文档库 最新最全的文档下载
当前位置:文档库 › 第一章周期三角波的傅里叶级数

第一章周期三角波的傅里叶级数

第一章周期三角波的傅里叶级数
第一章周期三角波的傅里叶级数

傅里叶级数的三角形式和傅里叶级数的指数形式

周期信号的傅里叶级数分析 连续时间LTI 系统的时域分析: 以冲激函数为基本信号 系统零状态响应为输入信号与系统冲激响应之卷积 傅立叶分析 以正弦函数或复指数函数作为基本信号 系统零状态响应可表示为一组不同频率的正弦函数或复指数函数信号响应的加权和或积分; 周期信号: 定义在区间 ,每隔一定时间 T ,按相同 规律重复变化的信号,如图所示 。它可表示为 f (t )=f ( t +m T ) 其中 m 为正整数, T 称为信号的周期,周期的倒数称为频率。 周期信号的特点: (1) 它是一个无穷无尽变化的信号,从理论上也是无始无终的, 时间范围为 (2) 如果将周期信号第一个周期内的函数写成 ,则周期信 号 可以写成 (,)-∞∞(,)-∞∞()f t

(3)周期信号在任意一个周期内的积分保持不变,即有 1. 三角形式的傅立叶级数 周期信号 ,周期为1T ,角频率 11122T f π πω= = 该信号可以展开为下式三角形式的傅立叶级数。 []∑∞ =++ =++++++++=1 1 1 011121211110)sin()cos(...)sin()cos(... )2sin()2cos()sin()cos()(n n n n n t n b t n a a t n b t n a t b t a t b t a a t f ωωωωωωωω 式中各正、余弦函数的系数n n b a , 称为傅立叶系数,函数通过它 可以完全表示。 傅立叶系数公式如下 0()() n f t f t nT ∞ =-∞ = -∑ ()()()a T b T T a b f t dt f t dt f t dt ++= =? ? ?f t ()

将下列各周期函数展开成傅里叶级数(下面给出函数在一个...

习题11-8 1. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式): (1))2 12 1(1)(2<≤--=x x x f ; 解 因为f (x )=1-x 2为偶函数, 所以b n =0(n =1, 2, ? ? ?), 而 611)1(4)1(2/1221 0221 020=-=-=??dx x dx x a , ?-=21022/1c o s )1(2/12dx x n x a n π 2 2 121 2 )1(2c o s )1(4π πn x d x n x n +-= -=? (n =1, 2, ? ? ?), 由于f (x )在(-∞, +∞)内连续, 所以 ∑ ∞ =+-+=1 2 1 2 2c o s )1(1 1211)(n n x n n x f ππ , x ∈(-∞, +∞). (2)?? ? ???? <≤-<≤<≤-=1 21 12 1 0 101 )(x x x x x f ; 解 2 1)(1 2 121 1 11 -=-+==????--dx dx xdx dx x f a n , ?? ??-+==--1 2 121 1 11 c o s c o s c o s c o s )(x d x n x d x n x d x n x x d x n x f a n ππππ 2 s i n 2])1(1[122πππ n n n n +--= (n =1, 2, ? ? ?), dx x n xdx n xdx n x xdx n x f b n ?? ??-+==--1 2 1210 1 1 1 sin sin sin sin )(ππππ π ππ n n n 12 c o s 2+-= (n =1, 2, ? ? ?).

信号系统方波与三角波的傅里叶的分解与合成

实验<编号> 学号姓名分工 11350023 韦能龙编写代码 11350024 熊栗问题分析1.问题描述 实验二信号的合成与分解

2. 问题分析 此次主要是考察傅里叶的合成与分解,运用分解公式求出系数,运用合成公式合成函数,三角波和矩形波是很典型的连个列子,这个大作业只要分解出系数还有用合成公式,基本上就解决了问题了。 3. 实验代码与实验结果 (1)周期性矩形波的系数表示 ,.....7,5,3,1),2 sin(2==n npi kpi a k 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 2; W = 2*pi/T; f1 = 0*ones(1,length(t)); for n= -M:2:M a = 2/(n*pi)*sin(n*pi/2); f1 = f1+a*exp(j*n*W*t); end plot(t,f1) xlabel('t') ylabel('f(t)') title('M=1,7,29,99时的方波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off 图像: M =1时:

M= 7: M = 29

M = 99 (2)三角波的系数表示:

?? --== 1 1)()(1dt e t x dt e t x T a jkwt T jkwt k )2 (sin 42 12 2 20npi pi n a a n == 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 1; W = 2*pi/T; G1= 0*ones(1,length(t)); for n= -M:M if n==0 a =1/2; else a = 4/(n^2*pi^2)*(sin(n*pi/2)^2) ; end G1 = G1+a*exp(j*n*W*t); end G1 = G1-0.5; plot(t,G1) xlabel('t') ylabel('G(t)') title('M=1时的三角波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off M=1 时

傅里叶级数的推导

傅里叶级数的推导

傅里叶级数的推导 2016年12月14日09:27:47 傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数:

首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为: f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。 应该说,傅里叶是一个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。 于是乎,傅里叶首先对式5作如下变形: 这样,公式5就可以写成如下公式6的形式: 这个公式6就是通常形式的三角级数,接下来的任务就是要把各项系数an和bn 及a0用已知函数f(t)来表达出来。 2、三角函数的正交性:

最新傅里叶级数的数学推导

傅里叶级数的数学推 导

傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin

和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数: 首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为:f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即

傅里叶级数的推导

傅里叶级数的推导 2016年12月14日09:27:47 傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数:

首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为: f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。 应该说,傅里叶是一个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。 于是乎,傅里叶首先对式5作如下变形: 这样,公式5就可以写成如下公式6的形式: 这个公式6就是通常形式的三角级数,接下来的任务就是要把各项系数an和bn 及a0用已知函数f(t)来表达出来。 2、三角函数的正交性:

傅里叶级数的数学推导

傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程:

1、把一个周期函数表示成三角级数: 首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为:f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。 应该说,傅里叶是一个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。 于是乎,傅里叶首先对式5作如下变形: 这样,公式5就可以写成如下公式6的形式:

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开: 1. 三角形式: 周期信号()f t ,周期T ,基波频率12w T π=, 所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞ ==++∑ 其中:202 1()T T a f t dt T -=? 2122()cos T T n a f t nw tdt T -=? 212 2()sin T T n b f t nw tdt T -=? 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式: 011 ()cos()n n n f t c c nw t ?∞ ==++∑ 其中:00c a = n c = n n n b tg a φ=- (3)物理意义: (4)幅度谱和相位谱 2. 指数形式: 完备正交函数集 :复指数函数集{}1 jnw t e 1()jnw t n n f t F e ∞ =-∞ = ∑ 其中122 1()T jnw t T n F f t e dt T --=?

注意:(1)幅度谱和相位谱n j n n F F e φ= :偶谱和奇谱 与三角形式间的关系 (2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞ ==+∑ 0n b = 或011 ()cos()n n n f t c c nw t ?∞ ==++∑,00c a = ||n n c a = 0, 0,0n n n a a ?π>?=? ??=??

周期性函数分解的傅里叶级数

周期性函数分解的傅里叶级数 周期电压、电流等都可以用一个周期函数表示,即 210),()(、、 =+=k kt t f t f 式中T 是周期函数的周期,且 210、、 =k 如果给定的周期函数在有限的区间内,只有有限个第一类间断点和有限个极大值和极小值,那么就可以展开成一个收敛的级数(三角级数) 设给定的周期函数)(t f ,则)(t f 可展开成 ) ()(1)sin cos (sin cos )2sin 2cos ()sin cos ()(1022110 ∑∞ =++=+++++++=k k k k k t k b t k a a t k b t k a t b t a t b t a a t f ωωωωωωωω 上式中的系数,可按下列公式计算: ????? ?? ? - - -= ====== = π ππ π ππωωπ ωωπωωωπ ωωπω) (sin )(1 ) (sin )(1sin )(2)(cos )(1 ) (cos )(1cos )(2)(1 )(1 20 020 00 22 0t td k t f t td k t f tdt k t f T b t td k t f t td k t f tdt k t f T a dt t f T dt t f T a T k T k T T T )(2 这些公式的对导,主要的依据是利用三角函数的定积分的特点。 设m.n 是任意整数,则下列定积分成立: ?=π 200 sin mxdx ? =π 20 cos mxdx ?=π 200cos sin nxdx mx , n m ≠ ?=π 200 sin sin nxdx mx , n m ≠ ? =π 200cos cos nxdx mx , n m ≠ ? =π π 20 2)(sin dx mx ,

方波正弦波三角波转换器

毕业论文综合实践报告 第一章、系统的组成及工作原理 1.1系统组成 本设计的方波—三角波转换电路由同相滞回比较电路和积分电路两部分组成。 图1—1 方波三角波发生电路 三角波正弦波转换电路由滤波电路完成。 题目 设计制作一个产生方波-三角波-正弦波函数转换器 内容及要求 1 输出波形频率范围为0.02Hz~20kHz 且连续可调; 2 正弦波幅值为±2V ; 3 方波幅值为2V ; 4 三角波峰-峰值为2V ,占空比可调; 5 设计电路所需的直流电源可用实验室电源。 摘要 波形发生器已经越来越广泛的运用到我门的日常生活、航空航天、医疗技术地理气象检测等等科学领域。随着科技的进步和社会的发展,单一的波形发生器已经不能满足人们的要求。为了能够更好的掌握在书本所学到的相关知识,以备以后在工作中运用所需,们今天设计的正是多种波形发生器。 同相滞回比较电路 积分电路 三角波

图1—2 正弦波发生电路 1.2工作原理 本文所设计的电路是通过集成运算放大器长生不同的波形,先通过同相滞回比较电路产生方波,然后方波通过积分电路转换成三角波,最后由滤波电路将三角波转换成正弦波,从而完成波形的转换。 角波发生电路是通过R 1调节方波的幅值,R 2、R 3调节方波的频率,R 4调节三角波 的峰峰值R 5调节三角波的占空比。 三角波输入滤波电路后通过滤波作用将三角波转换成正弦波,输出正弦波的幅值由R 6、R 7、R 8调节. 第二章、电路方案设计 方案一: 方案一电路由方波—三角波转换电路和三角波—正弦波转换电路组成。 2.1、方波—三角波转换电路如图 3.1所示。 该电路由同相滞回比较电路和积分电路组成。滞回比较器输出电压U 01在t 0时刻由-Uz 跃变为+Uz(为第一暂态),此时积分电路进行反向积分,输出电压u 0呈线性下降,当u 0下降到滞回比较器的阈值电压-U T 时即t 1时刻,滞回比较器的输出的电压U 01从+Uz 跃变到-Uz (为第二暂态)。此后,积分电路进行正向积分,u 0呈线性上升,当u 0上升到滞回比较器的阈值电压+U T 时即t 2时刻,u 01从-Uz 又跃变回到+Uz ,即返回第一暂态,电路又开始反向积分。如此周而复始,产生振荡。 三角波 滤波电路 正弦波

傅里叶级数

傅里叶级数 诀窍就在于从“几何”的角度来看待傅里叶级数。当我们把一个周期函数表达成傅里叶级数时,其实我们只是在做一个动作,那就是把函数“投影”到一系列由三角函数构成的“坐标轴”上。 1.什么是投影 我们先来复习什么是投影吧。考虑一个简单的二维平面的例子。如下图所示,给定两个向量 u 和 v ,我们从 u 的末端出发作到 v 所在直线的垂线,得到一个跟 v 同向的新向量 p 。这个过程就称作 u 到 v 所在直线的投影,得到的新向量 p 就是 u 沿 v 方向的分量。图中的系数 c 是 p 跟 v 的比例,也就是 u 在 v 轴上的“坐标”。我们可以用尺规作图来完成投影这个动作,问题是:如果给定的向量 u 和 v 都是代数形式的,我们怎么用代数的方法求 c ? 我相信只要有基本线性代数知识的同学都可以轻松解决这个问题。我们知道 u-cv这个向量是“正交”于 v 的,用数学语言表达就是(u-cv)T v=0。我们马上就可以得到 c 的表达式如下。 (1) 2.向量在一组正交基上的展开

在讲傅里叶级数之前,我们还需引进线性代数中“正交基”的概念。如果这个概念你觉得陌生,就把它想成是互相垂直的“坐标轴”。回到刚才这个例子,如下图所示,现在我们引进一组正交基 {v1,v2},那么 u 可以展开成以下形式 (2) 从图上来看,(2)式其实说的是我们可以把 u“投影”到 v1 和 v2 这两个坐标轴上,c1 和 c2 就是 u 的新“坐标”。问题是:我们怎么求 c1 和 c2 呢?你会说,我们可以(2)式两边同时乘以 v1 或 v2,然后利用它们正交的性质来求 c1,c2。没错,数学上是这么做的。但是利用之前关于投影的讨论,我们可以直接得出答案,直接利用(1)式就可以得到如下的表达式: (3) 3.傅里叶级数的几何意义 现在我们已经明白一件事情了:如果想把一个向量在一组正交基上展开,也就是找到这个向量沿每条新“坐标轴”的“坐标”,那么我们只要把它分别投影到每条坐标轴上就好了,也就是把(1)式中的 v 换成新坐标轴就好了。说了半天,这些东西跟傅里叶级数有什么关系?我们先回忆一下傅里叶级数的表达式。给定一个周期是 2l 的周期函数 f(x),它的傅里叶级数为:

第一章周期三角波的傅里叶级数

例题:求下图所示周期性三角波 x(t)的三角函数形式傅里叶级数,其中周期 为 T ,幅值为A 。 解:在x(t )的一个周期中,x(t)可表示为 7 (J x(t)二 由于x(t)为偶函数,故正弦分量幅值 b ^ 0 常值分量 a ^ = — To/2 x (t)dt =丄1 T A = '

1 5 71 而余弦分量幅值为 2 T o /2 2 T o /2 2A x(t)cos n o tdt 2(A t)cos n o tdt T o "八 T o o 、 T o ' 4A ^ 2A 2(cosn -1) = n 二 4 A sin 2 n 2 2 31 n =1,3,5 丄 展开式为 x(t)=- 2 n 二 2,4,6,L 警(cos o t 32 COS3 O' 1 2cos5 0t L )

2 4A (a)幅值频谱图 例题:求下图所示周期性三角波x(t)的复指数函数形式 傅里叶级数,其中周 期为 T o ,幅值为A 。 4A 3V 4A 4A 7V … ―1 ---------- ? 7&>0 … (b)相位频谱图

x(t) 解:方法一: 在x(t)的一个周期中,x(t)可表示为r A T A t ( 0< t < 0) T o 2 2 x(t)= A - A t (0 w t w —°) % 2 i 2) QO x(tp C n e jn o t n = 0厂1厂2」ll n 二一::

方法二: 在x(t) 的一个周期中,x(t)可表示为 A t (?互 < t w 0) T o 2 V 2 x(t)二 I A T A t (0 < t w 』) T o 2 2 □0 1 T °/2 T o -T o /2 x(t)e jn 0t dt

连续周期性时间信号的傅里叶级数

实验三连续周期性时间信号的傅里叶级数 一、实验目的: 1. 进一步掌握MATLAB子函数的表示方法 2. 深刻理解傅里叶级数的信号分解理论及收敛性问题 3. 理解周期性信号的频谱特点。 二、实验原理 傅里叶级数 设有连续时间周期信号,它的周期为T,角频率,且满足狄里赫利条 件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。傅里叶级数有三角形式和指数形式两种。 1. 三角形式的傅里叶级数: 式中系数,称为傅里叶系数,可由下式求得: [ 2. 指数形式的傅里叶级数: 式中系数称为傅里叶复系数,可由下式求得: 周期信号频谱具有三个特点: (1)离散性,即谱线是离散的; (2)谐波性,即谱线只出现在基波频率的整数倍上; (3)收敛性,即谐波的幅度随谐波次数的增高而减小。

周期信号的MATLAB表示 周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。在Matlab中有多种进行数值积分运算的方法,我们采用quadl函数,它有两种其调用形式。 (1) y=quadl(‘func’, a, b)。其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。 (2) y=quadl(@myfun, a, b)。其中“@”符号表示取函数的句柄,myfun表示所定义函数的文件名。 例: 用MATLAB计算脉冲宽度T1 = 2;周期T = 4的周期性脉冲信号的复傅里叶级数,分别画出N = -2:2, -10:10, -50:50, -200:200的傅里叶级数展开及合成,观察吉普斯效应。画出T = 4, T =8下的双边谱 A.首先创建一个子函数singRect(t, T1),表示单个脉冲信号,时间为t,宽度为T1。function y = singRect(t, T1) y = (abs(t) <= T1); end B.创建傅里叶积分的被积子函数 function y = rectExp(t, k, w) y = (abs(t) <= 1) .* exp(-1j*k*w*t); end C.创建子函数用于傅里叶级数计算及合成 function [x, ak] = fourierSeries(N, t) T1 = 1; T = 4; w = 2 * pi/T; ak = zeros(1, 2 * N + 1); for i = 1:2*N+1 %傅里叶分解,计算傅里叶系数ak ak(i) = quadl(@(t)fsInt(t, i - N - 1, w, T1), -2, 2)/T; end; x = 0; for i = 1:2*N + 1 %傅里叶级数合成 x = x + ak(i) * exp(1j*(i - N - 1)*w*t); end end D.创建main函数,计算不同N下的傅里叶级数及合成。 T1 = 1; T = 4; t = -T/2:0.001:T/2; figure, subplot 221, N = 2; [x, ak] = fourierSeries(N, t); plot(t, singRect(t, T1), 'k');

周期信号的傅里叶级数

《信号、系统与信号处理实验I》 实验报告 实验名称:周期信号的傅里叶级数 姓名:韩文草 学号:15081614 专业:通信工程 实验时间:2016.11.7 杭州电子科技大学 通信工程学院

一、实验目的 二、实验内容

三、实验过程及实验结果 1.1 t = 0:0.02:2*pi; %0-2π时间间隔为0.01 y = zeros(10, max(size(t))); %10*629(t的长度)的矩阵 x = zeros(10, max(size(t))); for k = 1:2:9 %奇次谐波1,3,5,7,9 x1 = 3*sin(k * t)/k; %各次谐波正弦分量 x(k,:) = x(k,:) + x1; %x第k(1,3,5,7,9)行存放k次谐波的629个值y((k+1)/2,:) = x(k,:); %矩阵非零行向量移至1-5行 subplot(7,1,(k+1) /2); plot(t,x(k,:)); end subplot(2,1,1); plot(t, y(1:5,:)); %绘制y矩阵中1-5行随时间波形 grid; halft = ceil(length(t)/2); %行向量长度减半(由对称前后段一致)subplot(2,1,2); %绘制三维图形:矩阵y中全部行向量的一半 mesh(t(1:halft), [1:10], y(:,1:halft));

1.2 t = -4.5 : 0.001 : 5.5; t1 = -4.499 : 0.001 : 5.5; x = [ones(1,1000) , zeros(1,1000)]; x = [x , x , x , x , x]; subplot(1 , 2 , 1); plot(t1 , x , 'b','linewidth', 1.5); axis([-4.5 , 5.5 , -0.5 , 1.5]); N = 10; c0 = 0.5; f1 = c0 * ones(1 , length(t)) for n = 1:N f1 = f1 + cos(pi * n * t)*sinc(n/2); end subplot(1,2,2); plot(t , f1 , 'r' , 'linewidth', 1.5); axis([-4.5, 5.5, -0.5, 1.5]);

【免费下载】傅里叶级数的数学推导

、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

第一章 周期三角波的傅里叶级数

例题:求下图所示周期性三角波()x t 的三角函数形式傅里叶级数,其中周期为0 T ,幅值为A 。 解:在()x t 的一个周期中,()x t 可表示为 0000(0)22()(0)22T A A t t T x t T A A t t T ?+-???=???-??≤≤≤≤ 由于()x t 为偶函数,故正弦分量幅值0=n b 。 常值分量 11)(1202 /2/000 A A T dt t x T a T T =???==?-

而余弦分量幅值为 000/2/200/20000 2222222222()cos d 2()cos d 41,3,5,24(cos 1)sin 20 2,4,6,T T n T A a x t n t t A t n t t T T T A n n A A n n n n n ωωπ-==-?=?ππ?=--==?ππ??=???L L 展开式为 000222411()(cos cos3cos5)235A A x t t t t ωωω=++++πL

(a) 幅值频谱图 (b) 相位频谱图 例题:求下图所示周期性三角波()x t的复指数函数形式傅里叶级数,其中周期为0T,幅值为A。

解:方法一: 在()x t 的一个周期中,()x t 可表示为 0000(0) 22()(0)22T A A t t T x t T A A t t T ?+-???=???-?? ≤≤≤≤ 0()0,1,2,jn t n n x t C e n ω∞=-∞==±±∑L

方法二: 在()x t 的一个周期中,()x t 可表示为 0(0) 22()(0) 22T A A t t T x t T A A t t T ?+-???=???-??≤≤≤≤ ()000/2 /20 1()0,1,2,....... T jn t n T C x t e dt n T ω--==±±=?L 0()0,1,2,jn t n n x t C e n ω∞=-∞==±±∑L

周期信的傅里叶级数

计算机与信息工程学院实验报告 一、 实验目的 1、 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 3、 掌握用傅里叶级数进行谐波分析的方法。 4、 观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉 冲信号。 专业:通信工程 2013— 2014学年第二学期 年级/班级:2012级通信工程

实验仪器或设备 一台装有MATLAB勺计算机一台 三、设计原理 1.信号的时间特性与频率特性 信号可以表示为随时间变化的物理量,比如电压u(t )和电流i (t )等, 其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。 信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。无论是信号的时间特性还是频率特性都包含了信号的全部信息量。2?信号的频谱 信号的时间特性和频率特性是对信号的两种不同的描述方式。根据傅里叶级数原理,任意一个时域的周期信号f(t),只要满足狄利克莱 (Dirichlet) 条件,就可以将其展幵成三角形式或指数形式的傅里叶级数。例如,对于一个周期为T的时域周期信号f(t),可以用三角形式的傅里叶级数求出它的各次分量,在区间(t1,t1+T )内表示为

3?信号的时间特性与频率特性关系 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图 4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在 幅度--频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为

周期方形信号的傅里叶级数展开

周期方形信号的傅里叶级数展开 提出问题: 用有限项傅里叶级数展开逼近周期方波信号。 设周期为1的方波信号由以下函数给出 ?? ???<=>=-<>=<->=+=)2且1(1)1且0()0且1(1)x (x x x x x x x x x f 。 利用Matlab 软件符号运算及绘图功能,观察方形信号由有限项傅里叶级数展开式的合成情况。 问题背景: 在信号分析与处理,特别是工程中,对于周期信号的处理通常采用傅里叶级数展开来进行分析,即频率分析法。在实际信号处理过程中,可以借助Matlab 软件来模拟傅里叶级数对于信号的逼近情况。 知识基础: 周期函数的傅里叶级数展开,Matlab 软件 实验过程: 对于周期为2π函数()f t , 满足Dirichlet 条件,则可展为傅里叶级数 经过傅里叶变换得到: ?????????--- +- =∑∑∑∞∞∞111)) 1(2sin(21)2sin(2 1))1(2sin(2 1)(x k x k x k x f πππ 将级数展开式截断到有限项可用来逼近周期函数。利用Matlab 软件,编写程序如下: clear;clc;x=linspace(-1,2,3000); y=(x+1).*(x<0)+x.*(x>=0&x<1)+(x-1).*(x>=1&x<=2); y1=0; 01()(cos sin ).2n n n a f t a nt b nt ∞==++∑1()cos n a f t ntdt πππ -=?1()sin n b f t ntdt πππ-=? 0,1,2n =L 1,2,3n =L

for k=1:10; y1=y1+1/(k*pi)*sin(2*k*pi*(x+1)).*(x<0); end y1=1/2-y1; y2=0; for k=1:50; y2=y2+1/(k*pi)*sin(2*k*pi*x).*(x>=0 & x<1); end y2=1/2-y2;y3=0; for k=1:100; y3=y3+1/(k*pi)*sin(2*k*pi*(x-1)).*(x>=1&x<=2); end y3=1/2-y3;plot(x,y1)hold on plot(x,y2) plot(x,y3)plot(x,y,'r') axis equal 此图当x 属于(-1,0)时,傅里叶级数取了前10项 此图当x 属于(0,1)时,傅里叶级数取了前50项 此图当x 属于(1,2)时,傅里叶级数取了前100项 红线代表实际函数,蓝线代表傅里叶级数展开函数 拓展练习: 1. 可将周期2π扩展为任意周期T ,则此时方波信号的角频率2/T ωπ=,当方波信号 ()f t 满足Dirichlet 条件时,则可展为傅里叶级数: 01()(cos sin ).2n n n a f t a n t b n t ωω∞==++∑ 0 02()d T a f t t T =?

相关文档
相关文档 最新文档