文档库 最新最全的文档下载
当前位置:文档库 › 盾构管片开裂原因分析.docx

盾构管片开裂原因分析.docx

盾构管片开裂原因分析.docx
盾构管片开裂原因分析.docx

盾构管片开裂原因分析及应对措施

徐军

(邯郸市交通局青红管理处,河北邯郸056105)

摘要:管片作为盾构隧道的主体结构,其开裂必将造成隧道的质量问题,并最终影响隧道的使用寿命。通过对隧道管片在盾构掘进施工中产生的裂缝进行原因分析,提出相应的对策,对指导施工具有重要意义。

1 引言

随着技术进步、认识提高以及综合国力的增强。在国内,盾构法施工以其显著的优势越来越多地被工程界所接受,与盾构同属TBM—Tunnel Bor.ing Machine系列的山岭硬岩掘进机等国际上比较流

行的、最先进的、一次成型设备开始大面积使用。目前国内地铁已经使用盾构法的城市有上海、广州、南京、北京、深圳,另外,天津、西安、成都、沈阳、杭州、青岛等城市也在紧锣密鼓地筹建。由于盾构施工在工期、质量、安全等诸多方面的优势,一些城市的其他地下工程(过江隧道、输水管道等)也越来越多地采用盾构法施工。但是由于盾构在隧道内拼装的钢筋混凝土管片需要提前预制,而且需要很高的抗压、抗渗、耐久性等,因此一旦管片本身出现致命的缺陷,就可能会产生灾难性的后果。管片在预制过程中裂缝出现的几率很

高,即使有丰富经验的承包商也常会发生类似、重复的事故。在管片施工方面仍有许多技术难点和重点,需要再进一步认识、提高、加强。管片裂纹防治技术是其中最重要的技术。随着社会经济的发展,目前城市人口增多、规模变大。现有的城市交通已经不能满足城市发展的需要,经济发达的城市开始修建地铁,盾构施工技术被普遍应用于地铁工程中。盾构法施工的隧道衬砌方式有两种:单层装配式衬砌与

多层混合式衬砌。在盾构施工中,主要采用单层装配式衬砌。衬

砌为钢筋混凝土管片构成盾构隧道的主体结构承受四周土体的荷载。

2 隧道管片开裂概述

盾构掘进施工过程中隧道管片在盾构机千斤顶反作用力及同步注浆压力和周围土体的压力作用下,部分管片出现裂缝。裂缝的位置主要集中于隧道中部以上,其中隧道拱顶占多数。管片裂缝为纵向裂缝,有前开裂和后开裂两种类型。前开裂型裂缝从管片前端开裂并向后延伸,主要集中在隧道拱顶位置:后开裂型裂缝从管片后端开裂并向前延伸,此类裂缝主要在隧道的两腰部位或偏上位置。

3 管片开裂的原因分析

盾构隧道管片为钢筋混凝土结构,其开裂主要为受力不均或受力过大所造成。在施工过程中,管片的受力状态与设计所考虑的并不完全一致。盾构机掘进过程中.管片承受着千斤顶顶力、盾尾密封刷的作用力和衬砌背后注浆的浆液压力等,这些荷载的相互作用使盾构管片出现了不同的受力特征。笔者通过对现场的观察了解并结合其他地铁工程中的经验,认为造成管片开裂的主要原因有以下四点。

3.1 盾构机千斤顶总推力较大

作用于管片上的力是造成管片开裂的最基本原因.其中盾构推进过程中总推力过大是致使管片开裂的最直接原因。目前,国内地铁盾构隧道施工中,淤泥质土层中的总推力为8000kN~12000kN。细砂土地层中的总推力为12000kN一15000kN,当总推力过大、养护不好且配筋小的管片就有可能开裂。

3.2 管片环面不平整

造成管片环面不平整的原因主要有:管片制作精度误差:管片纠偏时贴片不平整;盾构机推进时各区的千斤顶力大小不等;管片之间的环缝压缩量不一致等。管片环面不平整,盾构机千斤顶作用于管片上将产生较大的劈裂力矩,从而造成管片开裂(见图1)。

图1 管片环面不平整造成开裂示意图

3.3 千斤顶撑靴损坏或重心偏位

盾构机通过千斤顶作用于管片上而向前掘进,在千斤顶与管片接触处设置撑靴以减少管片压力.当撑靴损坏后管片局部压力增大会造成管片损坏或出现裂缝。在盾构掘进过程中,已拼装的管片中心线与盾构机本身的中心线相重合为理想状态,但在实际施工中两条轴线往往存在偏差,千斤顶的中心没有作用在管片环的中心。从而造成管片偏心受压(见图2)。

图2 管片偏心受压

3.4 盾构机姿态控制与线路曲线段不匹配

管片是在盾构机尾部内进行拼装的,待拼装完成后。隧道管片在盾构机内部的长度约为2.3m,管片外侧的空隙为5em。盾构机在曲线段掘进时其姿态变化与管片的姿态变化不一致,使盾尾密封刷挤压管片从而造成开裂(见图3)。

图3 盾尾密封刷挤压臂片造成开裂细节图

4 管片开裂应对措施

从现场观察分析可知,造成管片开裂的原因不是单一存在的,而是几种原因集中在一起,因此在防止发生管片开裂问题上要综合考虑。针对上述原因需从以下几个方面采取措施:

a)盾构机在砂层掘进时.应加注泡沫剂以防止土仓内积“泥饼”,从而减小推进扭矩和总推力.同时也能防止推进速度过快:

b)加强管片制作时的质量控制。减少管片的制作精度误差,在施工过程中保证贴片位置的准山区高速公路}f一吾蕊丽唾{ 蠢堡通

王彪,高怀鹏

(1.沪蓉西高速公路指挥部,湖北恩施455000;2.中交一公局桥隧工程有限公司,河北高碑店074000)

摘要:山区高速公路路线方案会受到多种因素的控制,这些控制因素主要是地形、地质、水文、生态等自然条件,以及复杂的局部工程方案、总体的工程造价,还有越来越被重视的环境保护问题。

确性,待盾构掘进完成后,检查上一环管片的环面平整度:

C)检查千斤顶撑靴,对出现损坏的要及时更换:

d)盾构掘进时要严格控制盾构机的姿态,特别是在曲线段。盾构机应缓慢掘进并控制每环的纠偏量,以防止盾构机轴线与隧道管片轴线间的夹角过大和管片四周盾尾间隙的不均匀。

参考文献

[1]竺维彬,鞠世健.广州地铁盾构施工阶段管片开裂原因初探[J].广东土木与建筑, 2003,(2):21-25.

[2]张署辉.盾构隧道管片开裂的原因及相应对策

[J].建设机械技术与管理, 2007,(6):73—74.

收稿日期:2009—05—13

盾构施工质量控制要点

盾构施工质量控制要点 一、盾构法隧道施工质量控制要点 (一)审查盾构施工总体方案,需重点注意的内容 1.施工场地总平面布置图; 2.盾构推进方案(始发、掘进、到站或掉头); 3.盾构推进计划; 4.管片的质量控制; 5.施工测量方案、沉降监测方案; 6.同步注浆和二次补浆的质量控制; 7.盾构设备性能参数及操作方法; 8.出土方案和弃土安排; 9.端头和联络通道地层加固方案; 10.建筑物、管线等调查及保护方案; 11.补充地质勘探方案; 12.洞门密封及处理方案; 13.盾构设备组装调试; (二)进场设备检查 应对进入施工现场的各种设备进行检查,包括注浆设备、起吊设备、管片运输设备、管片防雨设施、给排水系统、供电设备等。在盾构始发井前,这些设备应处于可正常工作的状态。 (三)控制测量复核 盾构施工前,应对所使用的水准点和控制点进行复核,确认

没问题后才可使用。 (四)临时管片安装和盾构设备推进前的检查 应对以下方面进行检查,确认没问题后,才可以开始安装临时管片和进行盾构设备推进。 1.盾构设备定位; 2.反力架安装; 3.洞口橡胶密封条和端墙凿除; 4.临时管片固定方式; 5.盾构设备操作方式; 6.同步注浆和二次补浆方式; 7.垂直运输和水平运输设备及其运输方法; (五)盾构设备掘进与管片拼装检查 1.在盾构设备推进前,承包商应提交详细的施工进度安排 报监理和业主批准; 2.监理应通过承包商提供的施工进度报表和现场检查来判 断盾构设备的掘进与管片拼装的情况,出现异常情况时 须及时分析原因,必要时采取相应措施; (六)进场管片检查 1.要求承包商在管片安装之前,必须有专人对以下内容进 行检查,并填写检查表(检查表应有承包商提交给监理 备案):(1)管片表面损坏情况;(2)管片生产日期;(3) 管片类型编号;(4)止水带封条的粘贴(位置和牢固性);

盾构质量控制要点

第一章盾构施工质量控制要点 1.1 盾构掘进施工 1.1.1 盾构设备制造质量,必须符合设计要求,整机总装调试合格,经现场试掘进50?100m距离合格后方可正式验收。 1.1.2 盾构组装时的各项技术指标应达到总装时的精度标准,配套系统应符合规定,组装完毕经检查合格后方可使用,盾构使用应经常检查、维修和保养。 1.1.3 盾构掘进施工必须严格控制排土量、盾构姿态和地层变形。 1.1.4 盾构进出洞时应视地质和现场以及盾构形式等条件对工作井洞内外的一定范围内的地层进行必要的地基加固,并对洞圈间隙采取密封措施,确保盾构的施工安全。 1.1.5 在盾构推进施工中应及时进行各项中间隐蔽工程的验收,并填写下列记录: (1 )竖井井位坐标; (2)竖井预留的洞圈制作精度和就位后标高、坐标; (3)预制管片的钢模质量; (4)盾构推进施工的各类报表; (5)内衬施工前,应对模板、预埋件等进行检查验收。 1.1.6 盾构机进出竖井洞前,必须对洞口土体进行加固处理,以防止洞门打开时土体和地下水涌入竖井内引起地面坍陷和危及盾构施工。

1.1.7 隧道洞口土体加固方法、范围和封门形式应根据地质、洞口尺寸、覆土厚度和地面环境等条件确定。 1.1.8 检查盾构始发的准备工作,测量盾构机始发的姿态(盾构机垂直姿态略高于设计轴线0~30mm防止“栽头”),检查盾构机防滚转措施及负环管片、始发台的稳定性;检查反力架刚度。最后一层钢筋的割除,应自下而上进行才比较安全。 1.1.9 盾构工作竖井地面上应设防雨棚,井口应设防淹墙和安全栏杆。 1.1.10 在盾构推进过程中应控制盾构轴线与设计轴线的偏离值,使之在允许范围内。 1.1.11 盾构中途停顿较长时,开挖面及盾尾采取防止土体流失的措施。 1.1.12 盾构掘进临近工作竖井一定距离时应控制其出土量并加强线 路中线及高程测量。距封门500mn左右时停止前进,拆除封门后应连续掘进并拼装管片。 1.1.13 盾构掘进速度,应与地表控制的隆陷值、进出土量、正面土压平衡调整值及同步注浆等相协调,如盾构停歇时间较长时,必须及时封闭正面土体。 1.1.14 盾构机到达检查进站的准备工作,测量盾构机接收架位置和 盾构机姿态(盾构机垂直姿态略高于设计轴线0~ 30mm防止“栽头”), 确保两个姿态一致(接收架垂直姿态要略低于盾构姿态,以使盾构顺利爬上接收架);检查接收台的固定牢靠,防止盾构在推力作用下发生位移;检查进站前约10 环的管片是否对纵向进行加强连接,防止盾构在推力下降时发生管片“松脱” 渗水和减轻盾构姿态发生突变时的管片错台、破损。盾构机应慢速进站,直到盾构安全上到托架。 1.1.15 盾构掘进中遇有下列情况之时,应停止掘进,分析原因并采取措施:

广州地铁集团有限公司建设事业总部盾构管片质量管理办法(征求意见稿)

广州地铁集团有限公司建设事业总部盾构管片质量管理办法 文件编码:Q/GDJ-GL-ZLGL-BF-06 文件版本:1.0 编制人:郭志坤 审核人:汪良旗、仇培云 批准人:苏振宇

目录 1.目的 (3) 2.适用范围 (3) 3.规范性引用文件 (3) 4.管理原则 (3) 5.术语和定义 (3) 6.管理机构及职责 (4) 7.管理要求 (6) 8.支持文件 (12) 9.文档历史 (12) 10.附则 (12)

1.目的 为加强广州轨道交通工程盾构管片质量管理,规范参建各方质量行为,促进参建各方严格落实建设工程质量管理主体责任,确保轨道交通工程质量,根据《建设工程质量管理条例》、《广东省建设工程质量管理条例》、《广州市房屋建筑和市政基础设施工程质量管理办法》等有关法律、法规、规章的规定,结合广州轨道交通工程实际,制定本办法。 2.适用范围 2.1适用的业务范围:本办法适用于广州地铁集团有限公司建设总部(以下称“建设总部”)作为建设业主方管理或代建工程使用的盾构管片质量管理。 2.2适用的单位、部门范围:适用于建设总部各部(室)、各建设管理部,各参建单位。 3.规范性引用文件 3.1国家、省、市相关建设工程质量法律法规、规章制度、规范和标准等。 3.2广州地铁集团有限公司相关质量管理办法、文件等。 4.管理原则 坚持质量为本的原则:即参建各方应坚持“百年大计,质量为本”,在轨道交通工程建设中自始至终把“质量为本”作为对盾构管片质量管控的基本原则。 5.术语和定义 5.1 管片厂:是指承担建设总部管理或代建工程的承包商选择的盾构管片生产企业。 5.2 预制混凝土衬砌管片(以下简称管片):以钢筋、混凝土为主要原材料按混凝土预制构件设计制作的管片。 5.3 检漏试验:对用于实际工程的管片进行的渗透性检验,以模拟检验管片抗地下水渗透能力。 5.4 水平拼装检验:指通过测量管片水平组装两环或三环后的尺寸精度和形位偏差,对管片和模具进行的检验。 5.5 抗弯性能试验:对管片进行的承载能力试验,以检测其在规定试验方法下的承载力是否符合设计要求。

盾构管片计算方法研究

盾构管片计算方法研究 摘要:随着我国经济发展,各大中大城市建造大规模的公路、过江隧道及城市地铁隧道,盾构隧道由于其地层适应性强、施工便利、节约地下空间资源、降低工程造价,最大限度地减少对城市其他设施的影响等方面的独到的优势而逐渐在地铁、市政等工程建设中得到广泛应用。本文结合某盾构隧道工程情况,对盾构管片计算方法进行研究分析,以期对行业发展有所参考意义。 关键词:盾构轨道;管片计算;自由变形圆环法;弹性地基梁法 1、引言 近年来,我国开始了大规模的公路过江隧道及城市地铁隧道的建设工作。由于盾构隧道施工技术可以最大限度地减少对城市其他设施的影响,所以正逐渐成为地铁隧道施工的主流技术。在我国,上海是较早使用盾构隧道施工技术的城市,北京、广州、南京、深圳等城市在地铁施工中开始使用盾构技术,盾构技术是一项正在兴起的新技术。对于这一新技术的应用,存在着机械、设计、施工等多方面的问题,而本文主要是针对管片计算方法的问题进行了一些分析研究。管片设计是盾构隧道结构设计中比较关键的一环,管片设计的成败直接关系到工程的安全、造价及使用,关于盾构隧道管片设计方法,由于国内尚无统一的设计规范,很多设计、施工单位根据机械制造商(国外厂商)所提供的方法进行设计,有的情况下是凭借上海等地铁盾构隧道实例进行模仿设计。 2、主要研究内容 本文采用多种研究方法,对盾构隧道结构计算模型、各项计算参数的敏感性以及盾构隧道纵向结构计算进行了系统研究。主要内容如下: (1)针对荷载-结构模型中不同断面和不同地质条件下的垂直土压力取值及拱肩土压力、水压力作用方式等,分析了不同条件下盾构隧道的力学特征。 (2)分别对荷载-结构模型中衬砌结构对土层侧压力系数、地层抗力系数及管片接头刚度的敏感性以及连续介质模型中衬砌结构对地层弹性模量、泊松比、荷载释放系数、衬砌环刚度有效率等计算参数的敏感性进行了研究,并对各参数的取值方法和取值范围进行研究。 (3)通过对不同的盾构隧道管片分块及环宽进行力学计算,分析不同盾构管片分块方案及环宽对隧道内力的影响。

盾构管片质量控制办法

管片质量控制办法 为加强轨道办对管片质量控制,制定以下质量控制办法。 1、管片生产原材料质量控制 原材料、预埋件的采购及检测遵守国家强制性规范规定,并符合管片的特殊性技术要求。所有原材料定矿、定厂、定规格、定质量指标采购,对检测不合格的材料禁止使用,相关资料报监理工程师批准后投入使用。 1.1、水泥 管片用水泥检验、验收必须达到以下要求: (1)质量要求符合GB175-1999《硅酸盐水泥、普通硅酸盐水泥》规定。 (2)水泥贮存期不超过三个月,严禁使用过期水泥。 (3)对进场的同厂家、同品质、同出厂编号、同生产日期的水泥,以500t为一批(不足500t的按一批对待)验收,每批至少取样一次,做胶砂强度(3d、28d)、安定性、凝结时间、细度等项目试验。 1.2、砂 选用产品:河砂 (1)质量要求:细度模数宜为2.3-3.0,符合II区颗粒级配的中砂,含泥量≤1.0%,泥块含量≤0.5%,严禁使用海砂、山砂和风化严重的多孔砂。其他质量指标符合JGJ52《普通混凝土用砂质量标准及检验方法》规定。 (2)试验按《普通混凝土用砂质量标准及检验方法》(JGJ52)进行。每600t 为一批验收,每批至少取样一次,做筛分分析试验、视比重试验、容量试验、含泥量试验等。 1.3、碎石 采用5~25毫米连续粒级的石子。 (1)质量要求:要求碎石质地坚硬,针片状颗粒含量<8%,含泥量≤0.5%,泥块含量≤0.2%;其他质量指标符合JGJ53《普通混凝土用碎石和卵石质量标准及检验方法》规定。 (2)对进场碎石每600t为一批验收,每批至少取样一次,做筛分分析试验、含泥量和针、片状含量试验、压碎指标值试验。碎石的试验按《普通混凝土用碎石或卵石质量标准及检验方法》(JGJ53)进行。

轨道办对盾构管片施工质量控制办法

轨道办对盾构管片施工质量控制办法 为加强轨道办对管片质量控制,制定以下质量控制办法。 1、管片生产原材料质量控制 原材料、预埋件的采购及检测遵守国家强制性规范规定,并符合管片的特殊性技术要求。所有原材料定矿、定厂、定规格、定质量指标采购,对检测不合格的材料禁止使用,相关资料报监理工程师批准后投入使用。 1.1、水泥 管片用水泥检验、验收必须达到以下要求: (1)质量要求符合GB175-1999《硅酸盐水泥、普通硅酸盐水泥》规定。 (2)水泥贮存期不超过三个月,严禁使用过期水泥。 (3)对进场的同厂家、同品质、同出厂编号、同生产日期的水泥,以500t为一批(不足500t的按一批对待)验收,每批至少取样一次,做胶砂强度(3d、28d)、安定性、凝结时间、细度等项目试验。 1.2、砂 选用产品:河砂 (1)质量要求:细度模数宜为2.3-3.0,符合II区颗粒级配的中砂,含泥量≤1.0%,泥块含量≤0.5%,严禁使用海砂、山砂和风化严重的多孔砂。其他质量指标符合JGJ52《普通混凝土用砂质量标准及检验方法》规定。 (2)试验按《普通混凝土用砂质量标准及检验方法》(JGJ52)进行。每600t 为一批验收,每批至少取样一次,做筛分分析试验、视比重试验、容量试验、含泥量试验等。 1.3、碎石 采用5~25毫米连续粒级的石子。 (1)质量要求:要求碎石质地坚硬,针片状颗粒含量<8%,含泥量≤0.5%,泥块含量≤0.2%;其他质量指标符合JGJ53《普通混凝土用碎石和卵石质量标准及检验方法》规定。 (2)对进场碎石每600t为一批验收,每批至少取样一次,做筛分分析试验、含泥量和针、片状含量试验、压碎指标值试验。碎石的试验按《普通混凝土用碎石或卵石质量标准及检验方法》(JGJ53)进行。

盾构隧道管片破裂原因分析及预防

盾构隧道管片破裂原因分析及预防 楼红波(Louhongbo ) (中铁十六局集团有限公司 100018) {China 16th Bureau Group Limited Company post code 100018} 摘要:从盾构隧道管片生产及拼装的特点出发,结合实例,分析成型隧道管片破损原因及预防措施。 关键词:管片 破裂 预防 近几年,随着盾构隧道在国内城市交通、水利、国防等方面的广泛应用,盾构隧道的质量控制日益引起施工单位的重视,由于目前盾构隧道的衬砌普遍采用单层装配式管片衬砌,盾构隧道的质量控制主要是对拼装管片的质量控制,包括管片生产质量、拼装质量二个方面。下文针对深圳地铁一期工程华岗盾构区间隧道成型管片破损的原因及相应处理措施进行阐述。 1、工程概况 深圳地铁一期工程7标段华-岗区间盾构位于深圳市市中心区,起讫里程CK5+338.800~CK7+108.601,右线隧道长1778.084m ,左线隧道长1793.521m ,最小水平曲线半径300m ,最小垂直曲线半径3000m ,最大坡度30‰。盾构隧道主要穿越砂层和粘性土层中通过,部分位于全风化~强风化的花岗岩中,局部位于中风化的花岗岩中。地下水一般位于2.0~6.9m ,以孔隙潜水为主,水位变幅0.5~1.0m ,砂层透水性较好。 区间隧道采用海瑞克Φ6.25m 土压平衡盾构机进行施工,幅宽1.2m 单层通用型管片衬砌。管片厚300m ,配筋率153.8Kg/m 3 ,管片生产采用德国产进口带振动器钢模,由于深圳市港创预制件公司进行管片生产。 2、管片破损情况分类 成型隧道内管片破损情况根据破损的位置主要可以分为四种:管片外弧面破裂、管片边角崩裂、管片环向螺栓孔处砼崩裂、管片吊装孔处砼破裂。在隧道贯通后,我们对四种破损进行了统计,共统计了破损点41处,其中5处管片外弧面破裂根据施工记录计算。 管片外弧面破裂10% 管片边角崩裂35% 螺栓孔处砼破裂 49%吊装孔处砼破裂 6% 3 破裂原因分析

盾构施工控制要点

盾构施工准备 技术准备 了解工程条件,包括水文地质条件、施工场地条件、管片运输与渣土消纳条件、噪音影响、供电、供水、排污条件、民扰、扰民问题、拆迁占地等; 地面建筑物与地下管线调查,地下管线必须逐一现场核实;在盾构掘进前必须进行地下空洞探测; 编制施工组织设计和临电施工组织设计 风险源识别与分析,编制专项方案(包括工程自身风险和盾构开仓检查、换刀带来的风险) 编制项目进度计划(特殊地层必须考虑刀盘、刀具检修以及由其引起的施工占地协调、管线改移等对整个工程工期的影响) 制定盾构施工过程管理措施与控制目标 编制盾构施工辅助工程专项施工方案(包括盾构机及龙门吊、砂浆搅拌站等大型设备运输、组装及解体方案、盾构始发和接收端头加固方案、始发与接收方案、联络通道和其它附属工程施工方案、弃土坑施工方案、盾构防水等、需要中途进行刀盘刀具检修的还需编制专项方案) 建立质量保证体系与绿色、环保和文明施工体系 物资准备 盾构机及大型运输、吊装设备选用 盾构施工配套垂直运输设备、水平运输设备选型与采购(龙门吊、塔吊、电瓶车、管片车、渣土车等),需注意点 制造与采购工期,一般在6个月左右 电瓶车选择必须考虑多个工程的使用以及隧道纵坡对其牵引力的影响 浆液制备与泵送设备(搅拌站、浆液输送泵、浆液车) 盾构始发、过站、接收用钢结构(反力架、反力环、机座、过站小车) 盾构机后配套管线及运输通道(供水管、排水管、盾构机供电电缆、隧道内照明、轨道、枕木、走道板、管钩等) 盾构配件及耗材(刀具、常用配件、盾尾密封油脂、泡沫、膨润土、润滑油脂等)现场临时用电、临时用水材料,应急发电设备。 场地内装载、搬运设备(装载机、叉车、挖掘机) 工地通用机械(空压机、电焊机、切割机等) 人员准备 建立组织机构 制定岗位职责 管理人员安全教育、业务培训 作业工人安全教育、业务培训 持证上岗 所有人员签订劳动合同,办理工伤等各项保险 场地布置 盾构施工场地布置应统筹考虑,协调合理,绿色施工。主要包括:垂直运输系统、

盾构管片质量控制及检测技术

盾构管片质量控制及检测技术 【摘 要】盾构管片作为盾构隧道的支护结构,其质量直接影响到隧道的安全。介绍了管片生产过程中出现的主要质量问题,探讨了管片质量控制措施以及管片质量检测的技术手段,为同类工程提供了一些有益的建议。 【关键词】盾构管片 质量控制 检测技术 1、引言 随着城市化的发展,越来越多的隧道采用盾构法施工,作为盾构隧道的最主要部分的混凝土预制管片,其成型后的质量直接关系到隧道的安全。因此,在盾构管片施工过程要严格控制质量,保证满足隧道结构的自防水及结构安全。 2、影响管片质量的主要问题及原因分析 2.1管片裂缝类型及成因 2.1.1裂缝类型 通过对管片裂缝的观察,管片的裂缝主要分成以下4类。 (1)表面龟裂:密布在管片各个位置,裂纹短小而不规则。 (2)侧面裂缝:裂缝较规则,与管片外弧棱线垂直,裂缝宽度一般在0. 15 mm以下。 (3)外弧面裂缝:主要出现在管片脱模后,以塑性收缩裂缝为主,宽度一般在0. 15 mm以下,长度约 10~40 mm。 (4)内弧面裂缝:一般为结构性裂缝。 2.1.2裂缝原因分析 (1)表面龟裂:一般是由于管片脱模后,混凝土表面与空气接触,表面水分急速蒸发,形成混凝土内外湿度梯度,导致龟裂的产生。 (2)侧面裂缝:主要是由于管片表面浮浆缺乏骨料,抗拉强度较低,在应力作用下而发生开裂。 (3)外弧面裂缝:主要是由于外弧面游离水蒸发较快,面层收缩过大而造成。 (4)内弧面裂缝:主要是管片堆放、运输不当而造成的。 2.2管片气泡类型及成因 2.2.1气泡类型 (1)管片表面起泡,气泡孔径较小,以两侧出现较多。 (2)管片止水槽处气泡,孔径较大,分散出现。 2.2.2气泡产生原因 (1)钢模自身结构影响:钢模精度高,密封性能好,但模具表面光滑程度不一,不利于气泡的溢出。 (2)模具脱模剂具有憎水性时,则会排斥泥浆,不利于气泡的排出。 (3)人工操作不稳定及熟练程度不同,对质量产生一定影响,易产生气泡集中于局部而形成较大空洞。 3、管片质量控制措施 作为高精度的预制混凝土产品,其质量控制关系到管片结构及隧道的安全,因此必须建立完善的管理制度,使管片生产的全过程处于监控状态,确保管片自身的质量。 3.1原材料控制 管片生产的主要材料,钢筋、水泥、外加剂、脱模剂、石材必须采用信誉良好的厂家。材料进场后必须要要求进行取样检测,合格的产品才能用于管片的生产。 3.2生产流程控制 3.2.1管片钢模具 钢模具的质量直接影响着管片的尺寸精度、表面裂缝、气泡等问题。在进行管片生产前必须检测模具的宽度、高度、内外径、弧弦长、纵向环向芯棒孔径、中心距。其尺寸偏差必须满足要求。如不符合质量标准的不得用于管片生产。并定期按每生产100环管片的周期对钢模进行检验,按500环的周期进行强制大修。

盾构法隧道施工管片破损原因分析

一、工程概况 象秀区间上行线于2014.9.13日贯通,本段施工范围为象峰站~秀山站盾 构区间工程,由象峰始发,上行线SK0+576.167~SK1+647.000共1070.833m、892环,象峰站~秀山站区间自秀峰路上的象峰站始发,沿着秀峰路过无名河桥、无名箱涵一直到达蓝山四季门口的秀山站。本区间线间距从13.5m变化到18.9m;纵断面为单面坡,最大纵坡10.5‰,最小纵坡4.98‰,区间隧道覆土 最大厚度10.2m,最小厚度4.4m。在SK1+112.2设1座联络通道,位于直线段,线间距为13.5m,联络通道上覆土层厚度约9.9m。盾构掘进地层主要为⒀a残 积土、⒁全风化岩层, 二.管片破损情况 管片破损在隧道衬砌的内外两侧均有发生,衬砌外侧一般发生在管片与盾 构机外壳的接触部位,以拱底块、封顶块居多,内侧一般发生在管片的角部、 隧道底部,隧道清洗后发现隧道底部破损较多,尤其是200-500环,共破损 116处,破损率达38.6%. 三、破损原因分析 1、盾构机在姿态微调的过程中管片千斤顶与管片环之间存在一定夹角,造成应力集中导致砼块破裂,如图

1.拼装质量不好造成管片错台,管片间应力集中使管片破损,如图

2.盾尾泥沙太多,拼装前没有清理干净,底部管片拼装后下面全是泥 沙,管片间夹有沙粒,管片易破损。 盾尾清泥照片 3.上行线推进过程中,有时测量系统发生故障,盲推会使盾构姿态有 较大变化,管片容易破损 4.管片螺栓没有及时复紧,推进过程中管片稳位造成管片破损

四、管片修复 目前上行线已基本完成修补,现在正组织修补人员对修补部位进行打磨。

5800p盾构管片计算程序

线路中边桩坐标正反算程序(2013-9-18) MAIN-PROG(主程序) Lbl 4: 9→DimZ:“1→ZS,2→FS,3→GPZT”?N(选择计算模式,1为正算,2为反算,3为管片姿态计算) N=1=>Goto 1:N=2=>Goto 2:N=3=>Goto 3 Lbl 1: “K=”?S:“PJ=”?Z:Prog “SJ-PM”: Abs(S-O) → W:Prog “SUB1-ZS”: F-90→F :If F≥360:Then F-360→F :“X=”:Locate4,4,X:“Y=”:Locate4,4,Y: “W=”:Locate4,4,F°:S→K:Prog “SJ-GC”:“H=”:Locate4,4,H◢ Goto 4 (正算-输入待求点里程K=、输入待求点偏距PJ=、显示待求点里程X=、显示待求点里程Y=、显示待求点方位角W=、显示待求点高程H=) Lbl 2:“X=”?X:“Y=”?Y:Prog“SJ-PM”: X→ I: Y→ J:Prog "SUB2-FS":O+W→S: “K=":Locate4,4, S:“PJ=":Locate4,4, Z :S→K:Prog “SJ-GC”:“H=”:Locate4,4,H◢Goto 4 (反算-输入实测点X=、输入实测点Y=、显示实测点里程K=、显示实测点偏距PJ=) Lbl 3:“X=”?X:“Y=”?Y:“H=”?→Z[7]:Prog“SJ-PM”: X→I :Y→ J:Prog "SUB2-FS":O+W→S:Prog "SJ-PYL":Prog "SUB4-PYL":Z-Z[6]→Z[8]:S→K:Prog “SJ-GC”:Prog “SJ-DCHD”:Z[7]-(H-Z[5])→Z[9]:“SP=”:Locate4,4,Z[8]:“GC=”:Locate4,4,Z[9]◢ Goto 4 (管片姿态计算时,输入全站仪实测的平面坐标X、Y以及水准测得的管片底标高H,结果显示平面偏差“SP=”,左-右+,高程偏差“GC=”,高+低-) SJ-PM(子程序名-平面线形数据库)里程从DK44+744.5~DK47+160.091 (直线段)If S ≥44744.5(线元起点里程):Then 315898.3852→U(线元起点X坐标):509426.7059→V(线元起点Y坐标):44744.5→O(线元起点里程):357057’7”→G(线元起点方位角):179.775 →H(线元长度):1×1045→P(线元起点曲率半径):1×1045→R(线元终点曲率半径):0→Q(线元左右偏标志:左-1右1直0):IfEnd (ZH点)If S ≥44924.275(线元起点里程):Then 316078.0453→U(线元起点X坐标):509420.2813→V(线元起点Y坐标):44924.275→O(线元起点里程):357057’7”→G(线元起点方位角):20 →H(线元长度):1×1045→P(线元起点曲率半径):2000→R(线元终点曲率半径):1 →Q(线元左右偏标志:左-1右1直0):IfEnd

盾构施工时管片产生裂缝的原因及对策

盾构施工时管片产生裂缝的原因及对策 摘要:管片作为盾构隧道的主体结构,其开裂必将造成隧道的质量问题,并最终影响地铁隧道的使用寿命。本文通过对隧道管片在盾构掘进施工时产生裂缝原因的分析,并提出相应的对策对指导施工具有重要意义关键词:盾构隧道管片开裂防治措施 随着社会经济的发展城市人口增多、规模变大现有的城市交通已经不能满足城市发展的需要.经济发达的城市开始修建地铁工程盾构施工技术普遍应用于地铁工程中。盾构法施工的隧道衬砌方式有两种:单层装配式衬砌和多层混合式衬砌。在盾构施工中.主要采用单层装配式衬砌.衬砌为钢筋混凝土管片构成盾构隧道的主体结构承受四周土体的荷载。 1盾构施工过程中出现的管片开裂 盾构掘进施工过程中隧道管片在盾构机千斤顶反作用力及同步注浆压力和周围土体的压力作用下部分管片出现裂缝裂缝的位置主要位于隧道中部以上其中隧道拱顶占多数。管片裂缝为纵向裂缝有两种类型: 1 .1前开裂 裂缝从管片前端开裂并向后延伸(见图I) ,主要集中在隧道拱顶位置。 1.2后开裂

裂缝从管片后端开裂并向前延伸(见图2),此类裂缝主要在隧道的两腰部位或偏上位置。 2管片开裂的原因分析 盾构隧道管片为钢筋混凝土结构其开裂主要为受力不均或受力过大所造成。在施工过程中,管片的受力状态与设计所考虑的不完全一致盾构机掘进过程中管片承受着千斤顶顶力盾尾密封刷的作用力和衬砌背后注浆的浆液压力等在这些荷载的相互作用下使盾构管片出现了不同的受力特征。通过对现场观察了解结合其它地铁工程中的经验造成管片出现上面开裂现象的主要原因可能有如下几种: 2 .1盾构机千斤顶总推力较大 作用于管片上的力是造成管片开裂的最基本因素其中盾构推进过程中总推力过大是致使管片开裂的最直接原因。目前,国内地铁盾构隧道施工中,淤泥质粘土层中总推力为8000 ~12000kN;细砂土地层中总推力为12000 ~15000kN,当总推力过大时,对于养护不好并且配筋小的管片则有可能开裂。 2 .2管片环面不平整 造成管片环面不平整主要有:管片制作精度误差管片纠偏时贴片不平整;盾构机推进时各区的千斤顶推力大小不等管片之间的环缝压缩量不一致等原因。因管片环面不平整盾构机千斤项作用于管片上将产生较大的劈裂力矩造成管片开裂(如图3所示)。 2 .3千斤顶撑靴损坏或重心偏位 盾构机通过千斤顶作用于管片上向前掘进.在千斤顶与管片接触处设置撑靴以减少管片压力,撑靴损坏后管片局部压力增大造成管片损坏或出现裂缝。 在盾构掘进过程中已拼装的管片中心线与盾构机本身的中心线重合为理想状态但在实际施工中两条轴线存在偏差千斤顶的中心没有作用在管片环的中心上,造成管片偏心受压(见图4)。 2.4盾构机姿态控制与线路曲线段不匹配 管片是在盾构机尾部内进行拼装,拼装完成后隧道管片在盾构机内部的长度约为2.3m管片外侧的空隙为5cm,盾构机在曲线段掘进时盾构机的姿态变化与管片的姿态变化不一致,盾尾密封刷挤压管片造成开裂(见图5)。

盾构质量控制要点

第一章盾构施工质量控制要点 1.1盾构掘进施工 1.1.1 盾构设备制造质量,必须符合设计要求,整机总装调试合格,经现场试掘进50~100m距离合格后方可正式验收。 1.1.2 盾构组装时的各项技术指标应达到总装时的精度标准,配套系统应符合规定,组装完毕经检查合格后方可使用,盾构使用应经常检查、维修和保养。 1.1.3 盾构掘进施工必须严格控制排土量、盾构姿态和地层变形。1.1.4 盾构进出洞时应视地质和现场以及盾构形式等条件对工作井洞内外的一定范围内的地层进行必要的地基加固,并对洞圈间隙采取密封措施,确保盾构的施工安全。 1.1.5 在盾构推进施工中应及时进行各项中间隐蔽工程的验收,并填写下列记录: (1)竖井井位坐标; (2)竖井预留的洞圈制作精度和就位后标高、坐标; (3)预制管片的钢模质量; (4)盾构推进施工的各类报表; (5)内衬施工前,应对模板、预埋件等进行检查验收。 1.1.6 盾构机进出竖井洞前,必须对洞口土体进行加固处理,以防止洞门打开时土体和地下水涌入竖井内引起地面坍陷和危及盾构施工。

1.1.7 隧道洞口土体加固方法、范围和封门形式应根据地质、洞口尺寸、覆土厚度和地面环境等条件确定。 1.1.8 检查盾构始发的准备工作,测量盾构机始发的姿态(盾构机垂直姿态略高于设计轴线0~30mm,防止“栽头”),检查盾构机防滚转措施及负环管片、始发台的稳定性;检查反力架刚度。最后一层钢筋的割除,应自下而上进行才比较安全。 1.1.9 盾构工作竖井地面上应设防雨棚,井口应设防淹墙和安全栏杆。 1.1.10在盾构推进过程中应控制盾构轴线与设计轴线的偏离值,使之在允许范围内。 1.1.11 盾构中途停顿较长时,开挖面及盾尾采取防止土体流失的措施。 1.1.12 盾构掘进临近工作竖井一定距离时应控制其出土量并加强线路中线及高程测量。距封门500mm左右时停止前进,拆除封门后应连续掘进并拼装管片。 1.1.13 盾构掘进速度,应与地表控制的隆陷值、进出土量、正面土压平衡调整值及同步注浆等相协调,如盾构停歇时间较长时,必须及时封闭正面土体。 1.1.14 盾构机到达检查进站的准备工作,测量盾构机接收架位置和盾构机姿态(盾构机垂直姿态略高于设计轴线0~30mm,防止“栽头”),确保两个姿态一致(接收架垂直姿态要略低于盾构姿态,以使盾构顺利爬上接收架);检查接收台的固定牢靠,防止盾构在推力作用下发

管片楔形量计算

管片楔形量 一、管片楔形量计算 护盾式TBM(含盾构)在曲线段施工和蛇行修正时,需要使用楔形管片环,楔形管片环分为左转环及右转环。蛇行修正用楔形管片环的数量,会因工程区域内所包含的缓曲线和急曲线区段的比例、有无S形曲线等的隧道线路、影响TBM (含盾构)操作稳定性的周围围岩的情况而不同。通常,蛇行修正用楔形管片环数量大概是直线区间所需管片环数的3%~5%,可通过线形计算。 楔形量除了根据管片种类、管片宽度、管片环外径、曲线外径、曲线间楔形管片环使用比例、管片制作的方便性确定外,还应根据盾尾操作空隙而定。根据区间隧道线形,其最小半径为350m,建议曲线拟合采用楔形量38mm的楔形管片环,模拟线形采用标准环、左转环和右转环组合的方式。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △=D(m+n)B/nR (D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径)结合青岛市地铁1号线工程具体情况,TBM施工区段线路最小曲线半径为350m,按最小水平曲线半径R=350m计算,楔形量△=38mm,楔形角β=0.3629°。 楔形量与转弯半径关系(如图7.8)的计算公式如下:

曲线中心 图7.8 楔形量与转弯半径关系图 根据圆心角的计算公式: X=180L/πR 式中: L——段线路中心线的长度(mm), R——曲线半径(mm), X——圆心角。 将圆心角公式代入得, 180×(1500-△/2)/[π×(R-3000)]=180×(1500+△/2)/[π×(R+3000)]简化得楔形量与转弯半径关系公式: (1500-△/2)/(R-3000)=(1500+△/2)/(R+3000) R=9000000/△ 将管片拼装的最大楔形量△=38mm代入上式计算得此转弯环管片的理论最小转弯半径为:R=236842mm。

地铁隧道管片破损修补方案指南

附件: 地铁管片破损修补指南 一、总则 (一)编制目的 地铁在区间盾构施工过程中出现管片破损现象,各施工单位对破损管片的修补方法不尽相同,使用材料质量参差不齐,因此修补效果差异较大。为了保证管片修补质量,地铁集团组织编写了《地铁管片破损修补指南》,旨在规范、指导破损管片的修补工作,望各参建单位参照执行。 (二)适用范围 适用于在盾构施工过程中出现的管片破损修补。当管片破损严重,一般性修补无法满足其正常使用时,需研究制定专项方案进行加固、修补。 破损程度的鉴别和修补结果的验收,应由土建施工总包单位会同监理单位共同确认,并留有相关资料。 (三)编制依据 1.《盾构法隧道施工与验收规范》(GB 50446-2008) 2.《建筑结构加固工程施工质量验收规范》(GB 50500-2010) 3.《混凝土结构加固设计规范》(GB 50367-2006) 4.《混凝土结构耐久性修复与防护技术规程》(JGJ/T 259-2012) 5.《混凝土结构后锚固技术规程》(JGJ145-2013) 6.《混凝土界面处理剂》(JC/T 907-2002) 二、破损的分类及修补方案 (一)裂缝 管片裂缝指成型隧道管片由于各种原因导致管片出现的各种裂缝。裂缝类型及修补方案见下表所示。 序号裂缝类型 修补方案 1不渗水裂缝封闭处理 2渗水裂缝先深层注浆堵水处理,再对裂缝进行封闭注:不得使用聚氨酯封闭裂缝。 (二)缺损 管片缺损类型及修补方案见下表所示。 序 号 缺损类型修补方案 1 缺损深度不超过钢筋保护层(如崩角、 表面破裂等) 封闭处理

2 缺损深度超过钢筋保护层(面积≥ 200mm×200mm;深度50-150mm) 先对管片背后进行注浆加固, 再进行补强处理 3 缺损深度≥150 mm,或已影响到止水 效果的,或缺损范围较大,已影响正常使用 的 先对管片背后进行注浆加固, 然后参照本办法制定专项方案,一 处一方案,报监理审批 三、管片缺损修补的主要材料 序 号 名称规格主要性能指标1聚合物修补砂浆抗压强度≥50MPa(28d) 2钢筋阻锈剂干湿冷热循环60次,无锈蚀 3钢丝网片s:5cm×5cm d:4mm 4钢筋Φ4- Φ6 5植筋胶与混凝土粘接强度≥17MPa 出厂日期、出厂检验合格报告等进行检查,并见证取样复验。 2.使用前,应对聚合物修补砂浆和植筋胶的力学性能进行现场试验检测。聚合物修补砂浆:抗压强度≥50MPa(28d);拉伸粘接强度≥1.5MPa(28d)。试验方法参考《地面用水泥基自流平砂浆》(JC/T 985-2005)第6章。 3.可自行选择是否使用界面剂,如若使用,建议选用质量可靠的进口产品。 四、修补工艺 (一)表面封闭工艺 碎块凿 表面清 涂刷界面 填充修补砂浆

盾构施工控制要点

地铁隧道盾构法施工质量控制重点及措施 摘要:盾构工法是我国城市地铁隧道建设的主要工法,施工人员熟悉和掌握地铁隧道的施工质量控制重点及方法,对保证隧道的安全生产及质量具有重大意义。 关键词:盾构工法;施工质量;控制重点;措施 引言 我国城市地铁隧道建设正步入快速发展的轨道,由于盾构工法具有工期短、造价低、施工领域宽、自动化程度高等特点,因此得到广泛应用。就沈阳地铁2号线土压平衡盾构的施工实践,论述盾构隧道质量的控制方法,并对一些质量控制重点及方法进行探讨。 1 盾构始发阶段 1.1 盾构端头井土体加固(始发)等相关质量控制 在盾构始发时,提高地基强度,防止沉陷,防止地下水突出及土砂等流入端头井内,需进行洞圈周围土体的加固和改良。常用方法有搅拌桩法、药液注入法、冻结法等。无论采取何种方法,加固和改良的效果是质量控制的关键。 (1)加固效果要通过在不同部位、不同深度钻心取样等手段进行验证,确保满足设计要求。 (2)降低地下水位。在始发期间,端头井周围地 下水位要降至洞圈以下1.5—2m,要实施实时监测,并有备用降水井和降水设备。

(3)临时墙拆除。这是在盾构施工中最应引起注意的一道作业,有很大的危险性。国内外有多种始发掘进的方法:①根据地基改良等情况保持始发井前面土体稳定的同时,拆除临时挡土墙进行掘进。②将始发部位做成双层墙结构,边拔除前面的墙边掘进。③用盾构机边直接切削临时墙边掘进。现在多采用第一种方法。拆除临时墙时应掌握门封的具体结构,制定针对性的措施。拆除临时墙的时间应在盾构机调试达到稳定推进条件后。临时墙与盾构机间应预留不小于1.2m的作业空间。拆除临时墙前应钻梅花型探孔(不少于5点)观察,观察时间不少于12h。考虑到综合因素,始发推进尽量选在白天上午。目前正在开发一种盾构机刀盘直接切削的新材料来替代钢筋,可以不必拆除临时墙,无需释放土体应力,就可以使盾构机安全推进,值得关注。 (4)出洞止水密封装置安装。帘布橡胶板上的安装螺栓必须齐全紧固,防翻卷装置加工牢固,帘布橡胶板紧贴洞门,防泥水流失。 (5)始发出洞应做如下工作:①洞门凿除后,盾构机应迅速靠上洞口土体。②观察洞口有无渗漏,如有应及时封堵(应急封堵材料及排水设备)。③盾构机土仓内不得有砼块、钢筋等,临时墙周边钢筋不得伸入盾构切削圆周内。④第一正环拼装时检查最后一负环管片的位置、真圆度等。⑤控制推进千斤顶的使用情况,防止盾构机磕头或上飘。⑥严格控制负环管片的真圆度。 1.2 盾构始发设备 1.2.1 盾构机基座质量控制重点 (1)位置及尺寸。基座设置前,应对洞中的实际净尺、平面位置、直径及高程进行复核,确定基座的位置和高程。盾构姿态的调整,

盾构施工质量控制

盾构施工质量控制 SANY GROUP system office room 【SANYUA16H-

工程质量检查管理办法暨争创优质工程管理办法 (盾构部分) 根据现行轨道交通试行规范、国家规范及北京市有关规范、标准。依据《建设结构长城杯工程质量评审标准》的有关规定,结合本项目部盾构施工的特点,对盾构施工质量检查和施工中的质量控制要点,进行分解,为争创结构长城杯奠定基础。 一、法律法规相关文件: 《市政基础设施工程资料管理规程》(DBJ01-71-2003) 《地下铁道工程施工及验收规范》(GB50299-1999) 《市政基础设施工程质量检验与验收统一标准》(DBJ01-90-2004)《排水管(渠)工程施工质量检验标准》(DBJ01-13-2004) 《盾构隧道工程施工质量验收标准(试行)》2004.09 《隧道工程施工质量验收标准(试行)》2004.12 《预制钢筋混凝土盾构管片质量验收标准》(QGD-003-2004) 《地铁暗挖隧道注浆施工技术规范》(DBJ01-96-2004) 《防水工程施工质量验收标准(试行)》 《北京地铁施工监控量测技术要求(试行)》 《地下铁道、轻轨交通工程测量规范》(GB50309-1999) 二、主控项目有: 掘进、管片安装、注浆、测量与监控、管片进厂检验、管片拼装。 三、盾构隧道施工现场质量管理资料: 盾构隧道工程施工现场质量管理应有相应的施工技术标准、健全的质量管理体系和施工质量检验制度。 施工单位汇总技术质量管理资料并填写《隧道工程施工现场质量管理检查记录》(表式C1-5)

四、掘进施工

1、盾构机在始发竖井内正式掘进前,必须对洞口经改良的土体作质量检测,并对盾构机轴线位置作复核、检查。 2、机械开挖时,每次开挖长度应与每环管片的宽度相适应,挖土速度应与盾构机械推进进度、出土能力匹配。 3、盾构机掘进中,用激光准直系统对盾构机轨迹连续观测。 4、初始掘进30m-50m长度,应加密对盾构机轴线的测量与监控,及时调整盾构机位置,使管道的中线、高程符合设计要求。 5、盾构机每推进一环,进行一次管片环的中线、高程测量。同时应测量盾构机轴线位置及绕轴线偏离转角,依据测量结果进行纠偏。 6、高程、中线纠偏应在推进中进行。纠偏过程宜增加测量密度,宜采用调向千斤顶纠偏。 7.应在推进中对盾构旋转进行纠正,纠正应采用设定的措施。 五、管片安装 1、管片安装过程中,第一块管片环向定位要准确,管片圆环旋转不得超过标准,确保相邻两管片接头的环面平正,内弧面平正,纵缝的管片端面密贴。 2、拼装前应清理盾尾底部;管片安装设备应处于正常状态。 3、管片下井前,应由专人核对编组、编号;对管片进行清理、粘贴止水材料、检查合格后,将管片与联接件配套送至工作面;管片质量要求应符合有关规定。 4、拼装时,应采取措施保护管片,衬垫及防水胶条不受损伤。

盾构隧道管片破裂原因分析及应对措施

盾构隧道管片破裂原因分析及应对措施由于目前盾构隧道的衬砌普遍采用单层装配式管片衬砌,盾构隧道的质量控制主要是对拼装管片的质量控制,包括管片生产质量、拼装质量二个方面。下面针对我单位承建的新海大道站~盾构区间隧道成型管片破损的原因及相应处理措施进行阐述。 1、管片破损情况分类 已成型隧道内管片破损情况根据破损的位置主要可以分为:管片纵缝破裂、管片环缝破裂、管片边角崩裂、管片环向螺栓孔处砼崩裂等几种情况。 2 破裂原因分析 2.1 管片纵缝环缝破裂 在初始掘进过程中,我们发现管片在从盾尾脱离的时候,盾尾密封刷将管片弧面破裂的砼碎块带自盾构机拼装部位,碎块发现的部位大都在管片环的下部,但进一步观察发现,破裂的部位并不一定在管片环下部,而是任何一个点位,而且发生管片纵缝破裂的同时,总是在盾构机线路纠偏微调的时候,有的管片边角破裂引起了渗漏水。经过对破裂点的统计分析,我们认为破裂的原因主要有以下几点: (1) 管片纵缝环缝破裂; (2)管片间止水密封条及软木衬垫的形式,从理论上讲,管片环向止 水条在管片拼装后压缩后厚度小于管片间环向软木衬垫,但实际施工中 由于软木衬垫的不均匀性,管片间压力可能局部集中在止水条上,对止 水槽外内侧砼形成侧压,造成管片内弧面纵缝和环缝砼沿止水槽破裂, 见右图。 2.2 管片边角崩裂 边角崩裂在隧道掘进中发生较少,且都发生在管片错台、拼 装质量不好的管片上,见右图。通过分析,可以确定边角破裂的 原因是拼装质量不好引起的,由于管片间边角吻合不好,在下一 环管片拼装千斤顶施加顶推力时,在边角应力集中,造成管片砼 破碎脱落。 2.3管片环向螺栓孔处砼崩裂 由于管片从盾尾脱离后进入土层,周边荷载模式改变,并 随着时间逐步稳定。在未稳定之前,管片间剪力、拉力主要由管

盾构隧道工程事故案例分析1(推荐文档)

盾构法隧道工程事故案例分析及风险控制 上海市土木工程学会 傅德明 盾构法隧道已经发展到十分先进和安全的技术,但是由于地质水文条件的复杂性,或由于施工操作的错误,还存在许多风险,近年来,我国的盾构隧道工程也出现一些工程故事,因此, 隧道工程的安全和风险控制十分重要. 1、盾构法隧道工程事故分析和风险控制 1.1 南京地铁盾构进洞事故 事故描述: 1.工程概况 南京某区间隧道为单圆盾构施工,采用1台土压平衡式盾构从区间右线始发,到站后吊出转运至始发站,从该站左线二次始发,到站后吊出、解体,完成区间盾构施工。 该区间属长江低漫滩地貌,地势较为平坦,场地地层呈二元结构,上部主要以淤泥质粉质粘土为主,下部以粉土和粉细砂为主,赋存于粘性土中的地下水类型为空隙潜水,赋存于砂性土中的地下水具一定的承压性,深部承压含水层中的地下水与长江及外秦淮河有一定的水力联系。到达端盾构穿越地层主要为中密、局部稍密粉土,上部局部为流塑状淤泥质粉质粘土,端头井6m采用高压旋喷桩配合三轴搅拌桩加固土体。 2. 事故经过 在盾构进洞即将到站时,盾构刀盘顶上地连墙外侧,人工开始破除钢筋,操作人员转动刀盘,方便割除钢筋,下部保护层破碎,刀盘下部突然出现较大的漏水漏砂点,并且迅速发展、扩大,瞬时涌水涌砂量约为260m3/h,十分钟后盾尾急剧沉降,隧道内局部管片角部及螺栓部位产生裂缝,洞内作业人员迅速调集方木及木楔,对车架与管片紧邻部位进行加固,控制管片进一步变形。仅不到一小时,到达段地表产生陷坑,随之继续沉陷。所幸无人员伤亡,抢险小组决定采取封堵洞门方案。3.处理措施 抢险小组利用应急抽水泵排除积水,同时确定采取封闭两端洞门的方案,在该车站端头外层钢筋侧放置竹胶板,采用编织袋装砂土及袋装水泥封堵,迅速调集吊车及注浆设备进场,采用钢板封堵洞门;始发站洞内积极抢险,利用方木对车架与管片进行支顶,在无法控制抢险的情况下安全撤出作业人员,在洞内进行袋装水泥

相关文档
相关文档 最新文档