文档库 最新最全的文档下载
当前位置:文档库 › 导数的概念及运算(基础+复习+习题+练习)

导数的概念及运算(基础+复习+习题+练习)

导数的概念及运算(基础+复习+习题+练习)
导数的概念及运算(基础+复习+习题+练习)

,导数的概念

1.设函数y =f(x)在x =x °处附近有定义,当自变量在 x = x °处有增量 x 时,则函数

y = f(x)相应地有增量 Ay = f(x ° ? Ux) - f(x o ),如果 x > 0时,冷 与Ax 的比卫

Z

(也叫函数的平均变化率)有极限即 -岁无限趋近于某个常数,我们把这个极限值叫做函

△x

在定义式中,设 X =X o 「X 」V .lx =X -X o ,当Ax 趋近于0时,x 趋近于x o ,因 此,导数的定义式可写成

2.求函数y = f (x)的导数的一般步骤: 1求函数的改变量 y = f (^ . x^ f (x)

2求平均变化率 亠二f(x X)

一 f(x) ;

3取极限,得导数 y = f (x)二lim y

A x

A x

ZZ

3.导数的几何意义:

导数f (x o ) = 10~

X)

-

f (Xo)

是函数y = f (x)在点x o 处的瞬时变化率,它

反映的函数y = f (x)在点x o 处变化的快慢程度?

它的几何意义是曲线

y = f(x)上点(x o , f (x o ))处的切线的斜率 ?因此,如果

y = f (x)在点X o 可导,则曲线y = f (x)在点(X o , f (X o ))处的切线方程为

y - f (X o ) = f(X o )(x -X o )

4.导函数(导数):如果函数y = f(x)在开区间(a,b)内的每点处都有导数,此时对于每

个x ? (a,b),都对应着一个确定的导数

f (x),从而构成了一个新的函数 f (x),称这个

函数f (x)为函数y 二f (x)在开区间内的导函数, 简称导数,也可记作y ,即f (x) = y

f (x 中A x) —f(x) =lim

lim

L x ―o

,‘ 伙 *--o

/ ■. x

函数y = f(x)在xo 处的导数ySp 就是函数y=f(x)在开区间(a,b) (x ^ (a,b)) 上导数f(x)在x o 处的函数值,即 y xm =厂(x o ).所以函数y= f (x)在X o 处的导数也

导数的概念及运算

数y = f (x)在x — x 0处的导数,记作

,即f (沧)

f(X o =x) - f(X o )

f (X o . X)- f(X 。) lim

X =X o f (x) - f(X o )

(2)法则:[f(x) —g(x)「=[f(x)]' -[g(x)「,

[f(x)g(x)]' = f '(x)g(x) g '(x)f(x)

记作f (X o ) *

1用导数的定义求下列函数的导数:

2

4

1

“f(x)

";

2

“f

(r

2. 1已知八鸞呎

=1,求 f (X o )

2 若 f (3) =2,则

lim

f(3) - f (1

2x)

,导数的四则计算

常用的导数公式及求导法则:

(1)公式

①C ’ =0,(C 是常数) ③(cosx)' - -sin x ⑤(a

x )' = a x

|n a

②(sin x) =

cosx

④(x

n

)' nx n

⑦(lOg a x)

1

xln ⑨(tan x) 1 2 cos x

1

⑧(ln x)

x

cot x)

1 ?

2 sin x

[f (x)],二f'(x)g(x) —g'(x)f (x) g(x) g2(x)

2,复合函数的求导法则:复合函数y = f (g(x))的导数和函数y = f (u) , u = g(x)的导

数间的关系为y x'=y u'u x'.

题型1,导数的四则计算

1,求下列函数的导数:

1 y =e x l n x

2

4 y = x -1 sin x x cosx

x

e 1 x

sin x

1 cos x

5 y =3x e x -2x e

6 y = 3x3-4x j i「2x-1 2,求导数

(1) y = x3x2-4

sin x ⑵y二

y x=f (u)「(x)

y x= f (u) (v)- (x)

说明:复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。在求导时要由外到内,逐层求导。

1

1

函致'「(1 -3x)4的导数.

2,求y = 5 x

的导数. —x

(3) y = 3cosx _4sin x 2

(4) y = 2x 3

(5) y = ln x 2

三,复合函数的导数

链式法则

若y= f (u), u= (X)二y= f [ (x)],则

若y= f (u), u= (V), v='「(X)= y= f [ ( (x))],则

3,求下列函数的导数4,求下列函数的导数

(1) y= . 1 - 2x cos x

5,设y = In(x x 1)求y

跟踪练习:

求下函数的导数?

x (2) y=ln (x+ 一1 X2)

(2)、二' 2x T

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

导数的概念及运算

导数的概念及运算 一、选择题 1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=( ) A.0 B.1 C.2 D.3 解析∵y=e ax-ln(x+1),∴y′=a e ax- 1 x+1 ,∴当x=0时,y′=a-1.∵ 曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D 2.若f(x)=2xf′(1)+x2,则f′(0)等于( ) A.2 B.0 C.-2 D.-4 解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2, ∴f′(0)=2f′(1)=-4. 答案 D 3.(2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C. 答案 C 4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为( ) A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则 y′|x=x 0= 1 x ,切线方程为y-ln x0= 1 x (x-x0),因为切线过点(0,0),所

以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1 e . 答案 C 5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则 g ′(3)=( ) A.-1 B.0 C.2 D.4 解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-1 3,∴f ′(3)=- 1 3 ,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×? ???? -13=0. 答案 B 二、填空题 6.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数, f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析 f ′(x )=a ? ? ???ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a , 又f ′(1)=3,所以a =3. 答案 3 7.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1 x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0

高中数学导数典型例题精讲

高中数学导数典型例题 精讲 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

导数经典例题精讲 导数知识点 导数是一种特殊的极限 几个常用极限:(1)1 lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)0 0lim x x x x →=,00 11lim x x x x →=. 两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞?? += ??? (e=…). 函数极限的四则运算法则:若0 lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0 lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????;(3)()()()0 lim 0x x f x a b g x b →=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞ ==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞ ?=?(3)()lim 0n n n a a b b b →∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c 是常数) )(x f 在0x 处的导数(或变化率或微商) 000000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?''===??. .瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===??. 瞬时加速度:00()() ()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -=' (4) x x 1)(ln =';e a x x a log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则 (1)' ' ' ()u v u v ±=±.(2)' ' ' ()uv u v uv =+.(3)'' '2 ()(0)u u v uv v v v -=≠. 复合函数的求导法则 设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且'''x u x y y u =?,或写作'''(())()()x f x f u x ??=. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.

北师大文科数学高考总复习练习:导数的概念及运算 含答案

第三章导数及其应用 第1讲导数的概念及运算 基础巩固题组 (建议用时:40分钟) 一、选择题 1.设y=x2e x,则y′= () A.x2e x+2x B.2x e x C.(2x+x2)e x D.(x+x2)e x 解析y′=2x e x+x2e x=(2x+x2)e x. 答案 C 2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于 () A.-e B.-1 C.1 D.e 解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x , ∴f′(1)=2f′(1)+1,则f′(1)=-1. 答案 B 3.曲线y=sin x+e x在点(0,1)处的切线方程是 () A.x-3y+3=0 B.x-2y+2=0 C.2x-y+1=0 D.3x-y+1=0 解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0. 答案 C 4.(2017·成都诊断)已知曲线y=ln x的切线过原点,则此切线的斜率为

() A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则y′|x =x0=1 x0 ,切线方程为y-ln x0=1 x0(x-x0),因为切线过点(0,0),所以-ln x0 =-1,解得x0=e,故此切线的斜率为1 e. 答案 C 5.(2017·昆明诊断)设曲线y=1+cos x sin x在点? ? ? ? ? π 2,1处的切线与直线x-ay+1=0 平行,则实数a等于 () A.-1 B.1 2 C.-2 D.2 解析∵y′=-1-cos x sin2x ,∴=-1. 由条件知1 a =-1,∴a=-1. 答案 A 二、填空题 6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________. 解析因为y′=2ax-1 x ,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线 平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2. 答案1 2 7.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x) 在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.

导数典型例题.doc

导数典型例题 导数作为考试内容的考查力度逐年增大 .考点涉及到了导数的所有内容,如导数的定 义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等, 考查的题型有客观题(选择题、填空题) 、主观题(解答题)、考查的形式具有综合性和多 样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考 查成为新的热点. 一、与导数概念有关的问题 【例1】函数f(x)=x(x-1) (x-2)…(x-100)在x= 0处的导数值为 2 A.0 B.100 C.200 D.100 ! 解法一 “(0、_ .. f (° tx) _f(o) .. .-xC-x-DO-2V'^-100)-0 解法 f (0)_叽 L _叽 - _ ||m (A x-1)( △ x-2)…(△ x-100)_ (-1) (-2)-( - 100) =100 ! ???选 D. .x _0 解法二 设 f(x)_a 101x 101 + a 100X 100+ …+ a 1X+a 0,则 f z (0)_ 而 a 1_ (-1)(-2 ) - (- 100) _100 ! . ???选 D. 点评解法一是应用导数的定义直接求解, 函数在某点的导数就是函数在这点平均变化 率的极限.解法二是根据导数的四则运算求导法则使问题获解 111 【例2】已知函数f(x)_ c ; c ^x ? — C ;X 2亠■亠— C ;X k 亠■亠一

苏教版 导数的概念及运算

导数的概念及运算 一、填空题 1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析 由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案 e 2.设y =x 2e x ,则y ′=________. 解析 y ′=2x e x +x 2e x =()2x +x 2 e x . 答案 (2x +x 2)e x 3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于________. 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -1 4.(2015·苏北四市模拟)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 解析 由y ′=2ax ,又点(1,a )在曲线y =ax 2上,依题意得k =y ′|x =1=2a =2,解得a =1. 答案 1 5.(2015·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________. 解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y =-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),? ?? ?? 23,23,故围 成的三角形的面积为12×1×23=1 3. 答案 13 6.(2015·长春质量检测)若函数f (x )=ln x x ,则f ′(2)=________. 解析 ∵f ′(x )=1-ln x x 2,∴f ′(2)=1-ln 2 4.

高中数学导数典型例题精讲(详细版)

导数经典例题精讲 导数知识点 导数是一种特殊的极限 几个常用极限:(1)1 lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,0011lim x x x x →= . 两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞?? += ??? (e=2.718281845…). 函数极限的四则运算法则:若0 lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0 lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????;(3)()()()0 lim 0x x f x a b g x b →=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞ ==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞?=?(3)()lim 0n n n a a b b b →∞ =≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c 是常数) )(x f 在0x 处的导数(或变化率或微商) 000000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?''===??. .瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===??. 瞬时加速度:00()() ()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -=' (4) x x 1 )(ln = ';e a x x a log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则 (1)' ' ' ()u v u v ±=±.(2)' ' ' ()uv u v uv =+.(3)'' '2 ()(0)u u v uv v v v -=≠. 复合函数的求导法则 设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U处有导数 ''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且''' x u x y y u =?,或写作'''(())()()x f x f u x ??=. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力.

导数的概念及运算专题训练

导数的概念及运算专题训练 基础巩固组 1.已知函数f(x)=+1,则--的值为() A.- B. C. D.0 2.若f(x)=2xf'(1)+x2,则f'(0)等于() A.2 B.0 C.-2 D.-4 3.已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则曲线y=f(x)在横坐标为1的点处的切线方程是() A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=0 4.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的距离的最小值为() A.1 B. C. D. 5.已知a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f'(x),且f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为() A.y=3x+1 B.y=-3x C.y=-3x+1 D.y=3x-3 6.设曲线y=sin x上任一点(x,y)处切线的斜率为g(x),则函数y=x2g(x)的部分图象可以为() 7.一质点做直线运动,由始点经过t s后的距离为s=t3-6t2+32t,则速度为0的时刻是() A.4 s末 B.8 s末 C.0 s末与8 s末 D.4 s末与8 s末 8.函数y=f(x)的图象在点M(2,f(2))处的切线方程是y=2x-8,则=. 9.(2018天津,文10)已知函数f(x)=e x ln x,f'(x)为f(x)的导函数,则f'(1)的值为. 10.已知函数f(x)=x++b(x≠0)在点(1,f(1))处的切线方程为y=2x+5,则a-b=. 11.函数f(x)=x e x的图象在点(1,f(1))处的切线方程是. 12.若函数f(x)=x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是. 综合提升组 13.已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0 14.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(- 1)=() A. B.- C. D.-或 15.直线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.

导数的概念与计算练习题带答案

导数的概念与计算练习 题带答案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点 P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C .ln 22 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()sin f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x =等 于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1) 1 ()2ln f x ax x x =-- (2) 2 ()1x e f x ax = + (3)21()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

导数复习经典例题分类(含答案)说课讲解

导数复习经典例题分类(含答案)

导数解答题题型分类之拓展篇(一) 编制:王平审阅:朱成2014-05-31 题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立; 经验1:此类问题提倡按以下三个步骤进行解决: 第一步:令f'(x) 0得到几个根;第二步:列表如下;第三步:由表可知; 经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种:第一种:变更主元 (即关于某字母的一次函数);题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值;题型特征(f(x) g(x)恒成立h(x) f(x) g(x) 0恒成立);参考例4; 1 例「已知函数f(x) 3 x 3 bx 2 2x a,x 2是f (x)的一个极值点. (I)求f(x)的单调递增区间;(U)若当围. 2 2 x [1, 3]时,f (x) a —恒成立,求a的取值范 3 2x 例 2.设 f (x) , g(x) ax 5 2a(a 0)。 x 1 (1)求f(x)在x [0,1]上的值域; (2)若对于任意人[0,1],总存在x0 [0,1],使得g(x。)f(xj成立,求a的取值范围

_ 3 2 例3.已知函数f(x) x ax 图象上一点P(1,b)的切线斜率为 3 , (t 1)x 3 (t 0) (U)当x [ 1,4]时,求f (x)的值域; ax 3 2ax 2 b(a 0)在区间 2,1上的最大值是5,最小值是 (U)若t [ 1,1]时,f (x ) tx 0恒成立,求实数x 的取值 x 3 2J10 例5.已知函数f (x) -y 图象上斜率为3的两条切线间的距离为 ----------- ,函数 a 5 (、-、3bx 2 g(x) f(x) — 3. a (1) 若函数g(x)在x 1处有极值,求g(x)的解析式; (2) 若函数g(x)在区间[1,1]上为增函数,且b 2 mb 4 g(x)在区间[1,1]上都成立,求实 数m 的 g(x) (I)求a,b 的值; (川)当x [1,4]时,不等式f (x) g(x)恒成立,求实数t 的取值范围 例4.已知定义在R 上的函数f(x) —11. (I)求函数f(x)的解析式; 范围?

导数经典例题1

经典例题导讲 [例1]已知2)2cos 1(x y +=,则='y . 错因:复合函数求导数计算不熟练,其x 2与x 系数不一样也是一个复合的过程,有的同学忽视了,导致错解为:)2cos 1(2sin 2x x y +-='. 正解:设2u y =,x u 2cos 1+=,则)2()2sin (2)2cos 1(2'?-?='+=''='x x u x u u y y x u x )2cos 1(2sin 42)2sin (2x x x u +-=?-?=∴)2cos 1(2sin 4x x y +-='. [例2]已知函数???????>+≤+=)1)(1(2 1)1)(1(2 1)(2 x x x x x f 判断f(x)在x=1处是否可导? 错解:1)1(,1) 11(2 1]1)1[(2 1 lim 2 2 ='∴=?+- +?+→?f x x x 。 分析: 分段函数在“分界点”处的导数,须根据定义来判断是否可导 . 解: 1) 11(2 1]1)1[(2 1 lim lim 2 2 =?+- +?+=??- - →?→?x x x y x x ∴ f(x)在x=1处不可导. 注:+→?0x ,指x ?逐渐减小趋近于0;-→?0x ,指x ?逐渐增大趋近于0。 点评:函数在某一点的导数,是一个极限值,即x x f x x f x ?-?+→?) ()(lim 000 ,△x →0,包括△x →0+,与△x →0- ,因此,在判定分段函数在“分界点”处的导数是否存在时,要验证其左、右极限是否存在且相等,如果都存在且相等,才能判定这点存在导数,否则不存在导数. [例3]求322+=x y 在点)5,1(P 和)9,2(Q 处的切线方程。 错因:直接将P ,Q 看作曲线上的点用导数求解。 分析:点P 在函数的曲线上,因此过点P 的切线的斜率就是y '在1=x 处的函数值; 点Q 不在函数曲线上,因此不能够直接用导数求值,要通过设切点的方法求切线. 解:4.4,3212= ' ∴='∴+==x y x y x y 即过点P 的切线的斜率为4,故切线为:14+=x y .

高中导数经典知识点及例题讲解

高中导数经典知识点及 例题讲解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

§ 1.1 变化率与导数 1.1.1 变化率问题 自学引导 1.通过实例分析,了解平均变化率的实际意义. 2.会求给定函数在某个区间上的平均变化率. 课前热身 1.函数f (x )在区间[x 1,x 2]上的平均变化率为Δy Δx =________. 2.平均变化率另一种表示形式:设Δx =x -x 0,则Δy Δx =________,表示函数 y =f (x )从x 0到x 的平均变化率. 1.f (x 2)-f (x 1)x 2-x 1 答 案 2. f (x 0+Δx )-f (x 0) Δx 名师讲解 1.如何理解Δx ,Δy 的含义 Δx 表示自变量x 的改变量,即Δx =x 2-x 1;Δy 表示函数值的改变量,即Δy =f (x 2)-f (x 1). 2.求平均变化率的步骤 求函数y =f (x )在[x 1,x 2]内的平均变化率. (1)先计算函数的增量Δy =f (x 2)-f (x 1). (2)计算自变量的增量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f x 2-f x 1 x 2-x 1 . 对平均变化率的认识 函数的平均变化率可以表现出函数在某段区间上的变化趋势,且区间长度越小,表现得越精确.如函数y =sin x 在区间[0,π]上的平均变化率为0,而在 [0,π2]上的平均变化率为sin π 2-sin0 π2-0 =2π. 在平均变化率的意义中,f (x 2)-f (x 1)的值可正、可负,也可以为零.但Δx =x 2-x 1≠0.

导数的概念经典例题

经典例题透析 类型一:求函数的平均变化率 例1、求2 21y x =+在0x 到0x x +?之间的平均变化率,并求01x =,1 2 x ?=时平均变化率的值. 思路点拨: 求函数的平均变化率,要紧扣定义式 00()() f x x f x y x x +?-?= ??进行操作. 解析:当变量从0x 变到0x x +?时,函数的平均变化率为 22 0000()()[2()1][21] f x x f x x x x x x +?-+?+-+= ??042x x =+? 当01x =,12x ?= 时,平均变化率的值为:1 41252 ?+?=. 总结升华:解答本题的关键是熟练掌握平均变化率的概念,只要求出平均变化率的表达式,其他就迎刃 而解. 举一反三: 【变式1】求函数y=5x 2+6在区间[2,2+x ?]内的平均变化率。 【答案】2 2 2 5(2)6(526)205y x x x ?=+?+-?+=?+?, 所以平均变化率为 205y x x ?=+??。 【变式2】已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]. 【答案】(1)4;(2)3;(3)2.1;(4)2.001. 【变式3】自由落体运动的运动方程为2 12 s gt =,计算t 从3s 到3.1s ,3.01s ,3.001s 各段内的平均速度(位移s 的单位为m )。 【答案】要求平均速度,就是求 s t ??的值,为此需求出s ?、t ?。 设在[3,3.1]内的平均速度为v 1,则 1 3.130.1(s)t ?=-=, 22111 (3.1)(3) 3.130.305(m)22 s s s g g g ?=-= ?-?=。 所以1110.305 3.05(m / s)0.1s g v g t ?= ==?。 同理2220.03005 3.005(m / s)0.01 s g v g t ?= ==?。

高三数学一轮复习——导数的概念及运算

高三数学一轮复习——导数的概念及运算 考试要求 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y =c ,y =x ,y =x 2,y =x 3,y =1 x ,y =x 的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f (ax +b ))的导数;6.会使用导数公式表. 知 识 梳 理 1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ?→ f (x 0+Δx )-f (x 0)Δx =0lim x ?→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ?→Δy Δx = lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 称为函数y =f (x )在开区间内的导 函数. 3.导数公式表 基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0

高中数学复习典型题专题训练20---导数的概念与几何意义

高中数学复习典型题专题训练20 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率00()() f x x f x y x x +?-?= ??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”, 符号“→”读作“趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 3.可导与导函数: 如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y '). 导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数. 4.导数的几何意义: 设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与00(,())B x x f x x +?+?的一条割线.由此割线的斜率是00()() f x x f x y x x +?-?= ??,可知曲线割线的斜率就是函数的平均变化知识内容 板块一.导数的概念 与几何意义 y D C B A

专题1.导数的概念及其运算

导数的概念及其运算 考纲导视 (一)考纲要求: 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义,求函数y =c ,y =x ,y =x 2,y =x 1的导数. 4.能利用给出的8个基本初等函数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数[仅限于形如f (ax +b )的复合函数]的导数. (二)考纲研读: 1.函数y =f (x )在点x 0处的导数记为f ′(x 0),它表示y =f (x )在点P (x 0,y 0)处切线的斜率,即k = f ′(x 0).导数源于物理,位移、速度的导数都有明显的物理意义. 2.对于多项式函数的导数,可先利用导数的运算法则将其转化成若干个与8个基本初等函数有关的和差积商形式,再进行求导. 基础过关 (一)要点梳理: 1.函数y =f (x )从x 1到x 2的平均变化率: 函数y =f (x )从x 1到x 2的平均变化率为fx 2-fx 1x 2-x 1 ,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx . 2.函数y =f (x )在x =x 0处的导数: (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0 fx 0+Δx -fx 0Δx =lim Δx →0 Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 fx 0+Δx -fx 0Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). (3)物理意义:在物理学中,如果物体运动的规律是 s =s (t ),那么该物体在时刻 t 0 的瞬时速度 v =s ′(t 0);如果物体运动的速度随时间变化的规律是 v =v (t ),则该物体在时刻 t 0 的瞬时加速度为 a =v ′(t 0)。 3.函数f (x )的导函数:称函数f ′(x )=lim Δx →0 fx +Δx -fx Δx 为f (x )的导函数,导函数有时也记作y ′. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)????fx gx ′=f xgx -fxg x g 2x (g (x )≠0).

高中数学 导数经典知识点及例题讲解

§ 1.1 变化率与导数 1.1.1 变化率问题 自学引导 1.通过实例分析,了解平均变化率的实际意义. 2.会求给定函数在某个区间上的平均变化率. 课前热身 1.函数f (x )在区间[x 1,x 2]上的平均变化率为 Δy Δx =________. 2.平均变化率另一种表示形式:设Δx =x -x 0,则Δy Δx =________,表示函 数y =f (x )从x 0到x 的平均变化率. 1.f (x 2)-f (x 1)x 2-x 1 答 案 2. f (x 0+Δx )-f (x 0) Δx 名师讲解 1.如何理解Δx ,Δy 的含义 Δx 表示自变量x 的改变量,即Δx =x 2-x 1;Δy 表示函数值的改变量,即Δy =f (x 2)-f (x 1). 2.求平均变化率的步骤 求函数y =f (x )在[x 1,x 2]内的平均变化率. (1)先计算函数的增量Δy =f (x 2)-f (x 1). (2)计算自变量的增量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f x 2-f x 1 x 2-x 1 . 对平均变化率的认识 函数的平均变化率可以表现出函数在某段区间上的变化趋势,且区间长度越小,表现得越精确.如函数y =sin x 在区间[0,π]上的平均变化率为0,而在 [0,π2]上的平均变化率为sin π 2-sin0 π2 -0=2 π . 在平均变化率的意义中,f (x 2)-f (x 1)的值可正、可负,也可以为零.但Δx =x 2-x 1≠0.

典例剖析 题型一求函数的平均变化率 例1 一物体做直线运动,其路程与时间t的关系是S=3t-t2. (1)求此物体的初速度; (2)求t=0到t=1的平均速度. 分析t=0时的速度即为初速度,求平均速度先求路程的改变量ΔS=S(1) -S(0),再求时间改变量Δt=1-0=1.求商ΔS Δt 就可以得到平均速度. 解(1)由于v=S t = 3t-t2 t =3-t. ∴当t=0时,v0=3,即为初速度.(2)ΔS=S(1)-S(0)=3×1-12-0=2 Δt=1-0=1 ∴v=ΔS Δt = 2 1 =2. ∴从t=0到t=1的平均速度为2. 误区警示本题1不要认为t=0时,S=0.所以初速度是零. 变式训练1 已知函数f(x)=-x2+x的图像上一点(-1,-2)及邻近一点 (-1+Δx,-2+Δy),则Δy Δx =( ) A.3 B.3Δx-(Δx)2 C.3-(Δx)2D.3-Δx 解析Δy=f(-1+Δx)-f(-1) =-(-1+Δx)2+(-1+Δx)-(-2) =-(Δx)2+3Δx. ∴Δy Δx = -Δx2+3Δx Δx =-Δx+3 答案D 题型二平均变化率的快慢比较 例2 求正弦函数y=sin x在0到π 6 之间及 π 3 到 π 2 之间的平均变化率.并比 较大小. 分析用平均变化率的定义求出两个区间上的平均变化率,再比较大小. 解设y=sin x在0到π 6 之间的变化率为k1,则

相关文档
相关文档 最新文档