文档库 最新最全的文档下载
当前位置:文档库 › 浪涌保护器的作用

浪涌保护器的作用

浪涌保护器的作用
浪涌保护器的作用

浪涌保护器的作用

雷电放电可能发生在云层之间或云层内部,或云层对地之间;另外许多大容量电气设备的使用带来的内部浪涌,对供电系统和用电设备的影响以及防雷和防浪涌的保护,已成为人们关注的焦点。

云层与地之间的雷击放电,由一次或若干次单独的闪电组成,每次闪电都携带若干幅值很高、持续时间很短的电流。一个典型的雷电放电将包括二次或三次的闪电,每次闪电之间大约相隔二十分之一秒的时间。大多数闪电电流在10,000至100,000安培的范围之间降落,其持续时间一般小于100微秒。

供电系统内部由于大容量设备和变频设备等的使用,带来日益严重的内部浪涌问题。我们将其归结为瞬态过电压(TVS)的影响。任何用电设备都存在供电电源电压的允许范围。有时即便是很窄的过电压冲击也会造成设备的电源或全部损坏。瞬态过电压(TVS)破坏作用就是这样。特别是对一些敏感的微电子设备,有时很小的浪涌冲击就可能造成致命的损坏。

供电系统浪涌的影响

供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等)。

雷击对地闪电可能以两种途径作用在低压供电系统上:(1)直接雷击:雷电放电直接击中电力系统的部件,注入很大的脉冲电流。发生的概率相对较低。

(2)间接雷击:雷电放电击中设备附近的大地,在电力线上感应中等程度的电流和电压。

内部浪涌发生的原因同供电系统内部的设备启停和供电网络运行的故障有关:

供电系统内部由于大功率设备的启停、线路故障、投切动作和变频设备的运行等原因,都会带来内部浪涌,给用电设备带来不利影响。特别是计算机、通讯等微电子设备带来致命的冲击。即便是没有造成永久的设备损坏,但系统运行的异常和停顿都会带来很严重的后果。比如核电站、医疗系统、大型工厂自动化系统、证券交易系统、电信局用交换机、网络枢纽等。

直接雷击是最严重的事件,尤其是如果雷击击中靠近用户进线口架空输电线。在发生这些事件时,架空输电线电压将上升到几十万伏特,通常引起绝缘闪络。雷电电流在电力线上传输的距离为一公里或更远,在雷击点附近的峰值电流可达100kA或以上。在用户进线口处低压线路的电流每相可达到5kA到10kA。在雷电活动频繁的区域,电力设施每年可能有好几次遭受雷电直击事件引起严重雷电电流。而对于采用地下电力电缆供电或在雷电活动不频繁的地区,上述事件是很少发生的。

间接雷击和内部浪涌发生的概率较高,绝大部分的用电设备损坏与其有关。所以电源防浪涌的重点是对这部分浪涌能量的吸收和抑制。

对于低压供电系统,浪涌引起的瞬态过电压(TVS)保护,最好采用分级保护的方式来完成。从供电系统的入口(比如大厦的总配电房)开始逐步进行浪涌能量的吸收,对瞬态过电压进行分阶段抑制。

[第一道防线] 应是连接在用户供电系统入口进线各相和大地之间的大容量电源防浪涌保护器。一般要求该级电源保护器具备100KA/相以上的最大冲击容量,要求的限制电压应小于2800V。我们称为CLASS I 级电源防浪涌保护器(简称SPD)。这些电源防浪涌保护器是专为承受雷电和感应雷击的大电流和高能量浪涌能量吸收而设计的,可将大量的浪涌电流分流到大地。它们仅提供限制电压(冲击电流流过SPD时,线路上出现的最大电压成为限制电压)为中等级别的保护,因为CLASS I 级的保护器主要是对大浪涌电流的吸收。仅靠它们是不能完全保护供电系统内部的敏感用电设备。

[第二道防线] 应该是安装在向重要或敏感用电设备供电的分路配电设备处的电源防浪涌保护器。这些SPD对于通过了用户供电入口浪涌放电器的剩余浪涌能量进行更完善的吸收,对于瞬态过电压具有极好的抑制作用。该处使用的电源防浪涌保护器要求的最大冲击容量为40KA/相以上,要求的限制电压应小于2000V。我们称为CLASS II 级电源防浪涌保护器。一般的用户供电系统作到第二级保护就可以达到用电设备运行的要求了。

[最后的防线] 可在用电设备内部电源部分使用一个内置式的电源防浪涌保护器,以达到完全消除微小瞬态的瞬态过电压的目的。该处使用的电源防浪涌保护器要求的最大冲击容量为20KA/相或更低一些,要求的限制电压应小于1800V。对于一些特别重要或特别敏感的电子设备,具备第三级的保护是必要的。同时也可以保护用电设备免受系统内部产生的瞬态过电压影响。

浪涌保护器和电涌保护器的区别

其实浪涌保护器和电涌保护器是一样的东西,只是个人有个人的说法,所以才流传成两个名字。

浪涌电流,什么是浪涌电流?浪涌电流图:

浪涌电流图一

浪涌电流图二

什么是浪涌电流?

浪涌电流指电源接通瞬间,流入电源设备的峰值电流。

浪涌电流指电源接通瞬间,流入电源设备的峰值电流。由于输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。电源应该限制AC开关、整流桥、保险丝、EMI滤波器件能承受的浪涌水平。反复开关环路,AC输入电压不应损坏电源或者导致保险丝烧断。

浪涌电流也指由于电路异常情况引起的使结温超过额定结温的不重复性最大正向过载电流。

浪涌根据电流分类

1. 放电间隙(又称保护间隙):

它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点是灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。

2.气体放电管:

它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)

气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥(U0为线路正常工作的直流电压)

在交流条件下使用:U dc≥(Un为线路正常工作的交流电压有效值)3.压敏电阻:

它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原

理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通流容量),对瞬时过电压响应时间快(~10-8s),无续流。

压敏电阻的技术参数主要有:压敏电压(即开关电压)UN,参考电压Ulma;残压Ures;残压比K(K=Ures/UN);最大通流容量Imax;泄漏电流;响应时间。

压敏电阻的使用条件有:压敏电压:UN≥[(√2×)/]U0(U0为工频电源额定电压)

最小参考电压:Ulma≥(~2)Uac (直流条件下使用)

Ulma≥(~)Uac(在交流条件下使用,Uac为交流工作电压)

压敏电阻的最大参考电压应由被保护电子设备的耐受电压来确定,应使压敏电阻的残压低于被保护电子设备的而损电压水平,即(Ulma)max≤Ub/K,上式中K为残压比,Ub为被保护设备的而损电压。4.抑制二极管:

抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7.

抑制二极管的技术参数主要有

(1)额定击穿电压,它是指在指定反向击穿电流(常为lma)

下的击穿电压,这于齐纳二极管额定击穿电压一般在~范围内,而雪崩二极管的额定击穿电压常在~200V范围内。

(2)最大箝位电压:它是指管子在通过规定波形的大电流时,其两端出现的最高电压。

(3)脉冲功率:它是指在规定的电流波形(如10/1000μs)下,管子两端的最大箝位电压与管子中电流等值之积。

(4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。

(5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。

(6)响应时间:10-11s

5.扼流线圈:

扼流线圈是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。扼流线圈使用在平衡线路中能有效地抑制共模干扰信号(如雷电干扰),而对线路正常传输的差模信号无影响。

扼流线圈在制作时应满足以下要求:

1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压

作用下线圈的匝间不发生击穿短路。

2)当线圈流过瞬时大电流时,磁芯不要出现饱和。

3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。

4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。

6. 1/4波长短路器

1/4波长短路器是根据雷电波的频谱分析和天馈线的驻波理论所制作的微波信号电涌保护器,这种保护器中的金属短路棒长度是根据工作信号频率(如900MHZ或1800MHZ)的1/4波长的大小来确定的。此并联的短路棒长度对于该工作信号频率来说,其阻抗无穷大,相当于开路,不影响该信号的传输,但对于雷电波来说,由于雷电能量主要分布在n+KHZ以下,此短路棒对于雷电波阻抗很小,相当于短路,雷电能量级被泄放入地。

由于1/4波长短路棒的直径一般为几毫米,因此耐冲击电流性能好,可达到30KA(8 /20μs)以上,而且残压很小,此残压主要是由短路棒的自身电感所引起的,其不足之处是工频带较窄,带宽约为2%~20%左右,另一个缺点是不能对天馈设施加直流偏置,使某些应用受到限制

电源系列浪涌保护器

电源系列浪涌保护器 电源避雷器的分类: (1)按保护电源的特性分类:分为交流电源避雷器和直流电源避雷器。交流电源避雷器又分为单相电源避雷器和三相电源避雷器。 (2)按所使用的防雷元件的特性分类:采用与开关特性相仿的放电隙的电源避雷器称为开关型电源避雷器;采用其他压敏电阻和瞬态管等防雷元件的电源避雷器称为限压型电源避雷器。 (3)按电源避雷器组成的级数多少分类:分为单级电源避雷器和多级电源避雷器 5)按电源避雷器结构和安装方式分:有采用35mm标准导轨安装的可直接装入配电柜 和配电箱的浪涌抑制器,俗称电源模块;有采用箱式结构的箱式电源避雷器。 工作原理: (1)方框图: 三相电源避雷器和直流电源避雷器的方框图如图11和图12所示。从图中可看出保护功能配置情况。 在第一图中有相线对雷地、中线对雷地、相线对中线和相线对相线之间的保护,分别称为保护模式:L-PE、N-PE、L-N和L-L。其中相对于PE的保护称为纵向保护,其余L-N 和 L-L称为横向保护。在第二图中有V+对雷地、V-对雷地和V+对V-的保护,分别称为保 护模式V+—PE、V-—PE和V+—V-,其中V+—PE和V-—PE称为纵向保护,V+—V- 称为横向保护。 根据有关标准规定,交流电源避雷器必须有纵向保护,宜有横向保护。直流电源避雷器必须有横向保护,宜有纵向保护。 2)基本电路:

将单个防雷元件或二个以上防雷元件的组合代入方框图即得到具体的电原理图。应 用不同的防雷元件可得到以下几种基本电路: a、压敏电阻电路; b、电源模块电路: 带有自动脱离装置(热熔断器和电流熔断器)的压敏电阻,同时具有用颜色变化显 示是否失效的窗口和遥信端子。 c、压敏电阻与气体放电管的串联组合电路:其最大的优点是无短路隐患 d、压敏电阻矩阵网络电路:有自动热保护功能和分部分的失效指示功能 e、空气放电隙 采用高熔点铜钨合金制作。在使用时应设置后备保护。 (3)辅助功能: a、工作指示:绿灯亮表示供电正常 b、劣化指示:红灯亮表示压敏电阻已劣化、失效。 c、自动脱离:应用熔断器、断路器实现压敏电阻劣化、失效后与电网脱离。 d、遥信接口:电源避雷器劣化、失效时遥信接口内的通—断开关自动进行通—断 转换。 e、雷击计数: 记录幅度大于1kA的雷电流入侵的次数,用数码管或电磁计数器显示累计的次数。 3.3主要技术指标: (1)最高持续运行电压: a、定义:SPD在运行中能持续耐受的最大直流电压或工频电压有效值。 b、最高持续运行电压取决于SPD的标称导通电压V1mA。对于单个压敏电阻元件国内外均执行以下规定: c、在选用SPD时,SPD的最高持续运行电压应略高于当地电网可能出现的最高电压。 在不能到现场考察或在现场用户不能提供最高电网电压时应选用U~max≥350V的产品。 d、U~max=275V的SPD一般只能用在UPS电源后面。 (2)放电电流: a、定义: 1、标称放电电流:施加规定波形(8/20μs)和次数(同一极性5次)放电电流冲击 后标称导通电压变化率小于10%,漏泄电流和限制电压仍在合格范围内的最大的放电电流幅值。 2、最大放电电流:施加规定波形(8/20μs)放电电流冲击1次后不发生实质性损坏,不炸裂,不燃烧的最大的放电电流幅值,一般最大放电电流=(1.5∽2.5)×标称放电电流。 3、最大冲击电流:施加规定波形(10/350μs)放电电流冲击1次后不发生实质性损坏,不炸裂,不燃烧的最大的放电电流幅值,一般仅对架空进线电源系统的第一级电源SPD有此 指标要求。 b、放电电流是衡量电源避雷器泄放雷电流能力的指标,应根据当地雷电强度、被保护

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 1、根据被保护线路制式,例如:单相220V、三相220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 50343-5 4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一 级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 50057-里的分流计算,计算线路所需的泄放电流强度,选择合 适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现 在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理 在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地 线连接在一起。 MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电 源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时, 电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的 电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌

电源浪涌保护器常识

电涌保护器SPD应用常识 作者:来源:时间:2008-03-10 电涌保护器SPD应用常识 随着国民经济的不断发展,现代化水平的快速提高,在信息化带动工业化的指引下,各类信息设备、电子计算机、精密仪器、数据网络设备的应用越来越广泛,此类设备一般工作电压低、耐压水平低、敏感性高、抗干扰能力低,因而极易受到雷电电流脉冲的危害。每年都给人类造成巨大的直接经济损失。而因重要设备损坏使网络陷入瘫痪而造成的间接损失更是惊人,已引起国内相关领域对此类系统加强保护的高度重视。 近年来,“SPD”这个名词已越来越多地被专业研究、产品制造及工程设计的人们所提到。作为雷电防护装置体系中的重要组成部分,“SPD”已被广泛用于邮电通讯、广播电视、金融证券、保险、电力、铁道、交通、机场、石化、市政建设等各个行业。可以毫不夸张地说,凡是装有IT设备的场所,就有应用SPD的必须。 那么SPD究竟是一种什么产品呢?SPD有哪些功能呢?SPD是如何选择应用的呢?在这里我们着手用尽可能通俗的语言向各位介绍一些有关SPD产品的基础知识。希望对那些尚未接触过SPD或对SPD知之甚少而又想掌握SPD知识,并进而使用SPD产品的读者有所收益。 一、什么是SPD(SPD介述) SPD这一名词英语全称是surge protectiye device其译意为电涌保护器,是限制雷电反击、侵入波、雷电感应和操作过电压而产生的瞬时过电压和泄放电涌电流(沿线路传送的电流、电压或功率的暂态波。其特性是先快速上升后缓慢下降)的器件。一端口SPD与被保护电路并联,能分开输入和输出端,在这些端子之间设有特殊的串联阻抗;二端口SPD有两组输入和输出端子,在这些端子之间有特

低压电源系统浪涌保护器设计依据

低压电源系统浪涌保护器设计依据(节选) 《建筑物防雷设计规范》(GB50057-2010) 第4.3.6条 4、在电气接地装置与防雷接地装置共用或相连的情况下,应在低压电源线路引入的总配电箱、配电柜处装设Ⅰ级试验的电涌保护器。电涌保护器的电压保护水平值应小于或等于 2.5 kV。每一保护模式的冲击电流值,当无法确定时应取等于或大于 12.5 kA。 5、当 Yyn0型或 Dyn11型接线的配电变压器设在本建筑物内或附设于外墙处时,应在变压器高压侧装设避雷器;在低压侧的配电屏上,当有线路引出本建筑物至其他有独自敷设接地装置的配电装置时,应在母线上装设Ⅰ级试验的电涌保护器,电涌保护器每一保护模式的冲击电流值,当无法确定时冲击电流应取等于或大于 12.5 kA;当无线路引出本建筑物时,应在母线上装设Ⅱ级试验的电涌保护器,电涌保护器每一保护模式的标称放电电流值应等于或大于 5 kA。电涌保护器的电压保护水平值应小于或等于 2.5 kV。 6、低压电源线路引入的总配电箱、配电柜处装设I级实验的电涌保护器,以及配电变压器设在本建筑物内或附设于外墙处,并在低压侧配电屏的母线上装设I级实验的电涌保护器时,电涌保护器每一保护模式的冲击电流值,当电源线路无屏蔽层时可按本规范式(4.2.4-6)计算,当有屏蔽层时可按本规范式(4.2.4-7)计算,式中的雷电流应取等于150kA。 《建筑物电子信息系统防雷技术规范》(GB050343-2012) 第5.4.3条电源线路浪涌保护器的选择规定: 3、进入建筑物的交流供电线路,在线路的总配电箱等LPZOA 或LPZOB 与LPZ1 区交界处,应设置Ⅰ类试验的浪涌保护器或Ⅱ类试验的浪涌保护器作为第一级保护;在配电线路分配电箱、电子设备机房配电箱等后续防护区交界处,可设置Ⅱ类或Ⅲ类试验的浪涌保护器作为后级保护;特殊重要的电子信息设备电源端口可安装Ⅱ类或Ⅲ类试验的浪涌保护器作为精细保护。使用直流电源的信息设备,视其工作电压要求,宜安装适配的直流电源线路浪涌保护器。 4、浪涌保护器设置级数应综合考虑保护距离、浪涌保护器连接导线长度、被保护设备耐冲击电压额定值Uw 等因素。各级浪涌保护器应能承受在安装点上预计的放电电流,其有效保护水平Up/f应小于相应类别设备的Uw 。 5、LPZO 和LPZ1 界面处每条电源线路的浪涌保护器的冲击电流Iimp,采用当采用非屏蔽线缆时按公式(5.4.3- 1)估算确定;当采用屏蔽线缆时按公式

电涌保护器(SPD)工作原理和结构

编订:__________________ 审核:__________________ 单位:__________________ 电涌保护器(SPD)工作 原理和结构 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8242-61 电涌保护器(SPD)工作原理和结构 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 电涌保护器(SurgeprotectionDevice)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1、按工作原理分: (1).开关型:其工作原理是当没有瞬时过电压

电源系统电涌保护器(SPD)选用

电源系统电涌保护器(SPD)选用(2013版) 一、主要依据 《建筑物电子信息系统防雷技术规范》GB50343-2012 《建筑物防雷设计规范》GB50057-2010 二、按建筑物电子信息系统的重要性和使用性质, 确定本单位目前的设计的建筑物 (主要为住宅)的雷电防护等级为D级。经计算当第一级浪涌保护器保护的线路长度大于100m时,需设第二级浪涌保护器,当第二级浪涌保护器保护的线路长度大于 50m时,需在被保护设备处设第三级浪涌保护器;在具有重要终端设备或精密敏感设备处,可安装第三级SPD。 三、 SPD的选用原则及主要参数 1、 第一级 SPD (主要安装在建筑物380V低压配电柜(箱)总进线处) 1.1 、 在 IPZ0A或LPZ0B区与LPZ1区交界处,在电源引入的总配电箱出应装设Ⅰ级试 验的电涌保护器。主要参数需满足以下要求: 波形 10/350μS 最大持续运行电压 Uc≥253V 电压保护水平 Up≤2.5KV 冲击电流Iimp≥12.5KA 1.2、 当进线完全在LPZ0B或雷击建筑物和雷击与建筑物相连接的电力线路或通信线上的失效风险可以忽略时,可采用Ⅱ级试验的电涌保护器。主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤2.5KV 标称放电电流In≥50KA

1.3、 过电流保护器(熔断器和断路器,优先使用熔断器),选用100A 2、第二级 SPD (主要安装在动力配电柜、楼层配电箱、水泵房、中央控制室、消防、电梯机房、屋面用电设备等)。 2.1、主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤2KV 标称放电电流In≥10KA 2.2、 过电流保护器(熔断器和断路器,优先使用熔断器),选用32A 3、第三级 SPD (主要安装在重要的终端设备或精密敏感设备处,如信息机房、办公室入室配电箱等)。 3.1、主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤1.2KV 标称放电电流In≥3KA 3.2、 过电流保护器(熔断器和断路器,优先使用熔断器),选用16A 四、产品选用要求(需在说明中注明) 选用的浪涌保护器(SPD) 须经过北京雷电防护装置测试中心或上海防雷产品测试中心的检测通过,并经过当地防雷装置主管机构的备案。

B、C、D类防雷器的作用

B、C、D类防雷器的作用: B类防雷产品在整个防雷系统中所起的根本作用在于:当发生强度很大的雷击时,使产生于供电线路上的感应雷电流,在进入总配电柜之前就迅速泄放入地。因此B类防雷产品本质上应具备的特性是高可靠性、大通流量和长寿命,可承受雷雨季节多次高强度、高能量浪涌过电压的冲击,而稳定可靠的发挥迅速大通流量泄流的作用。在泄放雷电流过程中,B 类防雷器两端所产生的残压,即使仍超过被保护设备的最高瞬态耐压值,也会被安装于设备前端的C类或D类防雷器再次泄放,从而使真正到达设备前线端的浪涌电压已经很低,完全不能对设备的正常运行造成影响,使设备受到可靠的保护。 由于B级防雷产品在泄放供电线路上高能量的雷电流时,在防雷器两端所呈现的残压仍然很高,仍可能大大超过被保护设备所能承受的再高耐压值,因此,按国际电工委员会IEC的要求,在供电线路进入分配电柜前端时,应并联安装相应型号的C类防雷器。C类防雷器的本质作用是通过再次泄流而降低线路上的残压,因此并不要求C类防雷器的通流量特别大(一般40KA)。只是由C类防雷器在整个防雷系统中所起的作用决定的,即进一步泄放线路上的浪涌电流,进一步降低真正达到设备供电端口的浪涌电压值,使之小于设备的耐压值,从而在发生雷击时,使设备遭受损坏的可能性大大减小。 D类防雷器主要用于对设备端的保护,其作用是当发生能量特别大的雷击时,感应雷电流在经过B级、C级防雷器的泄放后,其残压仍然可能高于设备的最高耐压值,重要设备的端口及内部的高精度集成电路仍有可能被烧坏。此时D类防雷器的安装就特别必要了。经过D类防雷器的泄放,设备的完全运行就更为可靠了。 电涌保护器的选型及安装要求: 一、SPD的选型原则: 1、 SPD必须能承受预期通过它们的雷电流,并具有通过电涌时的最大箝压和有熄灭工频续流的能力。 2、安装的SPD电压保护水平加上其两端引线的感应电压应低于被保护设备耐压水平的80%,同时SPD与被保护设备的连线不大于10m时,在被保护设备处可不安装SPD。反之,则应在设备前加装不小于3KA(8/200μs)的SPD。 3、在供电的电压偏差超过所规定的10%以及谐波使电压幅值加大的场所,应根据具体情况对氧化锌压敏电阻SPD的Uc值相应提高。 4、当无法获得被保护设备的耐冲击过电压值时,可参考下表给出的值。

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

我认为,你需要正确认识浪涌保护器!

我认为,你需要正确认识浪涌保护器! 1、什么是浪涌? 答:浪涌就是超出正常工作电压的瞬间过电压。 2、什么是浪涌保护器? 3 4 答: 模块,如AMI-40,需要选用63A的分断电流能力为10KA的D型微型断路器;第二级模块,如AM2-20,需要选用32A的分断电流能力为6.5KA的C、D型微型断路器,由于其工作曲线IN值的不同,因此推荐使用D型;第三级模块,如AM3-10,需要选用16A的分断电流能力为4.5KA的C、D型微型断路器,由其工作曲线IN值的不同,因此推荐使用D型。

5、是否所有的浪涌保护器前都装熔断装置? 答:不是。开关型模块由于其损坏的方式为开路,因此可不用装微型断路器等熔断装置。 电涌保护器接入模式 在TN制式中,一般情况下电涌保护器只需作共模接法,即接于相线中性线与保护 间内导通分流,从而避免浪涌对回路中其他设备的损害。 根据所选择的浪涌保护器和预期的环境影响,保护系统的电源和设备所需的保护措施被分为三级。 B类浪涌保护器:标称放电电流In,冲击电压1.2/50μs冲击电压和最大冲击电流Iimp的试验,Iimp的波形为10/350μsUp最大4kv(IEC61643-1;IEC60664-1)。

C类浪涌保护器:标称放电电流In,冲击电压1.2/50μs冲击电压和最大冲击电流Iimp的试验,Iimp的波形为8/25ms。 D类浪涌保护器:进行混合波合(开路电压1.2/50μs冲击电压,邓路电流8/25μs)试验。 浪涌保护器的好与否直接关系到设备的全安问题,因此在选取浪涌保护器以几 超过 200至 没有电源指示灯,就无法得知保护器是否仍然在正常工作。

避雷器与浪涌保护器

避雷器和电涌保护器运用说明

目录 一、定义 二、防雷器与浪涌保护器的比较 三、线路避雷器运用及其说明 四、浪涌保护器设计原理、特性、运用范畴 五、参考依据与文献

一、定义 1.避雷器 避雷器是变电站保护设备免遭雷电冲击波袭击的设备。当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。 2.浪涌保护器 也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

?从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。 二、避雷器与浪涌保护器的比较 避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢? 首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。 其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。 再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。

浪涌保护器的设计选型(新)

(1)考察建筑物所处地理位置及供电进线方式 首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。 推荐选择第一级浪涌保护器的最大通流量应大于以下标准值: 高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs) 郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs) 城市内(埋地进线):40KA(8/20μs) 第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs); 第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。 (2)检查建筑物内供电系统的类别 ?单相、三相及直流供电系统 在220V单相供电系统中,只需选用两片保护模块组合。如FRD-20-2A,FRD-40-2A。在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。

首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。 其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。 下面是防雷器的几个重要参数: (1)标称电压Un:被保护系统的额定电压,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 (2)最大持续工作电压Uc:长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压值。 (3)标称通流容量In:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 (4)最大放电电流Imax:给保护器施加波形8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (5)冲击放电电流Iimp:给保护器施加波形10/350μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (6)电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

电涌保护器设备工作原理

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1、按工作原理分: 1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。 2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 3.分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。 按用途分:(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。 (2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。 二、SPD的基本元器件及其工作原理: 1.放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成(如图15a),其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是*回路的电动力F 作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的, 气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF) 气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压) 在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻: 它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常

浪涌保护器原理分析

浪涌保护器原理分析 随着相关设备对防雷要求的日益严格,安装浪涌保护器浪涌保护器 (Surge Protection Device, SPD)抑制线路上的浪涌和瞬时过电压、泄放线路上的过电流成为现代防雷技术的重要环节之一。 随着电子技术的高速发展,个人PC机、大中型计算机及相关信息设备的大量应用,使建筑物防雷击电磁脉冲(过电压)愈来愈受到大家的重视,由此,越来越多的过电压保护产品投入市场,浪涌保护器SPD(Surge Protective Device)也逐渐为人们所熟悉。 1 雷电的特性防雷包括外部防雷和内部防雷。外部防雷以避雷针(带、网、线)、引下线、接地装置为主,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针(带、网、线)、引下线等泄放入大地。内部防雷包括防雷电感电感应、线路浪涌、地电位反击、雷电波入侵以及电磁与静电感应的措施。其基本方法是采用等电位联结,包括直接连接和通过SPD间接连接,使金属体、设备线路与大地形成一个有条件的等电位体,将因雷击和其他浪涌引起的内部设施分流和感应的雷电流或浪涌电流泄放入大地,从而保护建筑物内人员和设备的安全。能产生电感作用的元件统称为电感原件,常常直接简称为电感。电感器在电子制作中虽然使用得不是很多,但它们在电路中同样重要。我们认为电感器和电容器一样,也是一种储能元件,它能把电能转变为磁场能,并在磁场中储存能量。 [全文] 雷电的特点是电压上升非常快(10μs

以内),峰值电压高(数万至数百万伏),电流大(几十至几百千安),维持时间较短(几十至几百微秒),传输速度快(以光速传播),能量非常巨大,是浪涌电压中最具破坏力的一种。 2 浪涌保护器的分类SPD是电子设备雷电防护中不可缺少的一种装置,其作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击。 2. 1 按工作原理分类按其工作原理分类, SPD可以分为电压开关开关型、限压型及组合型。开关是最常见的电子元件,功能就是电路的接通和断开。接通则电流可以通过,反之电流无法通过。在各种电子设备、家用电器中都可以见到开关。 [全文] (1)电压开关型SPD。在没有瞬时过电压时呈现高阻抗,一旦响应雷电瞬时过电压,其阻抗就突变为低阻抗,允许雷电流通过,也被称为“短路开关型SPD”。(2)限压型SPD。当没有瞬时过电压时,为高阻抗,但随电涌电流和电压的增加,其阻抗会不断减小,其电流电压特性为强烈非线性,有时被称为“钳压型SPD”。(3)组合型SPD。由电压开关型组件和限压型组件组合而成,可以显示为电压开关型或限压型或两者兼有的特性,这决定于所加电压的特性。 2. 2 按用途分类按其用途分类, SPD可以分为电源电源线路SPD和信号线路SPD两种。电源是向电子设备提供功率的装置,也称电源供应器,它提供计算机中所有部件所需要的电能。 2. 2. 1 电源线路SPD 由于雷击的能量是非常巨大的,需要

浪涌保护器老化劣化测试

电源SPD老化劣化测试 1.SPD 1.1 SPD的概念 浪涌保护器(SPD),也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。 SPD是电子设备雷电防护中不可缺少的一种装置,其作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击。 1.2 SPD的基本特点 (1)保护通流量大,残压极低,响应时间快; (2)采用最新灭弧技术,彻底避免火灾; (3)采用温控保护电路,内置热保护; (4)带有电源状态指示,指示浪涌保护器工作状态; (5)结构严谨,工作稳定可靠。 1.3 SPD的基本元器件 1)放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点是灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。 2)气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

浪涌保护器的工作原理

浪涌保护器的工作原理 随着微电子技术的长足进步,个人PC、各类中型、大型及超大型计算机、大型程控交换机的运用越来越普及。由于这类电子设备内部有大量的对过电压十分敏感的大规模或超大规模集成电路,从而使由过电压造成的损失越来越大。针对这种现状,《建筑物防雷设计规范》GB50057-94(2000年版)中加入了第六章——防雷击电磁脉冲的内容。根据这一要求,一些生产厂家也推出了相应的过电压保护产品,也就是我们现在常说的浪涌保护器(SurgeProtectiveDeviceSPD)。要保护电气和电子系统重要的是在电磁兼容性保护区内设置一套包括全部有源导线在内的完整的等电位联结系统。不同种类的过电压保护装置中放电元器件的物理特性在实际应用中既有优点,亦有缺点,因此采用多种元件组合的保护电路运用得更为广泛。 但是,能满足具有当代技术水平的,能传导10/350μs脉冲电流的雷击电流放电器,用于二次配电的可插式浪涌保护器,电器电源保护装置直到电源滤波器所有技术要求的产品系列却是极为少见的。同样这种产品系列应该包括适用于所有的电路,即除电源外,还应包括用于测量、控制、调节技术电路和电子数据处理传输电路以及适用于无线和有线通讯的放电器,以便客户使用。 本文将对目前常用的几种浪涌保护产品做简单的介绍并对其特性及适用场合做简略分析。 1、等电位联结系统 过电压保护的基本原理是在瞬态过电压发生的瞬间(微秒或纳秒级),在被保护区域内的所有金属部件之间应实现一个等电位。“等电位是用连接导线或过电压保护器将处在需要防雷的空间内的防雷装置、建筑物的金属构架、金属装置、外来的导体物、电气和电讯装置等连接起来。”(《建筑物防雷设计规范条文说明》)(GB50057-94)。“等电位联结的目的在于减小需要防雷的空间内各金属部件和各系统之间的电位差”(IEC13123.4)。《建筑物防雷设计规范》(GB50057-94)中规定:“第3.1.2条装有防雷装置的建筑物,在防雷装置与其他设施和建筑物内人员无法隔离的情况下,应采取等电位联结。”在建立这个等电位联结网络时,应注意使相互之间必须进行信息交换的电器和电子设备与等电位联结带之间的连接导线保持最短距离。 根据感应定理,电感量越大,瞬变电流在电路中产生的电压越高;(U=L·di/dt)电感量大小主要和导线的长度有关,与导线截面关系不大。因此,应使接地导线尽可能的短。多条导线的并联连接可显著地降低电位补偿系统的电感量。为了将这两条付诸实践,理论上可以把应与等电位联结装置连在一起的所有电路和设备连在同一块金属板上。基于金属板的构想在补装等电位联结系统时可采用线状、星状或网状结构。设计新的设备时原则上应只采用网状的等电位联结系统。 2、将电源线路与等电位联结系统连接 所谓瞬变电压或瞬变电流意味着其存在时间仅为微秒或毫微秒。浪涌保护的基本原理是:在瞬态过电压存在的极短时间内,在被保护区域内的所有导电部件之间建立起一个等电位。这种导电部件也包括电路中的电源线。人们需要响应速度快于微秒的元件,对于静电放电甚至要快于毫微秒。这种元件能够在极短的时间间隔内,将非常强大直到高达数倍于十千安的电流导出。在预期的雷击情况下按10/350μs脉冲计算,电流高达50kA。通过完备的等电位联结装置,可以在极短的时间内形成一个等电位岛,这个等电位岛对于远处的电位差甚至可高达数十万伏。但重要的是,在需要保护的区域内,所有导电部件都可认为具有接近相等或绝对相等的电位,而不存在显著的电位差。 3、浪涌保护器的安装及其作用 浪涌保护电器元件从响应特性来看,有软硬之分。属于硬响应特性的放电元件有气体放电管和放电间隙型放电器,二者要么是基于斩弧技术(Arc-chopping)的角型火花隙,要么是同轴放电火花隙。属于软响应特性的放电元件有压敏电阻和抑制二极管。所有这些元件的区别在于放电能力、响应特性以及残余电压。由于这些元件各有优缺点,人们将其组合成特殊保护电路,以扬长避短。在民用建筑领域中常用的浪涌保护器主要为放电间隙型放电器和压敏电阻型放电器。 闪电电流和闪电后续电流需要放电性能极强的放电器。为了将闪电电流通过等电位联结系统导入接地

浪涌保护器选择要点及相关问题

浪涌保护器 浪涌也叫突波,顾名思义就是超出正常工作电压的瞬间过电压。本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲,。可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。而含有浪涌阻绝装置的产品可以有效地吸收突发的巨大能量,以保护连接设备免于受损。 浪涌保护器,也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。浪涌保护器(也称防雷器)的分级防护 由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。 1、第一级保护 目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V。 入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电源防雷器。一般要求该级电源防雷器具备每相100KA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASS I级电源防雷器。这些电磁防雷器是专为承受雷电和感应雷击的大电流以及吸引高能量浪涌而设计的,可将大量的浪涌电流分流

浪涌保护器前端是否该用熔断器

浪涌保护器前端是否该用熔断器? 看见很多电器厂安装浪涌时,前端都要加装熔断器,问其原因答案都是说保护浪涌开关。据我所知,浪涌工作原理是,当雷击进入电网时,浪涌瞬间短路充当旁路泄流,让高压电流分流。如果,此时前端熔断器被击穿处于开路状态,浪涌岂不是成了摆设?不知各位老师的看法如何? 浪涌保护器为什么要加熔断器? 1,防止因雷击而产生的工频续流(针对放电间隙型器件)对SPD 及其线路的损坏。2,方便维护更换SPD。 3,防止因SPD老化(如mov器件的漏流增大)而造成线路故障SPD前端熔断器应根据避雷器厂家的参数安装。 如厂家没有规定,一般选用原则: 根据(浪涌保护器的最大保险丝强度A)和(所接入配电线路最大供电电流B)来确定(开关或熔断器的断路电流C)。

确定方法: 当:B大于A时C小于等于A 当:B等于A时C小于A或不安装C 当:B小于A时C大于等于A 注:避雷器(SPD) 关于避雷器(SPD)能耗指标的问题 1.SPD 只有在浪涌的情况下才动作,在正常的情况下相当于绝缘体,消耗的功率在1W左右,这个在应用的情况下是影像不大的。 2.避雷器没有能耗指标参数。 因为mov(压敏)型有漏电流,应该消耗电能。 三相SPD是安装于L,N与PE之间的所以计算如下:

单模块:P=UI×cosφ=220×30×0.000001=0.0066瓦U是电压,相电流,cosφ取1。三个模块:P=3×UI×cosφ=3×220×30×0.000001=0.0198瓦 MOV 在标称持续工作电压下流过阀片的电流称为漏电流。按国家标准应小于30μA。冲击前后的变化率应小于200%。 另外,间隙型SPD,没有漏电流。应该不耗能。

浪涌保护器

浪涌保护器(SPD)的基本原理及应用 河北建设集团张海军 摘要:本文主要介绍SPD的基本原理、分类与应用。 关键词:SPD;基本原理:分类;应用 1 引言 电涌保护器(Surge Protective Device,SPD)又称浪涌保护器,是用于带电系统中限制瞬态过电压和导引泄放电涌电流的非线性防护器件,用以保护耐压水平低的电器或电子系统免遭雷击及雷击电磁脉冲或操作过电压的损害。近年来,电子信息系统(如电视、电话、通信、计算机网络等)发展迅猛,电子信息设备大量涌现和普及。这类系统和设备往往比较昂贵和重要,其工作电压、耐压水平很低,极易受到雷电电磁脉冲的危害,为此需采用SPD做过电压保护。 由于各国遵循的标准不一样,产品的规格没有统一,参数的标识也各自有侧重,远不如其他电气产品规范,这就给设计选型带来很大不便。在工程设计中,常见品牌按产地划分主要可分为国产产品、欧洲产品和美洲产品。国产产品参数设置较乱,规格多样,残压较高。规范产品的型号设置有的仿欧洲产品,有的遵循国标定参数,大部分产品都标注In与Imax。由于国产产品对应用场所要求较低,建筑物等级不高,设备耐压值大,所以一些参数要求可适当放松。 欧洲产品一般标注最大放电电流,产品型号也是根据这个参数设定的。例如欧洲某着名品牌XXX65、XXX40,其中数值65、40就

是Imax。但我国标准明确规定要用标称放电电流In来进行选型,这是目前在工程设计中遇到的一个尴尬情况。经查该产品资料,XX65的In值不超过20 kA,XX40的In值不超过15 kA。如果依照GB50343建议值,这两种产品只能用于设备末端三级保护,但在实际设计中,却装在了一、二级上,这明显与国家标准的选型参数不符,且残压较高,普通型号一般超过1 200 V,一旦接线环境不好,很容易突破设备耐压值。一般欧系产品Uc值较小,且投机取巧标注线电压,因此在选型时,较容易出现误导。 2 SPD概述 2.1 SPD的工作原理 电涌保护器适用于220/380V低压电源保护,是一种非线性元件,根据IEC标准规定,电涌保护器是主要抑制传导过来的线路过电压和过电流的装置。电涌保护器起到保护作用,基本要求是必须承受预期通过的雷电电流,并且通过电涌最大钳压,有效熄灭在雷电流通过后产生的工频续流,把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但至少包含一个非线性电压限制元件。常用电涌保护器有MOV(Metal Oxide Varistor)同气体放电管等。电涌包含强大的能量因此不能被阻止。基于这种原因,保护敏感电气设备免受电涌损坏的策略是把电涌从设备分流后流入大地。

相关文档
相关文档 最新文档