文档库 最新最全的文档下载
当前位置:文档库 › 磁过滤等离子体沉积和注入技术

磁过滤等离子体沉积和注入技术

低温等离子体表面处理技术

低温等离子体表面处 理技术

Plasma and first wall Introduction Today I will talk about something about my study on the first wall in the tokamak. Firstly, I will show you that what the plasma is in our life thought the following pictures such as: Fig.1 Lighning Fig.2 Aurora Fig.3 Astrospace Just as the pictures mentioned above , they are all consist of plasma. But, what does have in the plasma, now our scientist had given a definition that the plasma state is often referred to as the fourth state of matter and contains enough free charged particles(negative ions 、positive ions)and electronics. Like the photo below. Fig.4 Plasma production Plasma production In our research, we produce the plasma through an ICP (inductively coupled plasma)

冷弧空气等离子体射流表面处理技术分析

冷弧空气等离子体射流表面处理技术介绍 一.冷弧空气等离子体射流表面处理的必要性 传统的表面处理用湿法,采纳化学溶剂浸泡擦洗。湿法不具有普适性,处理速度慢,特不是化学溶剂会造成二次污染,使得人们必须查找新的表面处理技术。 低温等离子体具有极强的化学活性,在室温下能够引起多种化

学反应或物理刻蚀,而基质材料的本体性能不受阻碍。通过低温等离子体表面处理,材料表面发生多种的物理,化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使材料表面清洁、活化,改善材料表面的亲水性、粘结性、可染色性、生物相容性及电性能。它的这种专门性能能够对塑料、橡胶、金属、半导体、陶瓷和玻璃、复合物、纺织品、泡沫等进行表面改性,以及金属和非金属的粘接表面处理,因此能够广泛应用于汽车、航空、家用电器、包装材料、医疗器械、电子、机械、建筑、纺织和生物医学工程等领域。 在一般情况下,低温等离子体表面处理能够采纳低气压等离子体技术,但由于要使用真空系统,常常具有专门大的局限性,也使得花费过大。常压等离子体技术使表面处理变得简单而廉价。常压等离子体产生的方法有:一是电晕放电等离子体,二是冷弧放电等离子体,三是射频放电等离子体(包括同轴型和平板多孔型),四

是介质阻挡放电等离子体。其中射频放电须用氦气工作,无法广泛应用;电晕和介质阻挡放电会产生大量臭氧,污染使用环境。因此,冷弧空气等离子体射流表面处理是最廉价、最有用的技术。它用于表面处理有专门大的优势,它的优点在于 1.属于干式工艺,省能源,无公害,满足节能和环保的需要;2.使用空气,无臭氧污染,价格专门廉价,时刻短,效率高;3.对所处理的材料无严格要求,具有普遍适应性; 4.可处理形状复杂的材料,材料表面处理的均匀性好; 5.反应环境温度低; 6.对材料表面的作用仅涉及几到几百纳米,材料表面性能改善的同时,基体性能不受阻碍。 这种技术通过十几年的进展差不多逐步成熟,在国外差不多有一些髙技术公司在大力推广和使用这类技术。国内也有一些实验室开始着手推广这类技术。我们在已有的技术基础上不失时机的进行

塑胶产品表面处理工艺

产品表面处理工艺 ●表面处理工艺:机壳漆 机壳漆金属感极好,耐醇性佳,可复涂PU或UV光油。玩具油漆重金属含量符合国际安全标准。包括CPSC含铅量标准、美国测试标准ASTMF 963、欧洲标准EN71、EN1122。 ●表面处理工艺:变色龙 随不同角度而变化出不同颜色。是一种多角度幻变特殊涂料,使你的商品价值提高,创造出无懈可击的超卓外观效果。 ●表面处理工艺:电镀银涂料 电镀银漆是一款无毒仿电镀效果油漆,适用ABS、PC、金属工件,具有极佳的仿电镀效果和优异的耐醇性。 ●橡胶漆 适用范围:ABS、PC、PS、PP、PA以及五金工件。 产品特点:本产品为单组份油漆,质感如同软性橡胶,富有弹性,手感柔和,具有防污、防溶剂等功能。这种油漆干燥后可得涂丝印。重金属含量符合国际安全标准。包括CPSC含铅量标准、美国测试标准ASTMF 963、欧洲标准EN71、EN1122。 ●导电漆 适用于各种PS 及ABS 塑料制品;导电导磁、对外界电磁波、磁力线都能起到屏蔽作用;在电气功能上达到以塑料代替金属的目的。电阻值可根据客人要求调试。重金属含量符合国际安全标准,包括CPSC 含铅量标准、美国测试标准A STMF- 963 、欧洲标准EN71 、EN1122。 ●UV 高性能UV固化光油 ●珠光粉-ZG001 珠光颜料广泛应用于化妆品、塑料、印刷油墨及汽车涂料等行业。珠光颜料的主要类型有:天然鱼鳞珠光颜料、氯氧化铋结晶珠光颜料、云母涂覆珠光颜料。 ●夜光漆 夜光粉是一种能在黑暗中发光的粉末添加剂;它可以与任何一种透明涂层或外涂层混和使用,效果更显著,晚上发光时间长达8小时! ●激光雕刻 用激光雕刻刀作雕刻,比用普通雕刻刀更方便,更迅速。用普通雕刻刀在坚硬的材料上,比如在花冈岩、钢板上作雕刻,或者是在一些比较柔软的材料,比如皮革上作雕刻,就比较吃力,刻一幅图案要花比较长的时间。如果使用激光雕刻则不同,因为它是利用高能量密度的激光对工件进行局部照射,使表层材料气化或发生颜色变化的化学反应,从而留下永久性标记的一种雕刻方法。它根本就没有和材料接触,材料硬或者柔软,并不妨碍"雕刻" 的速度。所以激光雕刻技术是激光加工最大的应用领域之一。用这种雕刻刀作雕刻不管在坚硬的材料,或者是在柔软的材料上雕刻,刻划的速度一样。倘若与计算机相配合,控制激光束移动,雕刻工作还可以自动化。把要雕刻的图案放在光电扫描仪上,扫描仪输出的讯号经过计算机处理后,用来控制激光束的动作,就可以自动地在木板上,玻璃上,皮革上按照我们的图样雕刻出来。同时,聚焦起来的激光束很细,相当于非常灵巧的雕刻刀,雕刻的线条细,图案上的细节也能够给雕刻出来。激光雕刻可以打出各种文字、符号和图案等,字符大小可以从毫米到微米量级,这对产品的防伪有特殊的意义。激光雕刻是近年巳发展至可实现亚微米雕刻,已广泛用于微电子工业和生物工程。 优点: 1、精美、防伪、永久保存、极大提高产品档次。 2、比传统腐蚀精美,没有丝印、移印的图案易被擦掉以至模糊不清的缺点。 3、电脑控制、图文可随意改动。 4、显著增强竞争能力,速度快接近0%的废品率。 5、没有污染、没有化学物质污染产品表面。 6、加工精度可达到0.01mm,保证同一批次的加工效果完全一致。

低温等离子废气处理工艺

低温等离子体是继固态、液态、气态之后的物质第四态,当达到气体的放电电压时,气体被击穿,放电过程中整个体系呈现低温状态,所以称为低温等离子体,目前这种技术主要应用于废气处理工业中,有些小伙伴对于整个处理工艺和流程比感兴趣,下面就来一起学习一下。 低温等离子体的工艺技术原理: 异味气体从气体收集系统收集后首先进入除水器中进行水气分离,然后再排入等离子体反应器单元,在该区域由于高能电子的作用,使异味分子受激发,带电粒子或分子间的化学键被打断,产生自由基等活性粒子,这些活性粒子和O2反应达到消除异味目的。同时空气中的水和氧气在高能电子轰击下也会产生OH 自由基、活性氧等强氧化性物质,这些强氧化性物质也会与异味分子反应,使其分解,从而促进异味消除。净化后的气体经排气筒高空排放。 低温等离子处理工艺主要是利用放电来产生很多的高能粒子,然后对分子进行降解、氧化、裂解以及电离。近年来,低温等离子处理工艺成为国内外重视的

一个重点问题。将低温等离子处理工艺应用到低浓度、大风量有机废气处理中,具有处理量大、低能耗等优点。但是,这种处理工艺在应用的过程中会产生很多副产物,不能够完全将有机废气降解为水和二氧化碳。 低温等离子废气处理工艺,低温等离子废气处理技术采用双介质阻挡放电形式产生等离子体,所产生等离子体的密度是其他技术产生等离子体密度的1500倍,初用于氟利昂类、哈隆类物质的分解处理,后延伸恶臭、异味、有毒有害气体处理。该技术节能、环保,应用范围广,所有化工生产环节产生的恶臭异味几乎都可以处理,并对二恶英有良好的分解效果。 低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

放电等离子体水处理技术中的若干问题

放电等离子体水处理技术中的若干问题X Study on the T echnique of Water-treatment by Dischar ge Plasma 叶齐政,万 辉,雷 燕,张家聪,李 劲 (华中科技大学环境科学与工程学院,武汉430074) 摘 要 根据放电等离子体水处理技术研究现状,认为其基本作用可能存在4个基本过程:原生、次生、再生和附属过程;根据介质的形态将不同的水处理放电形式系统地划分为气相、液相、混合两相3种形式,并作了比较。 Abstr act Non-ther mal plasma processing using electric dischar ge has been investigated as a n alter nat ive met hod for the degr adat ion of or ganic compounds cont ained in water. Four basic pr ocesses:or iginal,secondar y,reprocess and subsidiar y processes ar e pr esented.Thr ee kinds of dischar ge for ms:gas,liquid and two-phase mixture dischar ge for ms ar e pr esent ed for waste-wa ter pr ocessing.Some pr oblems existing in thistechnique ar e discussed in this paper. 关键词 放电 等离子体 废水 Key wor ds discharge plasma wastewater 中图分类号 TM213,TM832 文献标识码 A 0 引 言 放电等离子体水处理技术近20年来得到较快的发展。发展方向体现在4个方面:作用过程和机理、废水处理、放电形式及电源4方面的研究。本文主要介绍前3个方面,并探讨一些基本问题。 1 作用过程和机理 放电反应过程和机理的研究包括两个方面:一是放电反应过程的理论研究,目前主要是化学动力学过程和放电理论模型的结合;二是实验研究,主要是各种活性成分(自由基)的检测。 电子引起的等离子体化学反应机理最早的学说之一是光化学学说,认为放电的化学作用(无声放电中臭氧的生成)仅为放电的紫外线作用。后发展的静离子学说把放电的化学作用归结于气体中正、负离子或电子的再结合,把电离看成化学过程的初始阶段。后来又提出了关于无声放电化学作用的动离子学说,把离子作为活性粒子,其原理是把“临界活化”的概念应用到放电化学反应,认为活化可由热及电的途径传递给分子。有作者提出了能量催化的概念,认为基本的活化过程是由激发分子和离子经由碰撞将能量传递给正常分子(化学活性粒子)[1]。 化学动力学过程及其与放电理论的结合方面研究较少。在计算动力学参数时,一般将受放电影响的化学过程的微分方程简化为代数方程(其它过程仍采用微分方程);或者在解玻尔兹曼方程和物料平衡方程时作了较多的近似,尚无公认的理论模型。 研究自由基的检测方面国外较多,国内限于实验条件开展得较少。脉冲放电中活性物种羟基、过氧化氢、臭氧在水和水溶液中的产生过去已有研究,活性物种羟基、过氧化氢可直接被水中流注电晕放电产生;当氧气以气泡形式通过放电区域时产生大量臭氧。Joshi等在1995年确定了由于脉冲放电形成羟基、过氧化氢、水化电子的反应速率[2]。Bing Sun, Masayuki Sato等在1997年使用光谱分析仪探测了自由基的产生,物化参数、放电条件对自由基产生的影响[3,4]。Masato Kur ahashi等在1997年研究了在水中电解气泡放电产生自由基的过程。他们观测到在水中正直流电压下电解产生气泡,在气泡中产生放电的过程[5]。 目前一般公认存在的理化反应包括:各种自由基、电场、强紫外线辐射、高压激波、臭氧、高能电子的轰击等内容,根据前述资料它们可分4个基本作用于废水的过程:一是原生过程,即基本和初始过程。包括高能电子的冲击(打碎大分子或开环)、强场及电解作用(存在部分放电形式中),放电产物有紫外线、臭氧、自由基等,主要由物理参数决定,例如电压、电流、波形、介电常数和电导率等。二是次生过程,包括紫外线、臭氧、自由基以及它们的联合作用、部分放电形式产生的激波作用,次生过程主要由原生过程的产物产生,且该过程的有无和强弱可调节,例如调节气体可调节紫外线和臭氧的有无和强弱。三是最后产生的再生过程,包括化学反应的产物再次受放电影响的过程及反应产物离开放电区域以后发生的反应过程,主要由废水的化学成分决定。四是附属过程,包括电极和容器材料参与的反应过程。由于有这些过程,目前仅从终产物进行研究,无法搞清反应过程,虽然在线光谱观测具有较好的优势[6],但存在观测的区域问题。不同放电形式中均可观测和检测到上述每种作用废水的过程,但一般未清楚划 · 32 · Apr.2003 HIGH VOLTAGE ENGINEERING Vol.29No.4 X国家自然科学基金资助项目(50237010)

低温等离子体技术在表面改性中的应用

低温等离子体技术在表面改性中的应用低温等离子体中粒子的能量一般约为几个至几十电子伏特,大于聚合物材料的结合键能(几个至十几电子伏特),完全可以破裂有机大分子的化学键而形成新键;但远低于高能放射性射线,只涉及材料表面,不影响基体的性能。处于非热力学平衡状态下的低温等离子体中,电子具有较高的能量,可以断裂材料表面分子的化学键,提高粒子的化学反应活性(大于热等离子体),而中性粒子的温度接近室温,这些优点为热敏性高分子聚合物表面改性提供了适宜的条件。 1 形成装置及影响因素 选择适宜的放电方式可获得不同性质和应用特点的等离子体,通常,热等离子体是气体在大气压下电晕放电产生,冷等离子体由低压气体辉光放电形成。 热等离子体装置是利用带电体尖端(如刀状或针状尖端和狭缝式电极)造成不均匀电场,称电晕放电,使用电压和频率、电极间距、处理温度和时间对电晕处理效果都有影响。电压升高、电源频率增大,则处理强度大,处理效果好。但电源频率过高或电极间隙太宽,会引起电极间过多的离子碰撞,造成不必要的能量损耗;而电极间距太小,会有感应损失,也有能量损耗。处理温度较高时,表面特性的变化较快。处理时间延长,极性基团会增多;但时间过长,表面则可能产生分解物,形成新的弱界面层。 冷等离子体装置是在密封容器中设置两个电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子

的自由运动距离也愈来愈长,受电场作用,它们发生碰撞而形成等离子体,这时会发出辉光,故称为辉光放电处理。辉光放电时的气压大小对材料处理效果有很大影响,另外与放电功率,气体成分及流动速度、材料类型等因素有关。 不同的放电方式、工作物质状态及上述影响等离子体产生的因素,相互组合可形成各种低温等离子体处理设备。 2 在表面改性中的应用 低温等离子体技术具有工艺简单、操作方便、加工速度快、处理效果好、环境污染小、节能等优点,在表面改性中广泛的应用。 2.1 表面处理 通过低温等离子体表面处理,材料表面发生多种的物理、化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使亲水性、粘结性、可染色性、生物相容性及电性能分别得到改善。 用几种常用的等离子体对硅橡胶进行表面处理,结果表明N2、Ar、O2、CH4-O2及Ar-CH4-O2等离子体均能改善硅橡胶的亲水性,其中CH4-O2和Ar-CH4-O2的效果更佳,且不随时间发生退化[6]。英国派克制笔公司将等离子体技术用于控制墨水流量塑料元件的改性工艺中,提高了塑料的润湿率。 文献表明,用低温等离子体在适宜的工艺条件下处理PE、PP、PVF2、LDPE等材料,材料的表面形态发生的显著变化,引入了多种含氧基团,使表面由非极性、难粘性转为有一定极性、易粘性和亲水性,有利于粘结、涂覆和印刷。

高温等离子有机废气治理技术

高温等离子有机废气治理 技术 Jenny was compiled in January 2021

高温等离子焚烧——治理有机废气 一、高温等离子焚烧原理 等离子态是一种普遍存在的物质形态。宇宙中恒星球内部的物质就处于等离子态。 温度升高到使物质分子发生分裂,成为独立的原子,如氮分子会分裂成两个氮原子,我们称这种过程为物质分子的电离。当电子和离子的浓度达到一定的数值时,物质状态发生质的改变,为区别于固体、液体和气体这三种状态,我们称物质的这种状态为物质的第四态,即等离子态.(等离子体) 等离子体的基本构成是和,具有良好的导电、导热性。等离子体的比热与温度成正比,高温下等离子体的比热是通常气体的数百倍。 等离子体在工业上有广泛的应用,常见的氩弧焊就是一个典型事例:由电流放电产生的高温等离子弧,从喷嘴中喷出,熔化焊料、工件,完成焊接作业。 永研电子率先提出,并研发成功的高温等离子焚烧技术,就是等离子体在工业废气处理应用的成功范例。为工业废气治理开辟了一条全新的途径。 二、高温等离子焚烧实现 高温等离子体焚烧技术: “每一种持久性有机污染物(POPs)都可以热分解,20世纪80年代末,瑞典科学家Svante Arrhenius 发现大多数热分解反应的速率随着温度增加而增加。对于有机物的分解取决于反应温度、在此温度下停留的时间和该物质的固有性质。”(摘自:等离子体弧熔融裂解——危险废弃物处理前沿技术第48页丁恩振、丁家亮编着)高温热分解是清除VOCs污染物的有效方法。 等离子焚烧技术是高频(30KHz)高压(10万伏)大功率电源在特定条件下的聚能放电:工业废气在反应器中由常温急剧上升至3千度高温,在高温(3千度)和高电势(10万伏)的双重作用下,有机污染成分(VOCs)瞬间(千分之1秒)被电离并完全裂解。

低温等离子体废气处理

有机、无机废气和恶臭处理技术 市场拓展人员培训教程 (宋文国,男,1968年出生,高级工程师,从事于节能环保项目多年。邮箱:,手机:) 一、行业废气概况 煤化工废气 煤制焦过程废气 焦化废气主要来源于装煤、炼焦、化产回收等过程。装煤初期,煤料在高温条件下与空气接触,形成大量黑烟及烟尘、荒煤气及对人体健康有害的多环芳烃。炼焦时,废气一方面来自化学转化过程中未完全炭化的细煤粉及其析出的挥发组分、焦油、飞灰和泄漏的粗煤气,另一方面来自出焦时灼热的焦炭与空气接触生成的CO、CO2、NOx等,主要污染物包括苯系物(如苯并芘)、酚、氰、硫氧化物以及碳氢化合物等。 煤制气过程废气 煤制气废气的来源主要是气化炉开车过程中由于炉内结渣、火层倾斜等非正常停车而产生的逸散,另外,还有炉内的排空气形成部分废气、固定床气化炉的卸压废气、粗煤气净化工序中的部分尾气、硫和酚类物质回收装置的尾气及酸性气体、氨回收吸

收塔的排放气。这些废气的主要成分包括碳氧化物、硫氧化物、氨气、苯并芘、CO、CH4等,有些还夹杂了煤中的砷、镉、汞、铅等有害物质,对环境及人体健康有较大的危害。 煤制油过程废气 煤的液化可分为直接液化和间接液化。煤直接液化时,经过加氢反应,所有异质原子基本被脱除,也无颗粒物,回收的硫可以获得元素硫,氮大多转化为氨。煤间接液化时,催化合成过程中的排放物不多,未反应的尾气(主要是CO)可以在燃烧器中燃烧,排放的废气中CO2和硫很少,也没有颗粒物的生成。煤液化过程对环境造成的影响较小,主要的污染物是液化残渣,这是一种高碳、高灰和高硫物质,在某些工艺中占到液化原料煤总量的40%左右,需进一步处理。 煤燃烧过程废气 煤燃烧过程主要污染物有粉尘与烟雾、SO2为主的硫化物、N2O、NO、NO2、N2O3、 N2O4等氮氧化物、Hg、Cd、Pb、Cr、As、Se、F等有害微量元素、产生温室效应的CO2等。煤直接燃烧的能量利用率低,环境污染严重。 石油化工厂废气 化工厂在生产过程中会产生大量的废气,比如:氨、三甲胺、硫化氢、二氧化硫、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和硫化氢等无机废气;还有VOC类:苯、甲苯、二甲苯、丙

等离子表面处理

项目提纲 一、项目背景 等离子体是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,主要包括:电子、离子、中性基团、分子、光子,它是除去固、液、气相之外物质存在的第四态。1879年英国物理学家William Crookes发现物质第四状态,1929年美国化学物理学家Langmuir发现等离子体。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间,空间物理,地球物理等科学的进一步发展提新的技术和工艺。 等离子体可分为两种:高温和低温等离子体。高温等离子体如焊工用高温等离子体焊接金属。现在低温等离子体广泛运用于多种生产领域。例如:材料的表面处理(塑料表面处理、金属表面处理、铝表面处理,印刷、涂装及粘接前的等离子表面处理),此技术主要作用为清洗材料表面,提高表面的附着能力及粘接能力。等离子技术具有极为广泛的应用领域,这使其成为行业中广受关注的核心表面处理工艺。通过使用这种创新的表面处理工艺,可以实现现代制造工艺所追求的高品质,高可靠性,高效率,低成本和环保等目标。 等离子表面处理技术能够应用的行业非常广泛,对物体的处理不单纯的是清洗,同时可以进行刻蚀、和灰化以及表面活化和涂镀。因此就决定了等离子表面处理技术必将有广泛的发展潜力。也会成为科研院所、医疗机构、生产加工企业越来越推崇的处理工艺。 二、等离子技术简介 射流型常压等离子处理系统由等离子发生器、气体管路及等离子喷枪组成。等离子发生器产生高压高频能量在喷嘴钢管中被激活和被控制的辉光放电中产生了低温等离子体,借助压缩空气将等离子体喷向工件表面,当等离子体与被处理表面相遇时,产生了化学作用和物理变化,表面得到了清洁。却除了碳化氢类污物,如油脂、辅助添加剂等。根据材料成分,其表面分子链结构得到了改变。建立了自由基团,这些自由基团对各种涂敷材料具有促进粘合的作用,在粘合和油漆应用时得到了优化。在同样效果下,应用等离子体处理表面可以得到非常薄的高张力涂层表面,不需要其他机械、化学处理等强烈作用成分来增加粘合性。 高分子领域中应用的等离子体表面处理技术,是指利用非聚合性气体(如Ar、N2、CO、NH3、O2、H2等)等离子体与高分子材料表面相互作用,使在表面上形成新的官能团和改变高分子链结构,以改善亲(疏)水性、粘接性、表面电学性能、光学性能以及生物相容性等,从而达到表面改性的目的。参与表面反应的活性种有激发态分子、离子、自由基及紫外辐射光子。对高分子材料表面的作用有刻蚀、断键(链)、形成自由基及活性种与自由基复合从而引入新的官能团或形成交联结构。在等离子体处理过程中,随不同的放电条件,往往以某种作用为主,几种作用并存。等离子体处理的优点是效果显著,工艺简单,无污染,可通过改变不同的处理条件获得不同的表面性能,应用范围广。更为重要的是,处理效果只局限于表面而不影响材料本体性能。其缺点是处理效果随时间衰退;影响处理效果因素的多样性使其重复性和可靠性较差。 等离子表面处理在高分子材料改性中的应用,主要表现在下述几方面。 1)改变材料表面亲((疏)水性。一般高分子材料经NH3、O2、CO、Ar、N2、H2等气体等离子体处理后接触空气,会在表面引入—COOH,CO,—NH2''—OH等基团,增加其亲水性。处理时间越长,与水接触角越低,而经含氟单体如CF4''CH2F2等气体等离子体处理则可氟化高分子材料表面,增加其憎水性。 2)增加材料的粘接性。等离子体处理能很容易在高分子材料表面引入极性基团或活性点,

机械表面处理工艺【详解】

机械表面处理工艺详解 内容来源网络,由深圳机械展收集整理! 机械表面处理工艺有: 静电喷涂、烤漆、镀锌、镀铬、镀镍、镀钛、镀金、镀银、铝阳极、浸渗、喷油、喷砂、DLC处理、铁氟龙处理、染黑、冷电镀 喷涂 喷涂是最常见的表面处理,无论塑料还是五金都适用。喷涂一般包括喷油、喷粉等,最常见的是喷油。 喷涂的涂料俗称油漆,涂料是由树脂、颜料、溶剂、和其他添加剂构成。 塑料喷涂一般有两道漆,表面呈现颜色的称为面漆,最表面透明图层称为保护漆。喷涂工艺流程介绍: (1)前期清洁。如静电除尘等。 (2)喷涂面漆。面漆一般是表面看的到的颜色。 (3)烘干面漆。分为室温自然干燥、专用烤炉烘干。

(4)冷却面漆。专用烤炉烘干需要冷却。 (5)喷涂保护漆。保护器一般是用来保护面漆的,大部分是透明的油漆。 (6)固化保户漆。 (7)QC检查。检查是否满足需求。 3.橡胶油 橡胶油,又称弹性漆,手感漆,橡胶油是一种双成分高弹性的手感油漆,用该油漆喷涂后的产品具有特殊柔软的触感及高弹性表面手感。橡胶油的缺陷是成本高,耐用一般,用久了容易脱落。 橡胶油广泛应用于通信产品,视听产品,MP3、手机外壳,装饰品、休闲娱乐用品,游戏机手柄,美容器材等。 4.UV漆 UV漆是紫外线(Ultra-Violet Ray)的英文简称。常用的UV波长范围为 200-450nm。UV漆在紫外线光照射下才能固化。UV漆的特点:透明光亮,硬度高,固定速度快,生产效率高,保护面漆,加硬加亮表面。

水镀 水镀是一种电化学的过程,通俗理解就是将需要电镀的产品零件浸泡在点解液中,再通以电流,以点解的方式使金属沉积在零件表面形成均匀、致密、结合力良好的金属层的表面加工方法。 水镀适应的材料:最常见的是ABS,最好是电镀级的ABS,其他常见塑料如PP,PC,PE等都很难水镀。 常见的表面颜色:金色,银色,黑色,枪色。常见的电镀效果:高光,亚光,雾面,混合等。 真空镀 真空镀是电镀的一种,是在高度真空的设备里,在产品表面镀上一层细薄的金属镀层的一种方法。 真空镀的工艺流程:表面清洁-去静电-喷底漆-烘烤底漆-真空镀膜-喷面漆-烘烤面漆-品质检查-包装。 真空镀的优缺点:

高温等离子有机废气治理技术

高温等离子焚烧——治理有机废气 一、高温等离子焚烧原理 等离子态是一种普遍存在的物质形态。宇宙中恒星球内部的物质就处于等离子态。 温度升高到使物质分子发生分裂,成为独立的原子,如氮分子会分裂成两个氮原子,我们称这种过程为物质分子的电离。当电子和离子的浓度达到一定的数值时,物质状态发生质的改变,为区别于固体、液体和气体这三种状态,我们称物质的这种状态为物质的第四态,即等离子态.(等离子体) 等离子体的基本构成是离子和电子,具有良好的导电、导热性。等离子体的比热与温度成正比,高温下等离子体的比热是通常气体的数百倍。 等离子体在工业上有广泛的应用,常见的氩弧焊就是一个典型事例:由电流放电产生的高温等离子弧,从喷嘴中喷出,熔化焊料、工件,完成焊接作业。 永研电子率先提出,并研发成功的高温等离子焚烧技术,就是等离子体在工业废气处理应用的成功范例。为工业废气治理开辟了一条全新的途径。

二、高温等离子焚烧实现 高温等离子体焚烧技术: “每一种持久性有机污染物(POPs)都可以热分解,20世纪80年代末,瑞典科学家Svante Arrhenius 发现大多数热分解反应的速率随着温度增加而增加。对于有机物的分解取决于反应温度、在此温度下停留的时间和该物质的固有性质。”(摘自:等离子体弧熔融裂解——危险废弃物处理前沿技术第48页丁恩振、丁家亮编著)高温热分解是清除VOCs污染物的有效方法。 等离子焚烧技术是高频(30KHz)高压(10万伏)大功率电源在特定条件下的聚能放电:工业废气在反应器中由常温急剧上升至3千度高温,在高温(3千度)和高电势(10万伏)的双重作用下,有机污染成分(VOCs)瞬间(千分之1秒)被电离并完全裂解。 高温等离子焚烧技术能够处理高浓度、成分复杂、易燃易爆及含有水分、固态、油状物的工业废气,是垃圾焚烧尾气排放二噁英问题的理想解决方案。

等离子体表面处理技术

等离子体表面处理技术的原理及应用 前言:随着高科技产业的讯速发展,各种工艺对使用产品的技术要求越来越高。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,更随着高科技产业的迅猛发展,各种工艺对使用产品的技术要求也越来越高。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速在国外发达国家发展起来。 一、等离子体表面改性的原理 等离子,即物质的第四态,是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质。它的能量范围比气态、液态、固态物质都高,存在具有一定能量分布的电子、离子和中性粒子,在与材料表面的撞击时会将自己的能量传递给材料表面的分子和原子,产生一系列物理和化学过程。其作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。 二、等离子体表面处理技术的应用 1、在工艺产业方面的应用 1)、在测量被处理材料的表面张力 表面张力测定是用来评估材料表面是否能够获得良好的油墨附着力或者粘接附着品质的重要手段。为了能够评估等离子处理是否有效的改善了表面状态,或者为了寻求最佳的等离子表面处理工艺参数,通常通过测量表面能的方式来测定表面,比如使用Plasmatreat 测试墨水。最主要的表面测定方式包括测试墨水,接触角测量以及动态测量 评价表面状态 低表面能, 低于28 mN/m良好的表面附着能力,高表面能 2)预处理–Openair? 等离子技术,对表面进行清洗、活化和涂层处理的高技术表面处理工艺 常压等离子处理是最有效的对表面进行清洗、活化和涂层的处理工艺之一,可以用于处理各种材料,包括塑料、金属或者玻璃等等。 使用Openair?等离子技术进行表面清洗,可以清除表面上的脱模剂和添加剂等,而其活化过程,则可以确保后续的粘接工艺和涂装工艺等的品质,对于涂层处理而言,则可以进一步改善复合物的表面特性。使用这种等离子技术,可以根据特定的工艺需求,高效地对材料进行表面预处理。

低温等离子体技术在有机净化废气中的应用与进展

低温等离子体技术在有机净化废气 中的应用与进展 姓名:xxx 专业:环境工程 班级:xxx 指导老师:xxx 2015年12月xx日

低温等离子体技术在净化有机废气中的应用与进展 摘要 随着现代工业的快速发展,工业三废的排放量与日俱增,尤其是挥发性有机废气(VOCs)的排放,挥发性有机废气种类繁多、毒性强、扩散面广,是继颗粒物、二氧化硫、氮氧化合物之后又一类不容忽视的大气污染物。传统的有机废气处理方法存在流程复杂、运行成本高、处理效率低下、易产生二次污染等问题。低温等离子体技术利用自由基、高能电子等活性粒子与有机废气分子发生一系列理化反应,使有害气体在短时间内迅速催化降解为CO2和H2O以及其他小分子化合物。低温等离子体技术工艺流程简单、开停方便、运行费用低、去除效率高,在治理上具有明显优势,是国内外目前的研究热点之一。本文综述了低温等离子体在催化剂处理挥发性有机废气方面的技术研究进展,并展望了等离子体技术在废气处理领域的发展方向。 关键词:低温等离子体;有机挥发性废气(VOCs);催化降解

1 引言 工农业生产过程不可避免地要排放挥发性有机废气(VOCs),这是污染环境、危害人类健康的重要来源[1-2]。挥发性有机废气排放到大气中会引起光化学烟雾、臭氧层破坏等环境问题;大部分的VOCs 还具有毒性、刺激性、甚至致癌作用,对人体健康造成严重的危害[3]。为了应对(VOCs)对环境的破坏以及对人体健康的威胁,挥发性有机废气处理技术迅速成为国内外的研究热点之一。 2 常用有机废气处理技术 目前国内外有多种技术用于处理挥发性有机废气,其中较为常见的方法有:燃烧法、冷凝法、吸收法、吸附法、生物法、低温等离子体法等。 2.1 燃烧法 通过燃烧将VOCs转化为无害物质的过程称为燃烧法[4]。燃烧法的原理是燃烧氧化作用及在高温下的热分解。因此,燃烧法只适用于处理可燃的或在高温下易分解的VOCs。 2.2 冷凝法 冷凝法处理VOCs是利用废气中的各组分饱和蒸汽压不同这一特点,采用降温、升压等方法,将气态的VOCs液化分离[5],但冷凝法不适用于低浓度废气的处理。 2.3 吸收法 吸收法的原理是吸收质(VOCs)与吸收剂(水、酸溶液、碱溶液等)发生化学反应从而达到吸收去除效果。当VOCs成分复杂需多段净化时,该方法便不再适用,并且该法设备易腐蚀,易形成二次污染[6]。 2.4 吸附法 吸附法是用多孔性固体活性炭、分子筛、交换树脂、硅胶、飞灰等吸附去除废气。吸附法对大部分VOCs均适用,一般作为其他方法的后续处理[7]。但是吸附法也有它的缺点投资高、吸附剂用量大、再生困难、能耗大、占地面积大等缺点。

低温等离子体技术介绍

技术介绍 --低温等离子体 低温等离子体是继固态、液态、气态之后的物质的第四态,当外加电压达到气体的着火电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到分解污染物的目的。 “QHDD-Ⅱ”低温等离子体工业废气处理成套设备和技术作为一种新型的气态污染物的治理技术是一个集物理学、化学、生物学和环境科学于一体的交叉综合性电子化学技术,由于能很容易使污染物分子高效分解且处理能耗低等特点,是目前国内外大气污染治理中最富有前景、最行之有效的技术方法之一,其使用和推广前景广阔,为工业领域VOC类有机废气及恶臭气体的治理开辟了一条新的思路。 低温等离子体废气处理技术与其他废气治理方法优缺点对比 表1-2 几种废气处理工艺的适用范围及优缺点 工艺名称原理适用范围优点缺点 掩蔽法采用更强烈的芳香气味与臭气掺和,以掩蔽臭气,使之能被人接收适用于需立即、暂时地消除低浓度恶臭气体影响地场合,恶臭强度左右,无组织排放源可尽快消除恶臭影响,灵活性大,费用低恶臭成分并没有被去除,麻痹了对原有污染物的感知 热力燃烧法在高温下恶臭物质与燃料气充分混和,实现完全燃烧适用于处理高浓度、小气量的可燃性气体净化效率高,恶臭物质被彻底氧化分解设备易腐蚀,消耗燃料,处理成本高,易形成二次污染,催化剂中毒 催化燃烧法

水吸收法利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的水溶性、有组织排放源的恶臭气体工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理;净化效率低,应与其他技术联合使用,对水溶性差的物质等处理效果差 药液吸收法利用臭气中某些物质和药液产生化学反应的特性,去除某些臭气成分适用于处理大气量、高中浓度的臭气能够有针对性处理某些臭气成分,工艺较成熟净化效率不高,消耗吸收剂,易形成而二次污染 吸附法利用吸附剂的吸附功能使恶臭物质由气相转移至固相适用于处理低浓度,高净化要求的恶臭气体净化效率很高,可以处理多组分恶臭气体吸附剂费用昂贵,再生较困难,要求待处理的恶臭气体有较低的温度和含尘量 生物滤池恶臭气体经过除尘增湿或降温等预处理工艺后,从滤床底部由下向上穿过由滤料组成的滤床,恶臭气体由气相转移至水—微生物混和相,通过固着于滤料上的微生物代谢作用而被分解掉目前研究最多,工艺最成熟,在实际中也最常用的生物脱臭方法,又可细分为土壤脱臭法、堆肥脱臭法、泥炭脱臭法等。净化效率高,处理费用低占地面积大,易堵塞,填料需定期更换,脱臭过程很难控制,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 生物滴滤池原理同生物滤池式类似,不过使用的滤料是诸如聚丙烯小球、陶瓷、木炭、塑料等不能提供营养物的惰性材料。只有针对某些恶臭物质而降解的微生物附着在填料上,而不会出现生物滤池中混和微生物群同时消耗滤料有机质的情况池内微生物数量大,能承受比生物滤池大的污染负荷,惰性滤料可以不用更换,造成压力损失小,而且操作条件极易控制占地面积大,需不断投加营养物质,而且操作复杂,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 洗涤式活性污泥脱臭法将恶臭物质和含悬浮物泥浆的混和液充分接触,使之在吸收器中从臭气中去除掉,洗涤液再送到反应器中,通过悬浮生长的微生物代谢活动降解溶解的恶臭物质有较大的适用范围可以处理大气量的臭气,同时操作条件易于控制,占地面积小设备费用大,操作复杂而且需要投加营养物质 曝气式活性污泥脱臭法将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广,目前日本已用于粪便处理场、污水处理厂的臭气处理活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达%以上。受到曝气强度的限制,该法的应用还有一定局限

等离子体表面改性技术的研究与发展.

等离子体表面改性技术的研究与发展 摘要本论文介绍了等离子体的相关概念,主要阐述了低温等离子技术在金属材料表面改性中的两种处理方法。并对等离子体电解沉积技术做了简要介绍,分析了该技术的应用前景及存在的问题。最后对等离子体表面改性技术的发展做出展望。 关键词等离子体;表面改性;等离子体电解沉积技术 Development of Plasma Surface Modification Technology Abstract :The relate concept of plasma the means on application of cold plasma technology to surface modification of metal in this paper. This article also introduce Plasma electrolysis deposition technology, the problems and development directions of PED in the surface modification technology arc also presented. The prospects of plasma surface modification technology is also analyzed. Key words :plasma,surface modification,plasma electrolytic deposition 0. 前言 金属零部件的磨耗量是增大能耗,增加零部件更换率和提高生产运用成本,降低生产效率的重大问题,因此如何提高零部件表面的耐磨性,实施表面改性处理是十分重要的课题。随着科学技术和现代工业的发展,各种工艺对使用产品的技术要求越来越高,对摩擦、磨损、腐蚀和光学性能优异的先进材料的需要日益增长,这导致了整个材料表面改性技术的发展与进步。其中等离子体表面改性技术发挥了重要作用。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,同时开创了一门新的研究领域。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和

等离子体处理有机废气技术综述

等离子体处理有机废气技术综述 [摘要]本文旨在综述等离子体降解有机废气技术。阐述了等离子体的概念,讨论了等离子体处理有机废气的机理,又分别综述了联合处理VOCs废气技术的研究进展。最后提出了该项技术在有机废气治理领域的研究方向。 [关键字]低温等离子体;联合;研究方向 引言 目前对有机废气治理采用的处理方法主要有吸收、吸附、催化燃烧等,这些方法所用设备多、工艺繁、能耗大:而相对比较热门的生物处理法又面临占地面积大,易受负荷变化影响,微生物菌种筛选和驯化难度大等问题。而等离子体技术作为一种高效率、占地少、运行费用低、使用范围广的环保处理新技术已成为近年来的研究热点。 1.等离子体技术处理有机废气机理分析 1.1等离子体概念 等离子体就是处于电离状态的气体,其英文名称为plasma。等离子体是被称作除固态、液态和气态之外的第四种物质存在形态。它是由大量带电粒子(离子、电子)和中性粒子(原子、激发态分子及光子)和自由基组成的导电性流体,因其总的正、负电荷数相等,故称为等离子体。 按热力学平衡状态进行分类,等离子体可分为热力学平衡状态等离子体(高温等离子体)和非热力学平衡状态等离子体(低温等离子体)。非平衡等离子体较平衡等离子体易在常温常压下产生,因此在环保领域有着广泛的应用前景。以下等离子体处理技术即低温等离子体技术。 1.2等离子体处理有机废气的机理 虽然对低温等离子体去除污染物的机理还不清楚,但一般都认为是粒子间非弹性碰撞的结果。其降解机理可概括为:1、高能电子直接作用于有机废气分子,污染物分子受碰撞激发或离解形成相应的基团和自由基。2、高能电子与气态污染物中所含的空气、水蒸气和其它分子作用产生新的自由基和激发态物质活性粒子及氧化性极强的O3,将有机物彻底氧化。3、活性基团从高能激发态向下跃迁产生紫外光,紫外光直接与有害气体反应而使气体分子键断裂从而得以降解。 2.等离子体处理有机废气的工艺分析 2.1等离子体单独作用处理有机废气

中国污水处理技术

中国污水处理技术 作者:本网编辑文章来源:本网点击数:0 更新时间:2010-09-09 水污染现状 中国环境状况公报显示,2008年全国地表水污染依然严重,全国七大水系407个国家监控断面中, Ⅰ~Ⅲ类、Ⅳ~Ⅴ类、劣Ⅴ类水质的断面比例分别为49.9%、26.5%和23.6%,七大水系水质总体为中度污染,浙闽区河流水质为轻度污染,西北诸河水质为优,西南诸河水质良好,湖泊(水库)富营养化问题突出;近岸海域水质总体为轻度污染。 “十一五”期间,淮河、海河、辽河、巢湖、滇池、松花江、三峡库区及其上游、黄河中上游等流域水污染防治规划,共安排污染治理项目2712个,投资1600亿元。截至2008年9月,已经建成881个,在建960个,完成投资510亿元。2008年工业废水治理投资194.6亿元。 根据政府对再生水的规划测算,2010年中国城市污水再生设施将达到680万t/d,再生水工程新增投资约100亿元。 废水污染治理新技术 城市生活污水 目前,中国城市污水处理主要采用生物活性污泥法。目前形成的较典型的二级处理工艺有:传统活性污泥法、AB法、A/O工艺、A2/O工艺、氧化沟工艺、ICEAS工艺、CASS工艺、SBBR工艺、BIOLAK工艺等。其中应用较多的为氧化沟工艺和CASS工艺(CASS工艺和BIOLAK工艺为较新型工艺)。 CASS工艺 CASS工艺是一种循环式活性污泥法,是SBR工艺的改进形式,通过曝气和不曝气阶段的交替运行,实现反应器以厌氧—缺氧—好氧—缺氧—厌氧的方式运行。CASS池的变容运行提高了系统对水量水质变化的适应性和操作的灵活性;选择器的设置加强了微生物对磷的释放、反硝化、对有机物的吸附吸收等作用,增加了系统运行的稳定性,能很好地缓冲进水水量与水质的波动,有效去除污水中有机碳源污染物,具有良好的脱氮、除磷功能,排出的剩余污泥稳定化程度较高。同时CASS工艺还能有效防止污泥膨胀。 BIOLAK工艺 BIOLAK工艺是由德国冯?诺顿西公司开发的一种具有脱氮除磷功能的活性污泥处理系统。BIOLAK工艺的曝气头悬挂在浮链上,浮链被松弛地固定在曝气池两侧,每条浮链可在池内一定区域蛇形运动,在曝气链运动过程中自身的自然摆动就可以达到很好的混合效果,节省了混合所需的能耗。BIOLAK工艺采用HDPE 防渗膜衬里的土池结构,减少了投资;其活性污泥负荷较低,污泥回流量大,污泥在曝气池中的停留时间长,减少了污泥量,增加了剩余污泥的稳定性,有利于后续处置。 工业废水处理

相关文档
相关文档 最新文档