文档库 最新最全的文档下载
当前位置:文档库 › 支持向量机SMO算法汇总

支持向量机SMO算法汇总

支持向量机SMO算法汇总
支持向量机SMO算法汇总

支持向量机SMO算法

1 简介

支持向量机基本上是最好的有监督学习算法了。最开始接触SVM是去年暑假的时候,老师要求交《统计学习理论》的报告,那时去网上下了一份入门教程,里面讲的很通俗,当时只是大致了解了一些相关概念。这次斯坦福提供的学习材料,让我重新学习了一些SVM知识。我看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的。这份材料从前几节讲的logistic回归出发,引出了SVM,既揭示了模型间的联系,也让人觉得过渡更自然。

2 重新审视logistic回归

Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用logistic函数(或称作sigmoid 函数)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率。

形式化表示就是

假设函数

其中x是n维特征向量,函数g就是logistic函数。

的图像是

可以看到,将无穷映射到了(0,1)。

而假设函数就是特征属于y=1的概率。

当我们要判别一个新来的特征属于哪个类时,只需求,若大于0.5就是y=1的类,反之属于y=0类。

再审视一下,发现只和有关,>0,那么,g(z)只不过是用来映

射,真实的类别决定权还在。还有当时,=1,反之=0。如果我们只从

出发,希望模型达到的目标无非就是让训练数据中y=1的特征,而是y=0的特征

。Logistic回归就是要学习得到,使得正例的特征远大于0,负例的特征远小于0,

强调在全部训练实例上达到这个目标。

图形化表示如下:

中间那条线是,logistic回顾强调所有点尽可能地远离中间那条线。学习出的结果也就

中间那条线。考虑上面3个点A、B和C。从图中我们可以确定A是×类别的,然而C我们是不太确定的,B还算能够确定。这样我们可以得出结论,我们更应该关心靠近中间分割线的点,让他们尽可能地远离中间线,而不是在所有点上达到最优。因为那样的话,要使得一部分点靠近中间线来换取另外一部分点更加远离中间线。我想这就是支持向量机的思路和logistic回归的不同点,一个考虑局部(不关心已经确定远离的点),一个考虑全局(已经远离的点可能通过调整中间线使其能够更加远离)。这是我的个人直观理解。

3 形式化表示

我们这次使用的结果标签是y=-1,y=1,替换在logistic回归中使用的y=0和y=1。同时将

替换成w和b。以前的,其中认为。现在我们替换

为b,后面替换为(即)。这样,我们让

,进一步。也就是说除了y由y=0变为y=-1,

只是标记不同外,与logistic回归的形式化表示没区别。再明确下假设函数

上一节提到过我们只需考虑的正负问题,而不用关心g(z),因此我们这里将g(z)做一个简化,将其简单映射到y=-1和y=1上。映射关系如下:

4 函数间隔(functional margin)和几何间隔(geometric margin)

给定一个训练样本,x是特征,y是结果标签。i表示第i个样本。我们定义函数间隔如下:

可想而知,当时,在我们的g(z)定义中,,的值实际上就是

。反之亦然。为了使函数间隔最大(更大的信心确定该例是正例还是反例),当

时,应该是个大正数,反之是个大负数。因此函数间隔代表了我们认为特征是正例还是反例的确信度。

继续考虑w和b,如果同时加大w和b,比如在前面乘个系数比如2,那么所有点的函数间隔都会增大二倍,这个对求解问题来说不应该有影响,因为我们要求解的是

,同时扩大w和b对结果是无影响的。这样,我们为了限制w和b,可能需要加

入归一化条件,毕竟求解的目标是确定唯一一个w和b,而不是多组线性相关的向量。这个归一化一会再考虑。

刚刚我们定义的函数间隔是针对某一个样本的,现在我们定义全局样本上的函数间隔

说白了就是在训练样本上分类正例和负例确信度最小那个函数间隔。

接下来定义几何间隔,先看图

假设我们有了B点所在的分割面。任何其他一点,比如A到该面的距离以表示,假设B就是A在分割面上的投影。我们知道向量BA的方向是(分割面的梯度),单位向量是

。A点是,所以B点是x=(利用初中的几何知识),带入

得,

进一步得到

实际上就是点到平面距离。

再换种更加优雅的写法:

当时,不就是函数间隔吗?是的,前面提到的函数间隔归一化结果就是几何间隔。他

们为什么会一样呢?因为函数间隔是我们定义的,在定义的时候就有几何间隔的色彩。同样,同

时扩大w和b,w扩大几倍,就扩大几倍,结果无影响。同样定义全局的几何间隔

5 最优间隔分类器(optimal margin classifier)

回想前面我们提到我们的目标是寻找一个超平面,使得离超平面比较近的点能有更大的间距。也就是我们不考虑所有的点都必须远离超平面,我们关心求得的超平面能够让所有点中离它最近的点具有最大间距。形象的说,我们将上面的图看作是一张纸,我们要找一条折线,按照这条折线折叠后,离折线最近的点的间距比其他折线都要大。形式化表示为:

这里用=1规约w,使得是几何间隔。

到此,我们已经将模型定义出来了。如果求得了w和b,那么来一个特征x,我们就能够分类了,称为最优间隔分类器。接下的问题就是如何求解w和b的问题了。

由于不是凸函数,我们想先处理转化一下,考虑几何间隔和函数间隔的关系,,我们改写一下上面的式子:

这时候其实我们求的最大值仍然是几何间隔,只不过此时的w不受的约束了。然而这个时候目标函数仍然不是凸函数,没法直接代入优化软件里计算。我们还要改写。前面说到同时扩大w和b对结果没有影响,但我们最后要求的仍然是w和b的确定值,不是他们的一组倍数

值,因此,我们需要对做一些限制,以保证我们解是唯一的。这里为了简便我们取。这

样的意义是将全局的函数间隔定义为1,也即是将离超平面最近的点的距离定义为。由于求

的最大值相当于求的最小值,因此改写后结果为:

这下好了,只有线性约束了,而且是个典型的二次规划问题(目标函数是自变量的二次函数)。

代入优化软件可解。

到这里发现,这个讲义虽然没有像其他讲义一样先画好图,画好分类超平面,在图上标示出间隔那么直观,但每一步推导有理有据,依靠思路的流畅性来推导出目标函数和约束。

接下来介绍的是手工求解的方法了,一种更优的求解方法。

6 拉格朗日对偶(Lagrange duality)

先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题:

目标函数是f(w),下面是等式约束。通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为

L是等式约束的个数。

然后分别对w和求偏导,使得偏导数等于0,然后解出w和。至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w)的梯度与其他等式梯度的线性组合平行,因此他们之间存在线性关系。(参考《最优化与KKT条件》)

然后我们探讨有不等式约束的极值问题求法,问题如下:

我们定义一般化的拉格朗日公式

这里的和都是拉格朗日算子。如果按这个公式求解,会出现问题,因为我们求解的是最

小值,而这里的已经不是0了,我们可以将调整成很大的正值,来使最后的函数结果是负无穷。因此我们需要排除这种情况,我们定义下面的函数:

这里的P代表primal。假设或者,那么我们总是可以调整和来使得

有最大值为正无穷。而只有g和h满足约束时,为f(w)。这个函数的精妙之处在

于,而且求极大值。

因此我们可以写作

这样我们原来要求的min f(w)可以转换成求了。

我们使用来表示。如果直接求解,首先面对的是两个参数,而也是不等式约束,然后再在w上求最小值。这个过程不容易做,那么怎么办呢?

我们先考虑另外一个问题

D的意思是对偶,将问题转化为先求拉格朗日关于w的最小值,将和看作是

固定值。之后在求最大值的话:

这个问题是原问题的对偶问题,相对于原问题只是更换了min和max的顺序,而一般更换

顺序的结果是Max Min(X) <= MinMax(X)。然而在这里两者相等。用来表示对偶问题如下:

下面解释在什么条件下两者会等价。假设f和g都是凸函数,h是仿射的(affine,

)。并且存在w使得对于所有的i,。

在这种假设下,一定存在使得是原问题的解,是对偶问题的解。还有

另外,满足库恩-塔克条件(Karush-Kuhn-Tucker, KKT condition),该条件如下:

所以如果满足了库恩-塔克条件,那么他们就是原问题和对偶问题的解。让我们再次审视公式(5),这个条件称作是KKT dual complementarity条件。这个条件隐含了如果

,那么。也就是说,时,w处于可行域的边界上,这时才是起作

用的约束。而其他位于可行域内部(的)点都是不起作用的约束,其。这个KKT双重补足条件会用来解释支持向量和SMO的收敛测试。

这部分内容思路比较凌乱,还需要先研究下《非线性规划》中的约束极值问题,再回头看看。KKT的总体思想是将极值会在可行域边界上取得,也就是不等式为0或等式约束里取得,而最优下降方向一般是这些等式的线性组合,其中每个元素要么是不等式为0的约束,要么是等式约束。对于在可行域边界内的点,对最优解不起作用,因此前面的系数为0。

7 最优间隔分类器(optimal margin classifier)

重新回到SVM的优化问题:

我们将约束条件改写为:

从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数,

也就是说这些约束式,对于其他的不在线上的点(),极值不会在他们所在

的范围内取得,因此前面的系数.注意每一个约束式实际就是一个训练样本。

看下面的图:

实线是最大间隔超平面,假设×号的是正例,圆圈的是负例。在虚线上的点就是函数间隔是

1的点,那么他们前面的系数,其他点都是。这三个点称作支持向量。构造拉格朗日函数如下:

注意到这里只有没有是因为原问题中没有等式约束,只有不等式约束。

下面我们按照对偶问题的求解步骤来一步步进行,

首先求解的最小值,对于固定的,的最小值只与w和b有关。对w和b分别求偏导数。

并得到

将上式带回到拉格朗日函数中得到,此时得到的是该函数的最小值(目标函数是凸函数)代入后,化简过程如下:

最后得到

由于最后一项是0,因此简化为

这里我们将向量内积表示为

此时的拉格朗日函数只包含了变量。然而我们求出了才能得到w和b。

接着是极大化的过程,

前面提到过对偶问题和原问题满足的几个条件,首先由于目标函数和线性约束都是凸函数,

而且这里不存在等式约束h。存在w使得对于所有的i,。因此,一定存在使

得是原问题的解,是对偶问题的解。在这里,求就是求了。

如果求出了,根据即可求出w(也是,原问题的解)。然后

即可求出b。即离超平面最近的正的函数间隔要等于离超平面最近的负的函数间隔。

关于上面的对偶问题如何求解,将留给下一篇中的SMO算法来阐明。

这里考虑另外一个问题,由于前面求解中得到

我们通篇考虑问题的出发点是,根据求解得到的,我们代入前式得到

也就是说,以前新来的要分类的样本首先根据w和b做一次线性运算,然后看求的结果是大

于0还是小于0,来判断正例还是负例。现在有了,我们不需要求出w,只需将新来的样本和训练数据中的所有样本做内积和即可。那有人会说,与前面所有的样本都做运算是不是太耗时

了?其实不然,我们从KKT条件中得到,只有支持向量的,其他情况。因此,我们只需求新来的样本和支持向量的内积,然后运算即可。这种写法为下面要提到的核函数(kernel)做了很好的铺垫。这是上篇,先写这么多了。

支持向量机(三)核函数

7 核函数(Kernels)

考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格。假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次

多项式来逼近这些样本点。那么首先需要将特征x扩展到三维,然后寻找特征和结果

之间的模型。我们将这种特征变换称作特征映射(feature mapping)。映射函数称作,在这个例子中

我们希望将得到的特征映射后的特征应用于SVM分类,而不是最初的特征。这样,我们需要将

前面公式中的内积从,映射到。

至于为什么需要映射后的特征而不是最初的特征来参与计算,上面提到的(为了更好地拟合)是其中一个原因,另外的一个重要原因是样例可能存在线性不可分的情况,而将特征映射到高维空间后,往往就可分了。(在《数据挖掘导论》Pang-Ning Tan等人著的《支持向量机》那一章有个很好的例子说明)

将核函数形式化定义,如果原始特征内积是,映射后为,那么定义核函数(Kernel)为

到这里,我们可以得出结论,如果要实现该节开头的效果,只需先计算,然后计算

即可,然而这种计算方式是非常低效的。比如最初的特征是n维的,我们将其映射到维,然

后再计算,这样需要的时间。那么我们能不能想办法减少计算时间呢?

先看一个例子,假设x和z都是n维的,

展开后,得

这个时候发现我们可以只计算原始特征x和z内积的平方(时间复杂度是O(n)),就等价与计

算映射后特征的内积。也就是说我们不需要花时间了。

现在看一下映射函数(n=3时),根据上面的公式,得到

也就是说核函数只能在选择这样的作为映射函数时才能够等价于映射后特征的内积。

再看一个核函数

对应的映射函数(n=3时)是

更一般地,核函数对应的映射后特征维度为。(求解方法参见https://www.wendangku.net/doc/d517297950.html,/question/16706714.html)。

由于计算的是内积,我们可以想到IR中的余弦相似度,如果x和z向量夹角越小,那么核函数

值越大,反之,越小。因此,核函数值是和的相似度。

再看另外一个核函数

这时,如果x和z很相近(),那么核函数值为1,如果x和z相差很大(),那么核函数值约等于0。由于这个函数类似于高斯分布,因此称为高斯核函数,也叫做径向基函数(Radial Basis Function 简称RBF)。它能够把原始特征映射到无穷维。

既然高斯核函数能够比较x和z的相似度,并映射到0到1,回想logistic回归,sigmoid函数可以,因此还有sigmoid核函数等等。

下面有张图说明在低维线性不可分时,映射到高维后就可分了,使用高斯核函数。

来自Eric Xing的slides

注意,使用核函数后,怎么分类新来的样本呢?线性的时候我们使用SVM学习出w和b,新来

样本x的话,我们使用来判断,如果值大于等于1,那么是正类,小于等于是负类。

在两者之间,认为无法确定。如果使用了核函数后,就变成了,是否先

要找到,然后再预测?答案肯定不是了,找很麻烦,回想我们之前说过的

只需将替换成,然后值的判断同上。

8 核函数有效性判定

问题:给定一个函数K,我们能否使用K来替代计算,也就说,是否能够找出一个,

使得对于所有的x和z,都有?

比如给出了,是否能够认为K是一个有效的核函数。

下面来解决这个问题,给定m个训练样本,每一个对应一个特征向量。

那么,我们可以将任意两个和带入K中,计算得到。I可以从1到m,j可以从1到m,这样可以计算出m*m的核函数矩阵(Kernel Matrix)。为了方便,我们将

核函数矩阵和都使用K来表示。

如果假设K是有效地核函数,那么根据核函数定义

可见,矩阵K应该是个对称阵。让我们得出一个更强的结论,首先使用符号来表示映射函数的第k维属性值。那么对于任意向量z,得

最后一步和前面计算时类似。从这个公式我们可以看出,如果K是个有效的核

函数(即和等价),那么,在训练集上得到的核函数矩阵K应该是半正定的()

这样我们得到一个核函数的必要条件:

K是有效的核函数==> 核函数矩阵K是对称半正定的。

可幸的是,这个条件也是充分的,由Mercer定理来表达。

Mercer定理表明为了证明K是有效的核函数,那么我们不用去寻找,而只需要在训练集上求

出各个,然后判断矩阵K是否是半正定(使用左上角主子式大于等于零等方法)即可。

许多其他的教科书在Mercer定理证明过程中使用了范数和再生希尔伯特空间等概念,但在特征是n维的情况下,这里给出的证明是等价的。

核函数不仅仅用在SVM上,但凡在一个模型后算法中出现了,我们都可以常使用

去替换,这可能能够很好地改善我们的算法。

9 规则化和不可分情况处理(Regularization and the

non-separable case)

我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。

看下面两张图:

可以看到一个离群点(可能是噪声)可以造成超平面的移动,间隔缩小,可见以前的模型对噪声非常敏感。再有甚者,如果离群点在另外一个类中,那么这时候就是线性不可分了。

这时候我们应该允许一些点游离并在在模型中违背限制条件(函数间隔大于1)。我们设计得到新的模型如下(也称软间隔):

引入非负参数后(称为松弛变量),就允许某些样本点的函数间隔小于1,即在最大间隔区间里面,或者函数间隔是负数,即样本点在对方的区域中。而放松限制条件后,我们需要重新调整

目标函数,以对离群点进行处罚,目标函数后面加上的就表示离群点越多,目标函数值越大,而我们要求的是尽可能小的目标函数值。这里的C是离群点的权重,C越大表明离群点对目标函数影响越大,也就是越不希望看到离群点。我们看到,目标函数控制了离群点的数目和程度,使大部分样本点仍然遵守限制条件。

模型修改后,拉格朗日公式也要修改如下:

这里的和都是拉格朗日乘子,回想我们在拉格朗日对偶中提到的求法,先写出拉格朗日公式(如上),然后将其看作是变量w和b的函数,分别对其求偏导,得到w和b的表达式。然后代入公式中,求带入后公式的极大值。整个推导过程类似以前的模型,这里只写出最后结果如下:

此时,我们发现没有了参数,与之前模型唯一不同在于又多了的限制条件。需要提醒的是,b的求值公式也发生了改变,改变结果在SMO算法里面介绍。先看看KKT条件的变化:

第一个式子表明在两条间隔线外的样本点前面的系数为0,离群样本点前面的系数为C,而支持向量(也就是在超平面两边的最大间隔线上)的样本点前面系数在(0,C)上。通过KKT条件可知,某些在最大间隔线上的样本点也不是支持向量,相反也可能是离群点。

10 坐标上升法(Coordinate ascent)

在最后讨论的求解之前,我们先看看坐标上升法的基本原理。假设要求解下面的优化问题:

这里W是向量的函数。之前我们在回归中提到过两种求最优解的方法,一种是梯度下降法,另外一种是牛顿法。现在我们再讲一种方法称为坐标上升法(求解最小值问题时,称作坐标下降法,原理一样)。

方法过程:

最里面语句的意思是固定除之外的所有,这时W可看作只是关于的函数,那么直

接对求导优化即可。这里我们进行最大化求导的顺序i是从1到m,可以通过更改优化顺序来使W能够更快地增加并收敛。如果W在内循环中能够很快地达到最优,那么坐标上升法会是一个很高效的求极值方法。

下面通过一张图来展示:

(完整版)支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机算法

支持向量机算法 [摘要] 本文介绍统计学习理论中最年轻的分支——支持向量机的算法,主要有:以SVM-light为代表的块算法、分解算法和在线训练法,比较了各自的优缺点,并介绍了其它几种算法及多类分类算法。 [关键词] 块算法分解算法在线训练法 Colin Campbell对SVM的训练算法作了一个综述,主要介绍了以SVM为代表的分解算法、Platt的SMO和Kerrthi的近邻算法,但没有详细介绍各算法的特点,并且没有包括算法的最新进展。以下对各种算法的特点进行详细介绍,并介绍几种新的SVM算法,如张学工的CSVM,Scholkopf的v-SVM分类器,J. A. K. Suykens 提出的最小二乘法支持向量机LSSVM,Mint-H suan Yang提出的训练支持向量机的几何方法,SOR以及多类时的SVM算法。 块算法最早是由Boser等人提出来的,它的出发点是:删除矩阵中对应于Lagrange乘数为零的行和列不会对最终结果产生影响。对于给定的训练样本集,如果其中的支持向量是已知的,寻优算法就可以排除非支持向量,只需对支持向量计算权值(即Lagrange乘数)即可。但是,在训练过程结束以前支持向量是未知的,因此,块算法的目标就是通过某种迭代逐步排除非支持向时。具体的做法是,在算法的每一步中块算法解决一个包含下列样本的二次规划子问题:即上一步中剩下的具有非零Lagrange乘数的样本,以及M个不满足Kohn-Tucker条件的最差的样本;如果在某一步中,不满足Kohn-Tucker条件的样本数不足M 个,则这些样本全部加入到新的二次规划问题中。每个二次规划子问题都采用上一个二次规划子问题的结果作为初始值。在最后一步时,所有非零Lagrange乘数都被找到,因此,最后一步解决了初始的大型二次规划问题。块算法将矩阵的规模从训练样本数的平方减少到具有非零Lagrange乘数的样本数的平方,大减少了训练过程对存储的要求,对于一般的问题这种算法可以满足对训练速度的要求。对于训练样本数很大或支持向量数很大的问题,块算法仍然无法将矩阵放入内存中。 Osuna针对SVM训练速度慢及时间空间复杂度大的问题,提出了分解算法,并将之应用于人脸检测中,主要思想是将训练样本分为工作集B的非工作集N,B中的样本数为q个,q远小于总样本个数,每次只针对工作集B中的q个样本训练,而固定N中的训练样本,算法的要点有三:1)应用有约束条件下二次规划极值点存大的最优条件KTT条件,推出本问题的约束条件,这也是终止条件。2)工作集中训练样本的选择算法,应能保证分解算法能快速收敛,且计算费用最少。3)分解算法收敛的理论证明,Osuna等证明了一个定理:如果存在不满足Kohn-Tucker条件的样本,那么在把它加入到上一个子问题的集合中后,重新优化这个子问题,则可行点(Feasible Point)依然满足约束条件,且性能严格地改进。因此,如果每一步至少加入一个不满足Kohn-Tucker条件的样本,一系列铁二次子问题可保证最后单调收敛。Chang,C.-C.证明Osuna的证明不严密,并详尽地分析了分解算法的收敛过程及速度,该算法的关键在于选择一种最优的工

支持向量机算法学习总结

题目:支持向量机的算法学习 姓名: 学号: 专业: 指导教师:、 日期:2012年6 月20日

支持向量机的算法学习 1. 理论背景 基于数据的机器学习是现代智能技术中的重要方面,研究从观测数据 (样本) 出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。迄今为止,关于机器学习还没有一种被共同接受的理论框架,关于其实现方法大致可以分为三种: 第一种是经典的(参数)统计估计方法。包括模式识别、神经网络等在内,现有机器学习方法共同的重要理论基础之一是统计学。参数方法正是基于传统统计学的,在这种方法中,参数的相关形式是已知的,训练样本用来估计参数的值。这种方法有很大的局限性,首先,它需要已知样本分布形式,这需要花费很大代价,还有,传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 第二种方法是经验非线性方法,如人工神经网络(ANN。这种方法利用已知样本建立非线性模型,克服了传统参数估计方法的困难。但是,这种方法缺乏一种统一的数学理论。 与传统统计学相比,统计学习理论( Statistical Learning Theory 或SLT) 是一种专门研究小样本情况下机器学习规律的理论。该理论针对小样本统计问题建立了一套新的理论体系,在这种体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在现有有限信息的条件下得到最优结果。V. Vapnik 等人从六、七十年代开始致力于此方面研究[1] ,到九十年代中期,随着其理论的不断发展和成熟,也由于神经网络等学习方法在理论上缺乏实质性进展,统计学习理论开始受到越来越广泛的重视。 统计学习理论的一个核心概念就是VC维(VC Dimension)概念,它是描述函数集或学习机器的复杂性或者说是学习能力(Capacity of the machine) 的一个重要指标,在此概念基础上发展出了一系列关于统计学习的一致性(Consistency) 、收敛速度、推广性能(GeneralizationPerformance) 等的重要结论。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy) 和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

支持向量机训练算法综述_姬水旺

收稿日期:2003-06-13 作者简介:姬水旺(1977)),男,陕西府谷人,硕士,研究方向为机器学习、模式识别、数据挖掘。 支持向量机训练算法综述 姬水旺,姬旺田 (陕西移动通信有限责任公司,陕西西安710082) 摘 要:训练SVM 的本质是解决二次规划问题,在实际应用中,如果用于训练的样本数很大,标准的二次型优化技术就很难应用。针对这个问题,研究人员提出了各种解决方案,这些方案的核心思想是先将整个优化问题分解为多个同样性质的子问题,通过循环解决子问题来求得初始问题的解。由于这些方法都需要不断地循环迭代来解决每个子问题,所以需要的训练时间很长,这也是阻碍SVM 广泛应用的一个重要原因。文章系统回顾了SVM 训练的三种主流算法:块算法、分解算法和顺序最小优化算法,并且指出了未来发展方向。关键词:统计学习理论;支持向量机;训练算法 中图分类号:T P30116 文献标识码:A 文章编号:1005-3751(2004)01-0018-03 A Tutorial Survey of Support Vector Machine Training Algorithms JI Shu-i wang,JI Wang -tian (Shaanx i M obile Communicatio n Co.,Ltd,Xi .an 710082,China) Abstract:Trai n i ng SVM can be formulated into a quadratic programm i ng problem.For large learning tasks w ith many training exam ples,off-the-shelf opti m i zation techniques quickly become i ntractable i n their m emory and time requirem ents.T hus,many efficient tech -niques have been developed.These techniques divide the origi nal problem into several s maller sub-problems.By solving these s ub-prob -lems iteratively,the ori ginal larger problem is solved.All proposed methods suffer from the bottlen eck of long training ti me.This severely limited the w idespread application of SVM.T his paper systematically surveyed three mains tream SVM training algorithms:chunking,de -composition ,and sequenti al minimal optimization algorithms.It concludes with an illustrati on of future directions.Key words:statistical learning theory;support vector machine;trai ning algorithms 0 引 言 支持向量机(Support Vector M achine)是贝尔实验室研究人员V.Vapnik [1~3]等人在对统计学习理论三十多年的研究基础之上发展起来的一种全新的机器学习算法,也使统计学习理论第一次对实际应用产生重大影响。SVM 是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于SVM 方法有统计学习理论作为其坚实的数学基础,并且可以很好地克服维数灾难和过拟合等传统算法所不可规避的问题,所以受到了越来越多的研究人员的关注。近年来,关于SVM 方法的研究,包括算法本身的改进和算法的实际应用,都陆续提了出来。尽管SVM 算法的性能在许多实际问题的应用中得到了验证,但是该算法在计算上存在着一些问题,包括训练算法速度慢、算法复杂而难以实现以及检测阶段运算量大等等。 训练SVM 的本质是解决一个二次规划问题[4]: 在约束条件 0F A i F C,i =1,, ,l (1)E l i =1 A i y i =0 (2) 下,求 W(A )= E l i =1A i -1 2 E i,J A i A j y i y j {7(x i )#7(x j )} = E l i =1A i -1 2E i,J A i A j y i y j K (x i ,x j )(3)的最大值,其中K (x i ,x j )=7(x i )#7(x j )是满足Merce r 定理[4]条件的核函数。 如果令+=(A 1,A 2,,,A l )T ,D ij =y i y j K (x i ,x j )以上问题就可以写为:在约束条件 +T y =0(4)0F +F C (5) 下,求 W(+)=+T l -12 +T D +(6) 的最大值。 由于矩阵D 是非负定的,这个二次规划问题是一个凸函数的优化问题,因此Kohn -Tucker 条件[5]是最优点 第14卷 第1期2004年1月 微 机 发 展M icr ocomputer Dev elopment V ol.14 N o.1Jan.2004

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

支持向量机(SVM)原理及应用概述

支持向量机(SVM)原理及应用 一、SVM得产生与发展 自1995年Vapnik(瓦普尼克)在统计学习理论得基础上提出SVM作为模式识别得新方法之后,SVM一直倍受关注。同年,Vapnik与Cortes提出软间隔(soft margin)SVM,通过引进松弛变量度量数据得误分类(分类出现错误时大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM得寻优过程即就是大得分隔间距与小得误差补偿之间得平衡过程;1996年,Vapnik等人又提出支持向量回归 (Support Vector Regression,SVR)得方法用于解决拟合问题。SVR同SVM得出发点都就是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR得目得不就是找到两种数据得分割平面,而就是找到能准确预测数据分布得平面,两者最终都转换为最优化问题得求解;1998年,Weston等人根据SVM原理提出了用于解决多类分类得SVM方法(MultiClass Support Vector Machines,MultiSVM),通过将多类分类转化成二类分类,将SVM应用于多分类问题得判断:此外,在SVM算法得基本框架下,研究者针对不同得方面提出了很多相关得改进算法。例如,Suykens 提出得最小二乘支持向量机(Least Square Support Vector Machine,LS—SVM)算法,Joachims等人提出得SVM1ight,张学工提出得中心支持向量机 (Central Support Vector Machine,CSVM),Scholkoph与Smola基于二次规划提出得vSVM等。此后,台湾大学林智仁(Lin ChihJen)教授等对SVM得典型应用进行总结,并设计开发出较为完善得SVM工具包,也就就是LIBSVM(A Library for Support Vector Machines)。LIBSVM就是一个通用得SVM软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM方法就是20世纪90年代初Vapnik等人根据统计学习理论提出得一种新得机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中得判别函数, 使学习机器得实际风险达到最小,保证了通过有限训练样本得到得小误差分类器,对独立测试集得测试误差仍然较小。 支持向量机得基本思想:首先,在线性可分情况下,在原空间寻找两类样本得最优分类超平面。在线性不可分得情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输入空

支持向量机训练算法的实验比较

支持向量机训练算法的实验比较 姬水旺,姬旺田 (陕西移动通信有限责任公司,陕西西安710082) 摘 要:S VM是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。并对目前的三种主流算法S VM light,Bsvm与SvmFu在人脸检测、M NIST和USPS手写数字识别等应用中进行了系统比较。 关键词:统计学习理论;支持向量机;训练算法 中图法分类号:TP30116 文献标识码:A 文章编号:100123695(2004)1120018203 Experimental C omparison of Support Vector Machine Training Alg orithms J I Shui2wang,J I Wang2tian (Shanxi Mobile Communication Co.,LTD,Xi’an Shanxi710082,China) Abstract:Support vector learning alg orithm is based on structural risk minimization principle.It combines tw o remarkable ideas:maxi2 mum margin classifiers and im plicit feature spaces defined by kernel function.Presents a com prehensive com paris on of three mainstream learning alg orithms:S VM light,Bsvm,and SvmFu using face detection,M NIST,and USPS hand2written digit recognition applications. K ey w ords:S tatistical Learning T heory;Support Vector Machine;T raining Alg orithms 1 引言 支持向量机(Support Vector Machine)是贝尔实验室研究人员V.Vapnik等人[30]在对统计学习理论三十多年的研究基础之上发展起来的一种全新的机器学习算法,也是统计学习理论第一次对实际应用产生重大影响。S VM是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于S VM 方法有统计学习理论作为其坚实的数学基础,并且可以很好地克服维数灾难和过拟合等传统算法所不可规避的问题,所以受到了越来越多的研究人员的关注。近年来,关于S VM方法的研究,包括算法本身的改进和算法的实际应用,都陆续提了出来。但是,到目前为止,还没有看到有关支持向量算法总体评价和系统比较的工作,大多数研究人员只是用特定的训练和测试数据对自己的算法进行评价。由于支持向量机的参数与特定的问题以及特定的训练数据有很大的关系,要对它们进行统一的理论分析还非常困难,本文试从实验的角度对目前具有代表性的算法和训练数据进行比较,希望这些比较所得出的经验结论能对今后的研究和应用工作有指导意义。本文所用的比较算法主要有S VM light[14],Bsvm[12]和SvmFu[25],它们分别由美国C ornell University的Thorsten Joachims教授,National T aiwan U2 niversity的Chih2Jen Lin教授和美国麻省理工学院Ryan Rifkin博士编写的,在实验的过程中,笔者对算法进行了修改。由于这些算法有很大的相似之处,而且训练支持向量机是一个凸函数的优化过程,存在全局唯一的最优解,训练得到的模型不依赖于具体的算法实现,因此,本文在实验过程中不对具体的算法做不必要的区别。实验所采用的训练和测试数据也是目前非常有代表性的,它们大部分由国内外研究人员提供。 2 比较所用数据简介 本文所用的人脸检测数据是从美国麻省理工学院生物和计算学习中心[31](Center for Biological and C omputational Lear2 ning)得到的,这些数据是C BC L研究人员在波士顿和剑桥等地收集的,每个训练样本是一个由19×19=361个像素组成的图像,我们用一个361维的向量来代表每一个图像,每一个分量代表对应的像素值。用于训练的样本共有6977个,其中有2429个是人脸,其余4548个是非人脸;在测试样本集中共有24045个样本,包含472个人脸和23573个非人脸。这是一个两类分类问题。图1是训练样本中部分人脸的图像。 图1 人脸检测数据中部分人脸的图像 M NIST手写数字识别数据是由美国AT&T的Y ann LeCun 博士收集的[32],每个样本是0~9中的一个数字,用28×28= 784维的向量表示。在训练集中有60000个样本,测试集中有10000个样本。图2是训练样本中前100个样本的图像。 USPS手写识别数据是由美国麻省理工学院和贝尔实验室的研究人员共同从U.S.P ostal Service收集的[33],每个样本是0~9中的一个数字,用16×16=256维的向量中的各个分量表示所对应像素的灰度值。训练集中共有7291个样本,测试集中有2007个样本。图3是训练集中部分样本的图像。 ? 8 1 ?计算机应用研究2004年 收稿日期:2003206220;修返日期:2003211212

支持向量机(SVM)原理及应用概述

东北大学 研究生考试试卷 考试科目:信号处理的统计分析方法 课程编号: 09601513 阅卷人: 刘晓志 考试日期: 2012年11月07日 姓名:赵亚楠 学号: 1001236 注意事项 1.考前研究生将上述项目填写清楚.

2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交 研究生院培养办公室,专业课成绩单与试卷交各学院,各学院把成 绩单交研究生院培养办公室. 东北大学研究生院培养办公室 支持向量机(SVM)原理及应用 目录 一、SVM的产生与发展 (3) 二、支持向量机相关理论 (4) (一)统计学习理论基础 (4) (二)SVM原理 (4) 1.最优分类面和广义最优分类面 (5) 2.SVM的非线性映射 (7)

3.核函数 (8) 三、支持向量机的应用研究现状 (9) (一)人脸检测、验证和识别 (10) (二)说话人/语音识别 (10) (三)文字/手写体识别 (11) (四)图像处理 (11) (五)其他应用研究 (12) 四、结论和讨论 (12) 支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目 标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即

支持向量机(SVM)原理及

支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方 法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机等各种算法和模型的优点和缺点

1决策树(Decision Trees)的优缺点 决策树的优点: 一、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 二、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 三、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 四、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 五、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 六、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 七、可以对有许多属性的数据集构造决策树。 八、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 一、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 二、决策树处理缺失数据时的困难。 三、过度拟合问题的出现。 四、忽略数据集中属性之间的相关性。 2 人工神经网络的优缺点 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。 3 遗传算法的优缺点 遗传算法的优点: 一、与问题领域无关切快速随机的搜索能力。 二、搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,鲁棒性好。 三、搜索使用评价函数启发,过程简单。 四、使用概率机制进行迭代,具有随机性。 五、具有可扩展性,容易与其他算法结合。 遗传算法的缺点: 一、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码, 二、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。 三、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。 4 KNN算法(K-Nearest Neighbour) 的优缺点

20.ENVI4.3 支持向量机分类原理、操作及实例分析

ENVI4.3 支持向量机分类原理、操作及实例分析 一、支持向量机算法介绍 1.支持向量机算法的理论背景 支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。 与传统统计学相比,统计学习理论(SLT)是一种专门研究小样本情况下及其学习规律的理论。该理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将许多现有方法纳入其中,有望帮助解决许多原来难以解决的问题,如神经网络结构选择问题、局部极小点问题等;同时,在这一理论基础上发展了一种新的通用学习方法——支持向量机(SVM),已初步表现出很多优于已有方法的性能。一些学者认为,SLT和SVM正在成为继神经网络研究之后新的研究热点,并将推动机器学习理论和技术的重大发展。 支持向量机方法是建立在统计学习理论的VC维(VC Dimension)理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 支持向量机的几个主要优点有: (1)它是专门针对有限样本情况的,其目标是得到现有信息下的最优解而不仅仅是样本数趋于无穷大时的最优值; (2)算法最终将转化成为一个二次型寻优问题,从理论上说,得到的将是全局最优点,解决了在神经网络方法中无法避免的局部极值问题; (3)算法将实际问题通过非线性变换转换到高维的特征空间(Feature Space),在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,特殊性质能保证机器有较 好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关; 2.支持向量机算法简介 通过学习算法,SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。 最优分类面(超平面)和支持向量

支持向量机算法介绍

支持向量机算法介绍 众所周知,统计模式识别、线性或非线性回归以及人工神经网络等方法是数据挖掘的有效工具,已随着计算机硬件和软件技术的发展得到了广泛的应用。 但多年来我们也受制于一个难题:传统的模式识别或人工神经网络方法都要求有较多的训练样本,而许多实际课题中已知样本较少。对于小样本集,训练结果最好的模型不一定是预报能力最好的模型。因此,如何从小样本集出发,得到预报(推广)能力较好的模型,遂成为模式识别研究领域内的一个难点,即所谓“小样本难题”。支持向量机(support vector machine ,简称SVM )算法已得到国际数据挖掘学术界的重视,并在语音识别、文字识别、药物设计、组合化学、时间序列预测等研究领域得到成功应用。 1、线性可分情形 SVM 算法是从线性可分情况下的最优分类面(Optimal Hyperplane )提出的。所谓最优分类面就是要求分类面不但能将两类样本点无错误地分开,而且要使两类的分类空隙最大。 设线性可分样本集为),(i i y x ,d R x n i ∈=,,,1 ,}1,1{-+∈y ,d 维空间中线性判别函数的一般形式为 ()b x w x g T +=, 分类面方程是 0=+b x w T , 我们将判别函数进行归一化,使两类所有样本都满足()1≥x g ,此时离分类面最近的 样本的 ()1=x g ,而要求分类面对所有样本都能正确分类,就是要求它满足 n i b x w y i T i ,,2,1,01)( =≥-+。 (4)

式(4)中使等号成立的那些样本叫做支持向量(Support Vectors )。两类样本的分类空隙(Margin )的间隔大小: Margin =w /2(5) 因此,最优分类面问题可以表示成如下的约束优化问题,即在条件(4)的约束下,求函数 ())(2 1221w w w w T == φ(6) 的最小值。为此,可以定义如下的Lagrange 函数: ]1)([21),,(1 -+-=∑=b x w y a w w a b w L i T i n i i T (7) 其中,0≥i a 为Lagrange 系数,我们的问题是对w 和b 求Lagrange 函数的最小值。把式(7)分别对w 、b 、i a 求偏微分并令它们等于0,得: i i n i i x y a w w L ∑==?=??10 001 =?=??∑=i n i i y a b L 0]1)([0=-+?=??b x w y a a L i T i i i 以上三式加上原约束条件可以把原问题转化为如下凸二次规划的对偶问题: () ???? ? ???? ==≥∑∑∑∑====-0,,1,0.m a x 1111 21i n i i i j T i j i j n i n j i n i i y a n i a t s x x y y a a a (8) 这是一个不等式约束下二次函数机制问题,存在唯一最优解。若*i a 为最优解,则 ∑== n i i i i x y a w 1* * (9) *i a 不为零的样本即为支持向量,因此,最优分类面的权系数向量是支持向量的线性组合。

支持向量机SVM分类算法

支持向量机SVM分类算法 SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。 机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。 这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛

机器学习SVM(支持向量机)实验报告

. . 实验报告 实验名称:机器学习:线性支持向量机算法实现 学员:张麻子学号: *********** 培养类型:硕士年级: 专业:所属学院:计算机学院 指导教员: ****** 职称:副教授 实验室:实验日期:

. . 一、实验目的和要求 实验目的:验证SVM(支持向量机)机器学习算法学习情况 要求:自主完成。 二、实验内容和原理 支持向量机(Support V ector Machine, SVM)的基本模型是在特征空间上找到最 佳的分离超平面使得训练集上正负样本间隔最大。SVM是用来解决二分类问题的有监督学习算法。通过引入了核方法之后SVM也可以用来解决非线性问题。 但本次实验只针对线性二分类问题。 SVM算法分割原则:最小间距最大化,即找距离分割超平面最近的有效点距离超平面距离和最大。 对于线性问题: w T x+b=0 假设存在超平面可最优分割样本集为两类,则样本集到超平面距离为: ρ = min{|w T x+b| ||w|| }= a ||w|| 需压求取: max a ||w|| s.t. y i(w T x+b)≥a 由于该问题为对偶问题,可变换为: min 1 2 ||w||2 s.t. y i(w T x+b)≥1 可用拉格朗日乘数法求解。 但由于本实验中的数据集不可以完美的分为两类,即存在躁点。可引入正则化参数C,用来调节模型的复杂度和训练误差。

. . min 1 2||w||2+C ∑εi s.t. y i (w T x +b)≥1?εi , εi >0 作出对应的拉格朗日乘式: 对应的KKT条件为: 故得出需求解的对偶问题: {min 1∑∑αi αj y i y j (x i T x j )?∑αi s.t. ∑αi y j = 0 , C≥αi ≥0, 本次实验使用python 编译器,编写程序,数据集共有270个案例,挑选其中70%作为训练数据,剩下30%作为测试数据。进行了两个实验,一个是取C值为1,直接进行SVM训练;另外一个是利用交叉验证方法,求取在前面情况下的最优C值。 三、实验器材 实验环境:windows7操作系统+python 编译器。

相关文档
相关文档 最新文档