井点降低地下水位的方法。目前常见的有明沟加集水井排降法、轻型井点法、喷射井点法、管井井点法、深井井点法和综合井点法等。 2.建筑工程基坑降水应用分析 2.1 工程基本资料 某综合办公大楼是该地区的重点工程,本工程的二期办公大楼,长约125m,宽约87m,基坑开挖深度为9m。该工程地下水类型主要为潜水,水位埋深为1.5m。基坑采用坑内-轻型井点沿周边环形布置,场地中间布置少量管井进行降水。场地土层从地面向下依次为粉土、粉砂、粉土、粉质粘土。 2.2 基坑降水方案 降水工程要以基坑内最大坑深作为降水设计目标。由于地基土可能存在局部软弱层,地基处理时经常遇到需加大开挖深度的情况,这样水头降低深度在降水设计中要能适时控制并留有余地。另外基坑开挖工期紧迫,要在尽可能短的时间内疏干基坑内地下水,并将地下水位降低在基坑底以下。 基坑工程降水改变了基坑周边土体的应力状态,一方面水位的下降使土体的自重应力增加;另一方面地下水由静止状态逐渐发展至稳定运动状态,渗流作用使土层的附加应力增加。显然,基坑工程中渗流应按平面二维渗流考虑,在本基坑的设计中为简化计算,现假设坑外土体只在重力方向发生一维渗流。现考虑总应力变化和一维渗流条件下距离基坑边缘4m、8m、12m、30m的有效应力变化情况,计算深度分别为3.4m、5.6m、9.0m、13.5m(从天然水位位置算起)。 针对工程地质的主要结构等问题,工程降水的方案设计及方案实施中,主要技术概括为:轻型井点和管井降水相结合,有效地解决滞留水渗出问题。管井要有足够的有效深度,并能按实际需要,留有泵头加深的深度和及时调整水泵流量下入更大水泵的管井内径余地。基坑内要布置一定数量的疏干井点,加速开挖土体内的地下水疏干。科技论文。住宅楼与裙房降水工程连成一体,统一布设轻型井点和管井,一次施工全面降水。 2.3 基坑降水主要施工技术 2.3.1主要施工工艺流程 工艺流程:开挖沟槽→冲孔→插井点管→填粗砂→粘土封口→主、支管连接→接真空射流泵→试验与检查→不间断抽水→检查水位。 2.3.2施工前期准备工作 根据井点系统的设计计算,轻型井点降水设备采用4台型号为2BL-6型的JSJ60射流泵,排水量25m3/h。井点立管为直径38的钢管,长度为7.9m。科技论文。井点管的底段1.2m位置是滤管,连接管用直径38的橡皮管,部分连接管用塑料透明管作观察管;集水管用100mm 的钢管分节连接,每节为4m,每根立管间距为1.2m-1.6m。 2.3.3井点管安装施工

深基坑降水专项方案修订稿

深基坑降水专项方案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

王河小区公租房4#、5#、6#楼及地下室 深 基 坑 降 水 施 工 方 案 编制单位:汉通建设集团有限公司 编制人:刘桂华 2011年12月19日

目录 工程概况 (3) 编制依据 (6) 施工计划 (6) 施工工艺技术 (8) 施工安全保障措施 (11) 劳动力组织 (17) 计算书 (17)

一.工程概况 1.工程规模:王河小区公共租赁租房工程(二标段)为筏型大板基础,基底标高-10.400m局部-10.600m。钢筋混凝土框剪结构,地震烈度7度设防,设计地震分组为第二组,设计基本地震加速度值为0.10g,特征周期值为。设置地下2层地下室(车库),建筑面积㎡。4#住宅楼局部28层,层高3.00M,造型及设备用房总高5.40M,建筑物总高度89.40M,面积㎡;5#楼1~2层营业用房层高2×4.50M,住宅部分层高3.00M,造型及设备用房总高5.40M,建筑物总高度89.40M,面积㎡;6#楼1~2层营业用房层高2×4.50M,住宅部分层高3.00M,造型及设备用房总高5.40M,建筑物总高度89.40M,面积㎡;总计建筑面积㎡。使用功能齐全,配套设施完善。 2.工程地理条件:王河小区公共租赁租房工程(二标段)位于乐山市中心城区王河通江敖坝村。依邻岷江河畔,地处丘陵,山地起伏高程差值不大。建筑用地界线周边近50M内无永久性建筑物。 3.降水施工专项方案的监控指标:以满足基坑面积A=LB=160m×104m=16640㎡脱离地下水位进行深坑土方施工,且满足《建筑与市政降水工程技术规范》(JGJ/T111-98)和相关建筑基础工程施工质量验收规范规定为准。 4.工程地质(自上而下)条件: (1)粉质粘土:黄褐色,稍湿,软塑~可塑。表层含较多植物根茎及碳化物(局部为稻田或鱼塘,有厚~0.40m的)。局部表层覆盖少量粉土、细砂、卵石和建筑垃圾堆积形成的杂填土,偶含钙质结核,局部

基坑降水、挖土施工方案

新建闸北区市北高新技术服务业园区 N070501单元12-05和12-06地块商办项目 挖土及降水工程 施 工 方 案 二○一五年六月

目录 第一章工程概况及设计要求 0 第二章编制依据及引用技术标准 (2) 第三章施工组织及部署 (3) 第三章降水施工方案 (5) 第四章土方开挖施工方案 (9) 第五章文明施工、安全管理措施 (12) 第六章基坑应急预案及环境保护 (16)

第一章工程概况及设计要求 1.工程地理概况 本工程位于上海市闸北区,场中路南侧共和国际广场东侧,本工程包含12-05和12-06两个地块。 图1.1 地理位置及周边环境示意图 2.围护设计概况 本工程围护用钻孔灌注桩加三轴搅拌桩止水,坑底加固分别采用三轴搅拌、双轴搅拌桩、高压旋喷桩、间缝处采用压密注浆。 本工程开挖深度11m(自然地面绝对标高按4.600计),围护墙采用Φ850、Φ900、Φ1000三种灌注桩桩型,墙深245m。设置2 道钢筋砼支撑支撑,基坑周边部分被动土体采用Φ850@600三轴水泥搅拌桩进行加固,区域加固范围为地面至基底以下4m,基底以上水泥掺量10%,基底以下水泥掺量20%,基坑落深处用双轴水泥搅拌桩进行加固,落深3m以上土体采用高压旋喷桩加固。围护间缝处用压密注浆法。 第一道砼围檩为1200×800mm,主支撑为850×800mm,连杆、八角撑为700×700mm,栈桥梁为800×1350mm,栈桥板厚300mm。 第二道砼围檩为1300×900mm,主支撑为1000×900mm,连杆、八角撑为750×750mm。

3.地质概况 本工程位于长江三角洲入海口东南前缘,属三角洲冲积平原,地貌形态较单一,地貌类型属滨海平原。

深基坑降水专项方法

王河小区公租房4#、5#、6#楼及地下室 深 基 2011年12月19日 目录 工程概况.....................................................................3编制依据 (6) 施工计划 (6) 施工工艺技术 (8)

施工安全保障措施 (11) 劳动力组织 (17) 计算书 (17) 一.工程概况 1.工程规模:王河小区公共租赁租房工程(二标段)为筏型大板基础,基底标高-10.400m局部-10.600m。钢筋混凝土框剪结构,地震烈度7度设防,设计地震分组为 第二组, (车库) 房总高 高2× 89.40M, 3.00M, 积 2. 周边近 3.㎡脱 (JGJ/T111-98)和相关建筑基础工程施工质量验收规范规定为准。 4.工程地质(自上而下)条件: (1)粉质粘土:黄褐色,稍湿,软塑~可塑。表层含较多植物根茎及碳化物(局部为稻田或鱼塘,有厚0.20~0.40m的)。局部表层覆盖少量粉土、细砂、卵石和建筑垃圾堆积形成的杂填土,偶含钙质结核,局部粉粒含量较重,为粘质粉土。韧性

较好,干强度较高,摇震反应慢。稍有光泽。连续分布。层厚1.00~6.90m。 (2)细砂:冲洪积成因。灰褐、深灰、灰黄等,饱和。主要成份为长石、石英、岩屑等,含少量黑云母、白云母。一般表层泥质含量较重,下部较纯净。分布十分广泛,但不连续,埋深1.00~11.70m,层厚0.60~14.10m。 (3)卵石:冲洪积成因。灰褐、深灰色等,饱和,卵石粒径2-15cm较多,据现场筛分,粒径大于50mm的占58%,2-5cm约10~23%。含漂石。成分较杂,以花岗岩、 超重型 3.50~18.90m 泛,但不连续,局部夹稍密或密实卵石透镜体。层顶埋深2.60~21.30m,层厚0.50~8.40m。 密实卵石:卵石含量大于70%,呈交错排列,N120击数为10~14击。连续分布。局部夹稍密或中密卵石夹层。层顶埋深2.70~23.00m,勘察揭露厚度0.50~10.80m。 砂质泥岩:紫红色,矿物成分以粘土矿物为主。泥质胶结为主,钙质次之。中~

深基坑支护及降水施工技术

深基坑支护及降水施工技术 【摘要】本文主要介绍周边环境复杂情况下深基坑支护及降水、开挖的施工技术,阐述了混凝土灌注桩+锚杆+挂网+喷射混凝土等综合支挡结构的施工技术。 【关键词】深基坑支护降水开挖施工技术 1、工程概况 和平门110kV变电站属户内半地下式变电站,建筑物属钢筋混凝土框架结构,基础采用梁板式筏型基础,地下两层,地上一层。总占地面积0.1347hm2(2.02亩),总建筑面积3370 m2,基坑开挖平面尺寸45.9m×30.9m=1418.31m2,基底标高-11.74米。土方开挖采用机械大开挖,不放坡,采用护坡桩形式进行支护,总土方开挖量约为16500m3。 2、工程特点 2.1工程地质条件 场地地形平坦。场地的相对高程介于98.72--100.07m,场地地貌单元为黄土梁、洼;基坑支护影响范围内地层由素填土、黄土、古石壤组成。 2.2水文地质条件 稳定水位埋深8.70--9.70m,相对标高90.31--90.38;地下水年平均变化幅度约为2m。本场地地下水属潜水类型。 2.3地质结构 土层厚度(m) 天然重度γ(kN/m3) 粘聚力C(kPa) 内摩擦角Φ(。) 钉土摩阻力(kPa) ○1层素填土0.4-1.6 14.5 5.00 10.00 18.00 ○2层黄土层 6.8-9.1 14.7 30.00 18.00 50.00 ○3层黄土层 1.8-2.1 17.8 25.00 18.00 50.00 ○4层古壤层 2.5-2.7 17.7 30.00 20.00 55.00 ○5层黄土层>11.2 18.4 30.00 20.00 50.00 2.4周边环境 地处西安市环城公园(环城南路与护城河之间),东侧为废弃加油站、南侧为市政道路环城南路、西侧为环城公园、北侧为护城河,外界干扰大,行人及车辆对施工有影响,施工段做围挡和疏导工作。 2.5周边建筑荷载情况 基坑北侧开挖底边线距护城河河堤上口约1m,南侧在环城南路人行道上,东侧距离

深基坑支护及降水施工方案

第1节深基坑支护及降水施工方法 本工程基坑开挖深度约4.8~8.2m,根据建设单位提供的《地质勘探报告》,本工程地质情况较差,地下水含量也较丰富,基坑挖方范围的土层包括:杂填土、粉质粘土、淤泥、冲积砂层、淤泥质土,基底持力层主要位于淤泥层、冲积砂层和淤泥质土层,其中冲积细(粉)砂有易液化的特性。 因此必须采取有效措施,做好基坑挡土支护和隔水帷幕,并有效地将基坑内的地下水位降低到土方开挖面以下,方能确保基坑土方开挖的正常进行和基坑的安全,本着“安全第一、经济合理、施工方便、技术先进”的原则,公司决定采用水泥土桩墙锚拉支护方案。 (1)水泥土桩墙锚拉支护方案 1)基坑支护设计方案 基坑周边设计二排φ550 直径的深层搅拌桩(相互搭接150mm),设计桩长约14.8m,搅拌桩进入粉质粘土不少于2m,作为止水帷幕和支护结构,加固材料为425#普通硅酸盐水泥,掺入比15%,水灰比0.5,桩身抗压强度qu≥3MPa,要求二喷四搅工艺成桩,桩身偏斜<1%,相邻桩不留施工断缝; 支护设计详见下图。 2)基坑支护施工方案 (B)主要施工方法及要求 A)深层搅拌桩施工方法 施工工艺的原理 水泥深层搅拌桩是将特制的搅拌钻具(PH-7 型钻机)钻入地下,利用注浆泵将水泥浆体喷入地下并与地基土原位强制搅拌,经过一系列的物理化学作用形成具有整体性和一定强度的桩柱体,具有挡土及止水的双重作用。

工艺流程 图6-2 深层搅拌桩施工工艺流程 主要工艺控制参数 表6-1 主要工艺控制参数 泵量(m/h) 分别在不同地段试搅,检查设计工艺参数的合理可行性,其中包括:搅拌机钻进深度、桩底标高、桩顶或停灰面标高、灰浆的水灰比、外掺剂的配方、搅拌机的转速和提升速度、灰浆泵的压力、料罐和送灰管的风压、输浆量等。 施工技术及操作要求 (a)技术要求 a)深层搅拌桩桩径为Φ550mm,桩间搭接150mm,桩长14.8m。 b)深层搅拌桩采用水泥浆灌注,采用四搅二喷方式施工,加固材料采用425#普硅水泥,水泥掺入比15%,折合单桩水泥用量不少于60kg/m,水灰比0.5。c)搅拌桩的垂直偏差度不得超过1%,桩位布置偏差不得大于50mm,桩径偏差不得大于4%。 d)施工中用流量泵控制输浆速度,使注浆泵出口压力保持在0.4-0.6MPa,输浆速度应保持常量。 e)根据该场地勘察资料,搅拌桩穿过淤泥层及砂层进入强风化层。 (b)操作要求 a)桩机就位由专人操作,专人负责电缆管线,专人校正钻头对位,钻头就位采用垂线量测(二个方向观测)。 b)钻进前先打开浆泵送清水,检查各种管路及钻头喷口通畅才可钻进。 c)开始下沉时即送浆。桩底喷浆应不少于30 秒,使浆液能完全到达桩端。d)整个制桩过程边下沉(或提升),边搅拌,边喷浆的连续作业,注意观察有关仪表和管道的脉动情况,以判断管道是否通畅,喷浆是否正常。 e)成桩后应立即检查送浆量,成桩水泥浆总量不得少于设计要求。 f)水泥浆拌制要严格计量,严格控制水灰比,浆体使用前要过筛,以防块体、纸屑等进入管道造成堵塞。 g)水泥不得使用过期、受潮、变质的水泥。

基坑降水工程施工合同

合同编号: 基坑降水工程 工程名称: 施工合同 银川市爱心护理院8#医疗保健楼、9#医疗展厅超市工程发包单位: 中铁二十一局集团笫二工程有限公司爱心护理院项目部承包单位:

日期:2017年月曰 银川市爱心护理院8#医疗保健楼、9#医疗展厅超市 基坑降水工程施工合同 发包方(简称甲方):中铁二十一局集团笫二工程有限公司爱心护理院项目部承包方(简称 乙方): 根据《中华人民共和国合同法》、《中华人民共和国建筑法》等有关法律、法规, 遵循平等、自愿、公平和诚信的原则,经甲、乙双方友好协商,根据本工程的具体情况, 签订本合同如下,双方共同遵守: 、工程概况 工程名称:银川市爱心护理院工程 工程地点:位于银川市 、承包范围2.1包括但不限于银川市爱心护理院8#医疗保健楼、9#医疗展厅超市基坑降水工程甲方要求的内容进行施工。施工严格按照国家验收施工规范规定及降水规范要求进行,具体做法以甲方工程部现场要求为准。 22工程内容:银川市爱心护理院8#医疗保健楼、9#医疗展厅超市基坑降水工程。基坑长 宽为X 米,降水深度为- 米;基坑降水 井口,打井深度为米。包括降水打井及管线铺设、降水排水等。地下 水位监测等相关原始记录工程资料编制、整理装订和归档等工作。 2?3 ?承包方式:乙方包工包料包安全生产。 、施工内容3.1主要工作内容包括但不限于: (1)打降水井 (2)下无砂磴滤管 (3)安装泵管 (4)排水管安装

(5)砌筑集水坑及支墩 (6)临时用电安装

(7)抽排水管理 (10)施工期间的排水工作,乙方必须采取一切措施保证抽水、止水、排水的及时性,否 则,由此造成基坑泡水等而产生的经济及工期损失均由乙方承担,若不 是由乙方原因造成的基坑泡水而产生的经济损失不由乙方负责。 四、承包方式 本工程采用包工包料包机械设备和小型工具方式。 双方核定分项工程综合单价(计算时不可调整),工程量按实际发生工程量,该分项工程总价二综合单价乘以实际发生工程量。 4.1综合单价中包括但不限于:承包范围全部工程内容的人工费、材料费、 机械费、管理费、利润、钻孔费、测井费、无砂滤管费、下泵管费、洗井费、安装泵体费、配套构件费、排水管道铺设费、抽水排水费、维护管理费、垃圾清运费,安全文明施工费、材料检测、机械及机械安拆和进退场、工程保险及意外伤害保险、管理费、措施费及规费、利润、税金(合同总价X % )、市场价格波 动风险、政府标准合同文本规定的不可抗力以外的所有风险及其他一切可预见或不可预见因素等。甲方不再另行向乙方支付任何费用。 4?2本工程所需材料均由乙方负责采购,在采购前天内通知甲方,经甲乙双方共同考查品牌、质量确认符合要求后,再行采购,但因材料质量问题造成的工程质量不合格, 其责任仍由乙方承担。 4?3施工阶段的临建和产生的废弃物,施工完成后于退场前应按甲方要求及时清理, 不得影响后续施工,每拖延一天按拖延一天工期罚款。 五、付款方式 5?1本工程不支付工程备料款(预付款),工程正式开工后,降水井施工结束开 始抽排水,经甲方验收合格付降水井该项造价的%o 5?2降水结束后开始办理工程结算,甲方支付乙方合同价款的 剩余%接乙方书面申请款报告,九十个工作日内一次性无息全部付清。

[上海]轨道交通深基坑深井降水施工方案

1、工程概况 1.1.工程地理概述 本车站为上海市轨道交通杨浦线(M8线)工程第四站,位于佳木斯路与国顺东路之间的营口路上,车站呈南北走向,车站周边较为空旷,车站的西侧为黄兴绿地公园,东侧为旧的厂房(现已拆除)以及在车站的东北有一栋四、六层房子。 1.2.工程概述 车站为地下一层(局部一层半)侧式站台站,主体结构全长240.8米。车站附属结构包括:南北风井、东西出入口及东西地面设备用房。 车站主体、两个风井及东出入口采用地下连续墙作基坑的围护结构,地下墙的厚度为600mm,接头采用圆形波纹管柔性接头,墙深分为24m、21m、18m三种,地下墙墙址均插入第⑤1层土。西出入口采用SMW工法劲性水泥搅拌桩作为基坑的围护结构。 南端头井接单圆盾构区间,呈交叉状,长12.57m,最大宽度20.41m,垫层底深13.57m;北端头井为双圆盾构始发井,长20.14m,宽16.8m,垫层底深14.06m。车站北标准段长41.65m,宽16.5m,垫层底深12.27m;南标准段长44.5m,宽16.5m,垫层底深12.26m;南端渐变段长65.5m,宽9.91~12.55m,垫层底深11.85m;车站中间站台段长65.5m,宽25.7m,垫层底深12.28m,基坑坑底以下24m设

桩径φ600mm抗拔桩,共62根。 1.3.工程地质概述: 1.3.1.水文地质: 车站范围内潜水主要赋存于第(②2层)砂质粉土中,其主要补给来源为大气降水,水位随季节面变化,水位埋深0.5~0.7m;承压水埋藏于砂质粉土中,第⑦层土顶埋深为30.0m左右,其水头埋深为5.90m。 1.3. 2.基坑开挖范围各土层描述: 根据地质勘察报告,车站场地30.60m以上的地基土主要为上海地区吴淞江故道地层沉积组合,浅层分布有较大厚度的砂质粉土层(②2层)、淤泥质土层及粘性土层(④、⑤1层),土层分布较稳定。受吴淞江古河道的切割,场地内缺失第③层灰色淤泥质粉质粘土代之分布有厚度较大②3层砂质粉土,其它各土层层序完整,分布较稳定。车站底板位于第④层淤泥质土中,其下卧层第⑤1层粘性土。 1.3.3 土层不利情况: 基坑开挖范围内,第②2层土为粘质粉土、砂质粉土,较松散,具有较强的渗透性,在地下水的作用下易产生流砂、管涌现象;第④层淤泥质粘土(局部)属低渗透性、高含水量、高压缩性、低强度、高灵敏度软土,具明显的触变及流变特性。

07深基坑土方降水施工方案编制导则

深圳建工集团 深基坑/ 土方/降水施工方案编制导则 .八 、八、- 刖吕 一、应编制深基坑专项施工方案的范围: 开挖深度超过3m (含3m)或虽未超过3m但地质条件和周边环境复杂的基坑(槽)支护、降水工程。 二、深基坑专项施工方案应当组织专家组进行论证的范围: 1 ?开挖深度超过5m (含5m)的基坑(槽)的土方开挖、支护、降水工程。 2.开挖深度虽未超过5m,但地质条件、周围环境和地下管线复杂,或影响毗邻建筑(构筑)物安全的基 坑(槽)的土方开挖、支护、降水工程。 三、适应范围、编制版面格式: 本编制导则适应于:基坑支护工程设计已经由专业资质设单位设计完成的深基坑工程专项施工方案的编制,其他基坑(槽)的土方开挖、支护、降水工程应参照编制。 版面、格式等要求应符合公司《施工组织设计、方案封面、版面、文字格式导则》的要 求。 字体说明:括号内的加粗宋体字为中华人民共和国住房和城乡建设部建质[2009]87号通知的要求;括号内的宋体字为深圳建筑业协会深建协字(2009)第042号文件的要求;其余宋体字为正文标题、内容,仿宋体字为正文部分的应编制内容说明。 导则中的章节条款序号及正文标题,可直接复制应用,但应注意与工程实际符合。 1 编希U依据(相尖法律、法规、规范性文件、标准、规 范 及图纸(国标图集)、施工组织设计等。)(简述安全专项施工方案编制所依据的相尖标准、规范及图纸(国标图集)、施工组织 设计等。) 应用表格形式表述,表格应有:序号、文件(或图纸、规范规程标准)名称、编号或文号、文件(出 图)日期;

1.1 1.1相尖工程施工合同文件、图纸和技术资料 1基坑工程全部施工图纸及应用的标准图集 2工程地质勘察报告 1?2相尖的法律法规、规范、标准 应描述以下与基坑、土方开挖及降排水工程密切相尖的国家及地方的现行建筑法规、条例、规范、规程、标准。 1.2.1主要应用的法律、法规 1《中华人民共和国安全生产法》 2《建设工程安全生产管理条例》 3《危险性较大的分部分项工程安全管理办法》,中华人民共和国住房和城乡建设部建质[2009]87号 4《深圳市建设工程重大危险源管理办法》 (其他法律、法规、规章) 1?2.2主要的国家及地方标准、规范、规程 1.2.3主要规范、规程 1《建筑地基基础工程施工质量验收规范》(GB50202-2002) 2《建筑基坑支护技术规程》(JGJl20?99 ) 3《建筑地基基础设计规范》(DBJI5?31?2003 ) 4《建筑基坑支护技术规范》(DBJ/T15-20-97 ) 5《深圳地区建筑基坑支护技术规范》(SJ05-96 ) (以上部分应注意更新;并应及时补充已发布的其他标准、规范、规程) 1.3公司标准、规章 企业的技术、质量、安全方面的标准、规章和管理体系文件。 2工程概况 (危险性较大的分部分项工程概况、施工平面布置、施工要求和技术保证条件。)(简要描述基坑工 程概况、基坑岩土地质情况、施工图的技术要求、施工平面布置、施工要求和技术保证条件。)

基坑支护与降水工程施工方案

基坑支护与降水工程施 工方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 (一)编制原则 ........................................错误!未定义书签。 (二)质量目标 ........................................错误!未定义书签。 (三)施工顺序、进度安排 .....................错误!未定义书签。 (四)主要分部、分项工程施工工艺、方法错误!未定义书签。 (五)工程质量保证措施 .........................错误!未定义书签。 (六)施工安全措施.................................错误!未定义书签。 (七)工期保证措施.................................错误!未定义书签。 (八)文明施工 ........................................错误!未定义书签。 (九)环境管理 ........................................错误!未定义书签。 (十)消防保卫 ........................................错误!未定义书签。(十一)工程交付、服务 ........................错误!未定义书签。

(一)编制原则 1、编制原则 (1)安全第一,确保施工质量合格的原则。 (2)优化施工组织设计,合理、科学安排施工、努力降低工程成本,保证工期的原则。 (3)采用切实可行的施工方法,确保工程质量的原则。 (4)做好现场文明施工、环保等工作的原则。 (5)本着“工艺先进、工期最佳、质量创优、质保措施得当”的原则。 (二)质量目标 本工程的质量目标为合格。 (三)施工顺序、进度安排 1、进度安排 总进度安排,48小时内组织人员设备全部进场,3天内开工,先开始基坑中部的降水井施工,然后施工周边的降水井,基坑中间降水井施工完毕开始第一层土方开挖,等土石方施工至地下水位时开始抽水,抽水4天后再开始土方施工,其余工序随土方同步进行,不占独立工期,本工程的基坑降水、土方开挖与支护工程计划15天内完成。 2、施工用电 甲方需提供施工用电200KW,并应确保在施工期间不停电。

建筑深基坑施工中降水技术的应用探讨

建筑深基坑施工中降水技术的应用探讨 发表时间:2018-06-08T09:09:07.983Z 来源:《防护工程》2018年第3期作者:赵文益1 胡敏磊2 [导读] 随着国民经济的快速发展和城市化建设的不断深入,建筑工程数量逐年提高,对工程建设质量也提出了更高要求。 1宁波华一建设有限公司浙江象山 315700;2象山县棚户区投资开发有限公司浙江象山 315700 摘要:深基坑支护施工技术直接影响着建筑基坑的开挖与降水,这是一项技术繁琐且系统性的工程。可是在大量的建筑项目中,作业人员以为深基坑支护不会制约到建筑物的主体构造与美观,不值得高度关注,所以造成了很多的安全事故。近几年来,施工单位逐步认识到深基坑支护施工对高层建筑质量起着关键的作用,开始注重深基坑支护施工技术的探究与改良。本文主要对建筑深基坑施工中降水技术的应用进行了简要分析。仅供参考。 关键词:高层建筑深基坑支护降水技术 随着国民经济的快速发展和城市化建设的不断深入,建筑工程数量逐年提高,对工程建设质量也提出了更高要求。在建筑工程的地下施工阶段,深基坑开挖经常会涉及到地下水的处理问题,需要采用有效的降水技术对其进行处理,避免给工程施工和建筑质量及安全造成影响。本文将结合具体工程实际,对建筑深基坑施工中降水技术的应用进行分析。 1 基坑降水技术研究 1.1 缺乏降水方案设计 基坑施工通常会产生地面塌陷,地下管线断裂等现象,这多半是由于降水设计不当引发。首先,不重视工程降水设计,另外忽视了对水文勘察工作的重要性,渗透系数取值不准确,布井间距设计不当等,再就是施工人员对基坑底面稳定性缺乏重视。 1.2 井点数量与间距不合理 深基坑施工过程中依然还存在许多问题,有些人认为井越深,地下水位降深也会逐渐增大,实际上是错误的。在实际过程中,因对水文、地质等特点缺乏重视,从而导致种种问题的出现。 1.3 止水帷幕常见问题 在深基坑降水中,止水帷幕中的问题也时常发生。例如:抗外水土压力大、桩与桩间出现夹缝,桩的质量控制相对较差,出现渗水现象。 2 建筑工程施工中基坑降水技术的应用 2.1 定孔位 与降水井具体布置结合,通过实施与测放井位,以达到最佳施工效果。如果地面存在障碍物或管线、管沟等,又或者因施工条件直接影响井点布设情况,则应进行施工现场的相应调整,保证工程顺利施工。 2.2 成孔 明确井位后,钻机就位,钻头应和孔位中心一致。完成成孔后,位于孔内区域进行自然造浆处理。而钻井施工中,根据泥浆密度具体情况,对于予以有效控制,浆液比重约控制 1.13 左右。一旦发生停工或提高钻具时,施工人员应在孔内增加适当泥浆,防止孔壁的出现,从而避免产生坍塌等危害。 2.3 清孔换浆 钻孔钻至相应施工标准或设计要求后,需在具体提高前期,确保钻杆和孔底间的距离,约控制 0.45m 范围内,然后开展冲孔工作。同时对孔内污物进行全面清除后,进行其泥浆密度的相应调整,直至 1.09 标准即可,其判断标准为:返出泥浆未出现泥块。 2.4 下井 井管类型为水泥砾石管,其直径为 400m m 。当井管进场后,全面检查过滤器的质量,避免出现缝隙,同时检查其是否和设计标准一致。在满足相关施工标准后,应准确测量孔深情况,如果孔深和设计标准保持相同,才能进行井管下放工作。施工前期,需要将井底座和管底槽内绑扎牢固,通过钢丝固定底座,按照平稳原则进行孔内放入工作。若要保证管身具有整体性特点,通常选择 8 号铁丝和竹板对其予以绑扎,使其具有较高牢固性,同时保证下管过程的垂直居中。 2.5 滤料填筑 在进行滤料填筑前期,将钻杆放置在井管中,使其和孔底保持一定距离,约 0.35~0.45m m 。采取钻杆内泵予以泥浆穿束,保证冲孔、调节泥浆的同步进行。并适当调整泥浆密度,控制 1.04 左右,然后和井构造设计保持一致,开展滤料的具体填筑工作,其中井滤料需要保持其均匀性,由井口丝状至周围回填方向进行,放置井管发生挤压情况。 2.6 洗井 通常选择污水泵抽水或活塞等方式洗井,即填充填料后,完成污水泵下井工作,并抽除泥浆。污水泵主要应用于井附近的地下水中,以发挥其最大价值和作用,进而更好深入至井内,借助污水泵实现持续抽水作业,以保证洗井工序的顺利开展。 2.7 下泵试抽 完成前期施工后,通过水泵开展试抽工作。在此过程中,需要特别注意排水管道和电缆预设工作,避免对管道造成不利影响,即抽水过程管道受相关设备影响造成破坏等,同时还应认真做好现场标识工作,确保抽水和排水系统可以顺利完成安装工作,然后再开展试抽工作,使其满足相关施工标准。 2.8 降水 在降水试运前期,应该提前测定地面、井口静水位与地面标高,并做好设备试运行工作,保证各项数据的准确性和真实性,确保排水系统、抽水系统可以正常运行。当降水运行时,作业人员还应全面检测水位,具体地下水水位变化情况,掌握地面是否出现沉降情况,防止降水造成工程施工、周边地面发生沉降情况。 3 降水效果的控制措施 3.1 加强施工材料质量管理 施工材料的质量管理工作是降水技术能否真正发挥作用的前提保障,一旦施工材料出现问题,施工质量会受到严重影响。因此,必须加强施工材料的质量管理工作,从而实现深基坑的降水目标,保证深基坑的稳定性符合相关要求。相关负责人员必须对施工材料质量进行

深基坑井点降水施工技术

收稿日期:20021211 作者简介:王印久(1969— ),男,工程师,1992年毕业于西南交通大学铁道工程专业,工学学士。 深基坑井点降水施工技术 王印久 (中铁十八局集团第二工程有限公司 河北唐山 063030) 摘 要 介绍北京华能热电厂输煤系统深基坑开挖,深井井点降水技术及施工。 关键词 深基坑 井点 降水 1 工程概况 北京华能高碑店热电厂输煤系统1号转运站设计开挖深度为14m ,基坑开挖底宽22m ,长80m ,开挖边坡1∶0.5。设计地下水位为地表下6m ,土质为粉砂土。基坑采用大开挖,为了在无水干燥的状态下施工,防止流砂现象和增加边坡稳定,决定采用深井井点降水的方法降低地下水位。 沿基坑四周设置深于坑底的深井,通过抽水使地下水位低于基坑底,待地下水位降至预期高度并稳定后,实施全面开挖。2 井点计算,确定井深和井距 (1)确定井点系统的布置方式 根据基坑平面形状,井点环绕基坑按U 形布置,平面及高程布置见图1。 图1 环状井点(单位:m ) 井管的埋设深度H 按下式计算 H ≥H 1+h +iL 式中 H 1———井管埋设面至基坑底的距离,m ; h ———基坑轴线上降低后的地下水位至基坑 底的距离,m ; i ———地下水降落坡度;L ———井管至基坑轴线的水平距离,m 。因此,井管埋设深度H ≥19.2m , 取22m 。 (2)涌水量计算 根据水井理论,当均匀地在井内抽水时,井内水位 开始下降,而周围含水层中的潜水流向水位降低处。经过一定的抽水时间后,井周围原有的水面就由水平变成弯曲水面,最后这个曲线渐趋稳定,成为向井倾斜的水位降落漏斗。本工程井点系统是多个井点同时抽水,形成群井,按无压完全井群井井点系统公式涌水量Q 。计算简图见图2。 图2 无压完全井涌水量计算简图 Q =1.366K (2H -s )s/(lg R -lg x 0)式中 Q ———井点系统总涌水量,m 3/d ; K ———渗透系数,m/d ;H ———含水层厚度,m ;s ———水位降低值,m ;R ———抽水影响半径,m ;x 0———基坑假想半径,m 。 其中,R =1.95s (HK )1/2=222m ,x 0=(F/π)1/2 =34.7m ,F 为基坑井管所包围的面积。 因此,群井总涌水量Q =3508.2m 3/d 。(3)确定井点数量与间距 井点数量n =1.1Q/q =10.72,取n =11。式中,q 为单根井管出水量,根据QY 25型潜水泵的流量,取q =360m 3/d 。 井点间距D =C/n =20.18m ,取D =20m 。式中,C 为环形井点布置长度。3 井点系统设备选用 井管采用预制混凝土管,管径为300mm ,井管上部为普通混凝土管,井管下部过滤部分采用无砂大孔 ?房建?

基坑降水设计及施工方案

基坑降水设计及施工方案 3.2.1 降水方案设计 1. 地下水情况: 本工程场区主要存在3 层地下水,地下水类型分别为:第1 层地下水为层间潜水,含水层为第3 大层卵砾石层、砂层,该层地下水水位连续分布;第2、3 层地下水为承压水,赋存于第5 大层和第7 大层的卵砾石层及细砂、中砂层当中,均具有较高的压力水头:第2 层地下水承压水头高度约在5m~6m 左右;第3 层地下水承压水头高度约在16m~18m 左右。各层地下水类型及实测水位如下表所示。 在工程场区第2 大层的粉土层中还赋存有1 层地下水,其类型为台地潜水。该层地下水的水量和水位在整个场区不够连续,根据勘察院设于场区附近的地下水长期观测孔的观测资料及区域性水文地质资料,在拟建场区及其附近区域,台地潜水的当前水位标高在33.50m 左右。 2. 降水要求 降水要求是将上述地下水降至基坑坑底标高以下0.5m;基坑内北侧车库部分开挖深度内未见地下水,只需要在外侧布置自渗井将上层滞水引入潜水层,以防止上层滞水影响基础施工;在基坑南侧开挖深度教为复杂,11.7~19.6m 不等,而且大部分深度都大于13.6m,特别是二区的深坑区部分,深度深且面积大;而地下水位埋深为13.30~15.90m,因此,此部分需大面积排降地下水。以满足深坑区土方、支护、基础桩施工的要求并保证坑底覆土的安全。基坑南侧开挖深度大部分都大于13.6m,因此也需要进行降水。 3. 降水方案的选择 1) 根据降水要求和地下水、地层分布及组成的特点, 结合我们周边工程的施工经验,同时参考周边工程的降水成果,本工程采用大口井结合自渗井的降水方案。基坑北侧车库部分由于

深基坑降水方案

基坑降水施工方案 编制人: 审核人:

目录 第一章编制依据........................................... 错误!未指定书签。第二章降水井设计概况..................................... 错误!未指定书签。 第一节工程地质概况................................... 错误!未指定书签。 第二节降水井设计说明................................ 错误!未指定书签。 第三节降水井平面布置及编号........................... 错误!未指定书签。 第四节降水井设计参数................................. 错误!未指定书签。第三章施工进度计划....................................... 错误!未指定书签。第四章降水井施工准备..................................... 错误!未指定书签。 第一节现场准备....................................... 错误!未指定书签。 第二节技术准备....................................... 错误!未指定书签。 第三节机械、材料准备................................. 错误!未指定书签。 第四节管理人员及操作人员准备......................... 错误!未指定书签。第五章降水井施工......................................... 错误!未指定书签。 第一节降水施工工艺及流程............................. 错误!未指定书签。 第二节成井质量标准、施工记录及资料................... 错误!未指定书签。第六章降水方案........................................... 错误!未指定书签。 第一节排水........................................... 错误!未指定书签。 第一条基坑外围排水................................ 错误!未指定书签。 第二条基坑内排水.................................. 错误!未指定书签。 第二节降水........................................... 错误!未指定书签。 第三节沉降观测....................................... 错误!未指定书签。 第四节封井........................................... 错误!未指定书签。 第五节降水井管保护措施............................... 错误!未指定书签。 第六节降水常规管理要求............................... 错误!未指定书签。第七章降水井施工管理及技术措施........................... 错误!未指定书签。 第一节施工组织管理网络............................... 错误!未指定书签。

相关文档