文档库 最新最全的文档下载
当前位置:文档库 › 排列组合综合练习34题

排列组合综合练习34题

排列组合综合练习34题
排列组合综合练习34题

排列组合综合练习

第一组:

第1题:从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?

第2题:从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

第3题:9名乒乓球运动员,其中男5名,女4名,现在要选出4人进行混合双打训练,有多少种不同的分组方法?

第4题:6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种 B、120种 C、720种 D、1440种

第5题:12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有________种

第6题:3名教师分配到6个班里,各人教不同的班级,若每人教2个班,有多少种分配方法?

第7题:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )

(A)30种(B)90种(C)180种(D)270种

第8题:有相同的笔记本5本和相同的钢笔7支,分给12名学生,每人一件,共有多少种不同的分法?

第9题:7人排成一排照相,要求甲、乙、丙中的任意两人不相邻,有多少种不同的排法?第10题:7个节目,甲、乙、丙三个节目按给定顺序出现,有多少种排法?

第11题:甲、乙两人打乒乓球,谁先连胜2局谁赢.如果没有人连胜2局,则谁先胜3局谁赢.问打到决出输赢为止,共有多少种可能情况?

第12题:对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能?

第13题:设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?

第14题:将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。

第15题:设集合{}1,2,3,4,5I =。选择I 的两个非空子集A 和B ,要使B 中最小的数大于A 中最大的数,则不同的选择方法共有( )

A .50种

B .49种

C .48种

D .47种

第16题:两个实数集合},,,{10021a a a A ?=与},,,{5021b b b B ?=,若从A 到B 的映射f 使得B 中每个元素都有原像,且)()()(10021a f a f a f ≤?≤≤,则这样的映射共有多少个?

第17题:以正方体的顶点为顶点的四面体共有()

A、70种

B、64种

C、58种

D、52种

第18题:正方体8个顶点可连成多少对异面直线?

第19题:四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有()

A、150种

B、147种

C、144种

D、141种

第20题:如下图,在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?

第21题:两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.左右相邻,那么不同排法有_______种.

第22题:马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?

第23题:有五个小孩与五个大人,围坐一圆桌,小孩与小孩不相邻,大人与大人也不相邻,问坐法共有多少种?

第24题:3个白球,6个红球排成一个圆环,共有多少种排法?

第25题:求7)(z y x ++展开式中含223z y x 项的系数.

第26题:求方程10=++z y x 的非负整数解的个数.

第27题:某人要上一个10级的楼梯,每步可跨1级也可跨2级,共有多少种不同的走法?

第28题:某城市的街区有12个全等的矩形组成,其中实线表示马路,从A 到B 的最短路径有多少种?

A

B

第29题:下图中共有4×4=16个小方格,要把A,B,C,D四个不同的棋子放在方格里,每行和每列只能出现一个棋子,共有多少种放法?

第30题:如图,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色。则不同的涂色方法共有________种.

图1C

F B D

E A

第31题:在一个正六边形的六个区域栽种观赏植物,要求同一块种同一种植物,

相邻的两块种不同的植物,现有4种不同的植物供选择,则有 种栽植方法。

第32题:对一个边长互不相等的凸)3( n n 边形的边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边染相同的颜色.问:共有多少种不同的染色方法?

A B C

D

E

F

第九组:

第33题:已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为

},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,若

43214321b b b b a a a a +++<+++,则集合A 的取法共有 种.

第34题:已知“f e d c b a ,,,,,”为“6,5,4,3,2,1”的一个全排列.设x 是实数,若“0))((<--b x a x ”可推出“0))((<--d x c x 或0))((<--f x e x ”,则满足条件的排列“f e d c b a ,,,,,”共有多少个?

排列组合与二项式定理的综合练习题

排列组合与二项式定理的综合应用 1.已知(1+a x )(1+x)5的展开式中x 2 的系数为5,则a = (A )-4 (B )-3 (C )-2 (D )-1 2.若52345012345(23)x a a x a x a x a x a x -=+++++,则:等于() A .55 B .-l C .52 D .52- 3,则的值为 A . B .C 4.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有() A.36种 B.30种 C.24种 D.6种 5.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 6.()()8 x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 7.(x-2)6的展开式中3x 的系数为.(用数字作答) 8.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+a 3+…+a 8=________. 9.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数: (1)选其中5人排成一排; (2)排成前后两排,前排3人,后排4人; (3)全体排成一排,甲不站在排头也不站在排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻; (6)全体排成一排,甲、乙两人中间恰好有3人. 10.7个人排成一排,按下列要求各有多少种排法? (1)其中甲不站排头,乙不站排尾; (2)其中甲、乙、丙3人必须相邻; (3)其中甲、乙、丙3人两两不相邻; (4)其中甲、乙中间有且只有1人; (5)其中甲、乙、丙按从左到右的顺序排列. 2312420)()(a a a a a +-++16-16

初中排列组合公式例题.

复习排列与组合 考试内容:两个原理;排列、排列数公式;组合、组合数公式。 考试要求:1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。 2)理解排列、组合的意义。掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。 重点:两个原理尤其是乘法原理的应用。 难点:不重不漏。 知识要点及典型例题分析: 1.加法原理和乘法原理 两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。 例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法。 解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。 (2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。 (3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。 例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射? 分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。” 因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=125(种)。 2.排列数与组合数的两个公式 排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。 连乘积的形式阶乘形式 Anm=n(n-1)(n-2)……(n-m+1) = Cnm= 例3.求证:Anm+mAnm-1=An+1m 证明:左边= ∴等式成立。 评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形

完整版排列组合练习题及答案

排列组合》 一、排列与组合 1. 从9 人中选派2 人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1 名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有90 种不同的方案,那么男、女同学的人数是 A.男同学2人,女同学6人 B.男同学3人,女同学5人 C. 男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 A.12 个 B.13 个 C.14 个 D.15 个 5.用0,1 ,2,3,4,5 这六个数字, (1 )可以组成多少个数字不重复的三位数? (2)可以组成多少个数字允许重复的三位数? (3)可以组成多少个数字不允许重复的三位数的奇数? (4)可以组成多少个数字不重复的小于1000 的自然数? (5)可以组成多少个大于3000,小于5421 的数字不重复的四位数? 二、注意附加条件 1.6 人排成一列(1 )甲乙必须站两端,有多少种不同排法? (2)甲乙必须站两端,丙站中间,有多少种不同排法? 2. 由1 、2、3、4、5、6 六个数字可组成多少个无重复数字且是6 的倍数的五位数? 3. 由数字1 ,2,3,4,5,6,7 所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379 个数是 A.3761 B.4175 C.5132 D.6157 4. 设有编号为1、2、3、4、5 的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在

高中数学排列组合训练含答案

排列组合训练 一、单选题(共32题;共64分) 1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有() A. 5种 B. 4种 C. 9种 D. 20种 2.如图所示十字路口来往的车辆,如果不允许回头,共有不同的行车路线有( ) A. 24种 B. 16种 C. 12种 D. 10种 3.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于() A. B. C. D. 4.用10元、5元和1元来支付20元钱的书款,不同的支付方法的种数为() A. 3 B. 5 C. 9 D. 12 5.学校将位同学分别推荐到北京大学、上海交通大学、浙江大学三所大学参加自主招生考试,则每所大学至少推荐一人的不同推荐的方法种数为() A. B. C. D. 6.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种. A. 8 B. 15 C. 18 D. 30 7.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是() A. B. C. D. 8.从6名男生和4名女生中选出3名志愿者,其中恰有1名女生的选法共有() A. 28种 B. 36种 C. 52种 D. 60种 9.6个人分乘两辆不同的汽车,每辆汽车最多坐4人,则不同的乘车方法种数为() A. 40 B. 50 C. 60 D. 70 10.一个教室有五盏灯,一个开关控制一盏灯,每盏灯都能正常照明,那么这个教室能照明的方法有种() A. 24 B. 25 C. 31 D. 32 11.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有()

排列组合高考专项练习题

例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,C(2,10)*2*P(2,2),因而本题为180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。 (二)每一步是向上还是向右,决定了不同的走法。 (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,∴本题答案为:=56。 2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合 例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有____ __种。 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换,共12种。 例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有_______ _。 (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。 (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法。 (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。 例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。

排列组合公式

排列组合公式 1.分类计数原理(加法原理) 12n N m m m =+++ . 2.分步计数原理(乘法原理) 12n N m m m =??? . 3.排列数公式 m n A =)1()1(+--m n n n =!! )(m n n -.(n ,m ∈N*,且m n ≤). 注:规定1!0=. 4.排列恒等式 (1)1 (1)m m n n A n m A -=-+; (2) 1 m m n n n A A n m -= -; (3) 1 1m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A mA -+=+. (6) 1!22!33!!(1)!1n n n +?+?++?=+- . 5.组合数公式 m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 6.组合数的两个性质 (1)m n C =m n n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定 10 =n C . 7.组合恒等式 (1) 1 1m m n n n m C C m --+= ;

(2) 1 m m n n n C C n m -= -; (3) 1 1m m n n n C C m --= ; (4)∑=n r r n C =n 2; (5) 1121++++=++++r n r n r r r r r r C C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9) r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ . 8.排列数与组合数的关系 m m n n A m C =?! . 9.单条件排列 以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位” ①某(特)元必在某位有11--m n A 种; ②某(特)元不在某位有11---m n m n A A (补集思想)1 111---=m n n A A (着眼位置)1 1111----+=m n m m n A A A (着眼元素)种. (2)紧贴与插空(即相邻与不相邻) ①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种. ②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 1 1+-+-种. 注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的 一组互不能挨近的所有排列数有 k h h h A A 1+种. (3)两组元素各相同的插空

排列组合练习题

解排列组合的应用题要注意以下几点: 1仔细审题,判断是排列还是组合问题,要按元素的性质分类,按事件发生的过程进行分步。2深入分析,严密周详,注意分清是乘还是加,要防止重复和遗漏,辩证思维,多角度分析,全面考虑。 3对限制条件较复杂的排列组合问题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后用两个计数原理来解决。 4由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决方案是否完备,有无重复和遗漏,也可采用不同的方法求解。看看结果是否相同,在对排列组合问题分类时,分类标准应统一,否则易出现遗漏和重复。 基本规律 1,一大一小交替出现,首先考虑隔项数列; 2,由小到大再到小,必与指数有关; 3,注意观察是否平方/立方的变形(或者不同数的平方/立方相加/相减等);要求对以上前提篇的熟练运用 4,跳跃较大则考虑乘积/次方,跳跃较小则考虑差/二重差; 5,尝试把各数间差,及二重差列出,寻找规律; 6,尝试把各数变化成某平方式,看是否存在规律; 数算部分 以下都是最基础的,原本以为不用写上来。可是今天看到还是有人不会。所以加上。 一、立方和公式: a立方+b立方=(a+b)(a平方-ab+b平方) a立方-b立方=(a-b)(a平方+ab+b平方) 二、特殊数列前N项和 1+2+3+4+5+6……+n=n(n+1)/2 2+4+6+8+10+……+2n=n(n+1) 1+3+5+7+……+(2n-1)=n平方 1平方+2平方+3平方+4平方+……+n平方=n(n+1)(2n+1)/6 1立方+2立方+3立方+4立方+……+n立方=n^2(n+1)^2/4 三、等差数列求和公式: (1)Sn=n(a1+an)/2 (2) Sn=na1+n(n-1)d/2 例1,六人按下列要求站一横排,分别有多少种不同的站法? (1)甲不站两端; (2)甲、乙必须相邻; (3)甲、乙不相邻; (4)甲、乙之间间隔两人; (5)甲、乙站在两端; (6)甲不站左端,乙不站右端. 例2, 男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法? (1)男运动员3名,女运动员2名;

排列组合培优训练

排列组合强化训练 1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为( ) A.120 B.324 C.720 D.1280 2.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( ) A.40 B.74 C.84 D.200 3.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有( ) A.18个B.15个C.12个D.9个 4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是( ) A.512 B.968 C.1013 D.1024 5.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是( ) A.36 B.32 C.24 D.20 6.现有一个碱基A,2个碱基C,3个碱基G,由这6个碱基组成的不同的碱基序列有( ) A.20个B.60个C.120个D.90个 7.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是( ) A.2男6女B.3男5女C.5男3女D.6男2女 8.已知集合A={1,2,3},B={4,5,6},从A到B的映射f(x),B中有且仅有2个元素有原象,则这样的映射个数为( ) A.18 B.9 C.24 D.27 9.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有( ) A.24种B.36种C.60种D.66种10.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的个数为( ) A.8 B.9 C.10 D.11 11.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有( ) A.36种B.42种C.50种D.72种 12.设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子, 现将这五个球投放到五个盒子内,要求每个盒内放1个球,并且恰好有两个球的编号与盒子编号相同,则这样的投放方法总数为( ) A 60 B 48 C 30 D 20 13.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有_______. 14. 将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

排列组合公式和各类例题

基本计数原理 ⑴加法原理和分类计数法 ⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方 法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。 ⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办 法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。 ⒊分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的 具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。 ⑵乘法原理和分步计数法 ⒈乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法, 做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。 ⒉合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务; 各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。 3.与后来的离散型随机变量也有密切相关。 4例题 【例1】从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有多少个? 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴2b=a+c,可知b由a,c决定, 又∵2b是偶数,∴a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,A(10,2)*2=90*2,因而本题为180。 【例2】某城市有4条东西街道和6条南北的街道,街道之间的间距相同,若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入: (一)从M到N必须向上走三步,向右走五步,共走八步; (二)每一步是向上还是向右,决定了不同的走法; (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右; 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数。 ∴本题答案为:C(8,3)=56。 分析

(完整版)排列组合练习题___(含答案)

排列组合练习题 1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种 不同的选法。 2、8名同学争夺3项冠军,获得冠军的可能性有种。 3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安 排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。 4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天, 要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。 5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人) 得2本,其它每人一本,则共有种不同的奖法。 6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。 7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成 一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。 8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有 种陈列方法。 9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。 10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是 11、6名男生6名女生排成一排,要求男女相间的排法有种。 12、4名男生和3名女生排成一排,要求男女相间的排法有种。 13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有 种排法。 14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。

15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。 若4个空位中恰有3个空位连在一起,有种坐法。 16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5 不能排在一起,则不同的5位数共有个。 17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变, 那么不同的排法有种。 18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒, 乙不能跑第四棒,共有种参赛方案。 19、现有6名同学站成一排:甲不站排头也不站排尾有种不同的排法甲 不站排头,且乙不站排尾有种不同的排法 20、有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共 有种。 21、以正方体的顶点为顶点的四面体共有个。 22、由1、2、3、4、5、6组成没有重复数字的六位数,其中个位数字小于十位数字, 十位数字小于百位数字,则这样的数共有个。 23、A,B,C,D,E五人站一排,B必须站A右边,则不同的排法有种。 24、晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2 个节目 插入原节目单中,则不同的插法有种。 25、书架上放有6本书,现在要再插入3本书,保持原有书的相对顺序不变,则不 同的放法有种。 26、9个子高低不同的人排队照相,要求中间的最高,两旁依次从高到矮的排法共 有种。 27、书架上放有5本书(1~5册),现在要再插入3本书,保持原有的相对顺序不变, 有种放法。 28、12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调 整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 29、有五项工作,四个人来完成且每人至少做一项,共有种分配方法。

排列组合练习题及答案精选

排列组合习题精选 一、纯排列与组合问题: 1. 从9人中选派2人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B. 男同学3人,女同学5人 C.男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有() A.12个 B.13 个 C.14 个 D.15 个 答案:1、 2 2 72 3 、选 B. 设男生n 2 1 3 2 2 9 9 n 8 n3 。、mn m C 362、A 人,则有C C A 904 A A58 选 C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为() A.720 B.1440 C.2880 D.3600 答案:1. 2 4 3 2 5 2 4 3 2 5 AA 48(2)选BAAA1440 三、不相邻问题: 1. 要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法? 1

排列组合典型例题

排列组合典型例题 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

排列组合练习题12333333

排列,组合 一、选择题 1、在一个盒子里有6只不同的圆珠笔,从中任意抽取3枝,则有多少种不同的取法( ) A 15 B 20 C 120 D 6 2、现有4件不同款式的上衣与3件不同颜色的长裤,如果一条长裤和一件上衣配成一套, 则不同选法是( ) A 7 B 64 C 12 D 81 3、集合{}2,1,0,1-=M 中任取两个不同元素构成点的坐标,则共有不同点的个数是( ) A 4 B 6 C 9 D 12 4、五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( ) A 1444C C 种 B 1444 C A 种 C 44 C 种 D 44A 种 5、某班有三个小组,分别有12人、10人和9人组成,现要选派不属于同一组的两人参加班际之间的活动,不同的选派方法共有 种. A 318 B 465 C 636 D 930. 6、4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( ) A 48 B 36 C 24 D 18 7、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任), 要求这3位班主任中男、女教师都要有,则不同的选派方案共有( ) A 210种 B 420种 C 630种 D 840种 8、从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 A 140种 B 120种 C 35种 D 34种 D 9种 二、填空题 9、以正方体的顶点为顶点的三棱锥的个数为_____________ 10、100件产品中恰好有98件合格产品,从中任意抽取2件,抽到次品的抽法有____________种 11.由0,1,2,3,4这5个数字组成的无重复数字的三位数中,偶数有___________个 12、从集合{ P ,Q ,R ,S}与{0,1,2,3,4,5,6,7,8,9}中各任限2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是________.(用数字

排列组合计算公式

1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

排列组合的综合运用练习题含答案

《排列组合的综合运用》练习题 一、选择题: 1.0198991299100C C C C ++???++式子等于( ) A.5050 B.16800 C.57600 D.8453200 {}211123111111A B.1 C.2 D.2,3,4,5222x x x x C C x |x x N |x x |x --++

排列组合题以及公式

排列与组合的共同点是从n个不同的元素中,任取m(m≤n)个元素,而不同点是排列是按照一定的顺序排成一列,组合是无论怎样的顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志.下面通过实例来体会排列与组合的区别. 【例题】判断下列问题是排列问题还是组合问题?并计算出种数. (1)高二年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二数学课外活动小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2、3、5、7、11、13、17、19八个质数:①从中任取两个数求它们的商,可以有多少个不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲、乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 【思考与分析】(1)①由于每两人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关,是排列;②由于每两人互握一次手,甲与乙握手、乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. 解:(1)①是排列问题,共通了=110(封);②是组合问题,共需握手==55(次)(2)①是排列问题,共有=10×9=90(种)不同的选法;②是组合问题,共=45(种)不同的选法; (3)①是排列问题,共有=8×7=56(个)不同的商;②是组合问题,共有=28(个)不同的积; (4)①是排列问题,共有=56(种)不同的选法;②是组合问题,共有=28(种)不同的选法. 【反思】区分排列与组合的关键是“有序”与“无序”. 排列与组合的概念与计算公式 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式

排列组合练习题及答案汇编

《排列组合》 一、排列与组合 1.从9人中选派2人参加某一活动,有多少种不同选法? 2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是 A.男同学2人,女同学6人 B.男同学3人,女同学5人 C. 男同学5人,女同学3人 D. 男同学6人,女同学2人 4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 A.12个 B.13个 C.14个 D.15个 5.用0,1,2,3,4,5这六个数字, (1)可以组成多少个数字不重复的三位数? (2)可以组成多少个数字允许重复的三位数? (3)可以组成多少个数字不允许重复的三位数的奇数? (4)可以组成多少个数字不重复的小于1000的自然数? (5)可以组成多少个大于3000,小于5421的数字不重复的四位数? 二、注意附加条件 1.6人排成一列(1)甲乙必须站两端,有多少种不同排法? (2)甲乙必须站两端,丙站中间,有多少种不同排法? 2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数? 3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是 A.3761 B.4175 C.5132 D.6157

4. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有 A.30种 B.31种 C.32种 D.36种 5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是 A.230种 B.236种 C.455种 D.2640种 6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有 A.240种 B.180种 C.120种 D.60种 7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 。 三、间接与直接 1.有4名女同学,6名男同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不同选法? 2. 6名男生4名女生排成一行,女生不全相邻的排法有多少种? 3.已知集合A 和B 各12个元素,A B 含有4个元素,试求同时满足下列两个条件的集合C 的个数:(1)()C A B ?且C 中含有三个元素;(2)C A ≠?,?表示空集。 4. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数 A.60种 B.80种 C.120种 D.140种 5.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种? 6. 以正方体的8个顶点为顶点的四棱锥有多少个? 7. 对正方体的8个顶点两两连线,其中能成异面直线的有多少对? 四、分类与分步 1.求下列集合的元素个数. (1){(,)|,,6}M x y x y N x y =∈+≤; (2){(,)|,,14,15}H x y x y N x y =∈≤≤≤≤.

相关文档
相关文档 最新文档