文档库 最新最全的文档下载
当前位置:文档库 › 空调温度控制系统的数学模型

空调温度控制系统的数学模型

空调温度控制系统的数学模型
空调温度控制系统的数学模型

空调温度控制系统的数学模型

一、 恒温室的微分方程

为了研究上的方便,把图所示的恒温室看成一个单容对象,在建立数学模型,暂不考虑纯滞后。

1. 微分方程的列写

根据能量守恒定律,单位时间内进入恒温室的能量减去单位时间内由恒温室流出的能量等于恒温室中能量蓄存的变化率。即

,????????=+?? ? ? ?????????

恒温室内蓄每小时进入室内每小时室内设备照热量的变化率的空气的热量明和人体的散热量 ??????-+?? ? ???????

每小时从事内排每小时室内向出的空气的热量室外的传热量

上述关系的数学表达式是:

111()()c a b n a d C Gc q Gc dt αθθθθθγ

-=+-+ (2-1) 式中 1C —恒温室的容量系数(包括室内空气的蓄热和设备与维护结构表层的蓄热)

(千卡/ C ? );

a θ—室内空气温度,回风温度(C ?);

G —送风量(公斤/小时);

1c —空气的比热(千卡/公斤 );

c θ —送风温度(C ?);

n q —室内散热量(千卡/小时);

b θ—室外空气温度(C ?);

γ—恒温室围护结构的热阻(小时 C ? /千卡)。

将式(2—1)整理为:

111111111n b a c a q d Gc C dt Gc Gc Gc θθθγθγγγ

++=++++ 11111n a q Gc Gc Gc γθγ??+ ? ?=+ ?+ ???

(2-2)

或 11()a a c f d T K dt

θθθθ+=+ (2-3) 式中 111T R C = —恒温室的时间常数(小时)。 111

1R Gc γ

=+ —为恒温室的热阻(小时 /千卡) 1

111

Gc K Gc γ

=+ —恒温室的放大系数(/C C ?); 1b n f q Gc θγ

θ+

= —室内外干扰量换算成送风温度的变化(C ?)。

式(2—3)就是恒温室温度的数学模型。式中 和 是恒温的输入参数,或称输入量;而 是恒温室的输入参数或称被调量。输入参数是引起被调量变化的因素,其中起调节作用,而起干扰作用。输入量只输出量的信号联系成为通道。干扰量至被调量的信号联系成为干扰通道 。调节量至被调量的信号联系成为调节通道。

如果式中是f θ个常量,即0f f θθ=,则有 110()a a c f d T K dt

θθθθ+=+ (2-4) 如果式中c θ是个常量,即c θ0c θ=,则有 1

10()a a c f d T K dt

θθθθ+=+ (2-5) 此时式成为只有被调节量和干扰量两个的微分方程式.此式也称为恒温室干扰通道的微分方程式。 2. 增量微分方程式的列写

在自动调节系统中,因主要考虑被调量偏离给定值的过渡过程.所以往往希望秋初被调增量的变化过程.因此,我们要研究增量方程式的列写.所谓增量方程式就是输出参数增量与输入参数增量间关系的方程式。

当恒温室处在过渡过程中,则有:

0a a a θθθ=+?,0c c c θθθ=+?, 0f f f θθθ=+? (2-7)

式中带“?” 项增量.

将式(2—7)代入式(2—3)得: 101001()()a a a c f c f d T K K dt

θθθθθθθ?+?=-+++?+? 将式(2—6)代入式(2—8)得: 11()a a c f d T K dt

θθθθ?+?=?+? 式中(2—9)是恒温式增量微分方程式的一般表达式,显然,它与式(2—3)有相同的形式 。

对上式取拉式变换,克的恒温室的传递函数如下:

1111

K W T S =+

二、 热水加热器对象的微分方程

如前所述,谁加热器可以是个双容对象,存在容量滞后,为了使研究问题简化,可以把图2—7水加热器看成水加热器看成是一个容量滞后的单容对象,这里掀不考虑它的纯滞后,那末水加热器对象特性了用下述微分方程式来描述: 440c c f d T K W dt

θθθθ?+?=?+?+? 式中 c θ? —水加热器后空气温度的变化(C ?);

4T —水加热器的时间常数(小时)

; W ?—热水流量变化( 3米/小时);

0θ?—水加器前送风温度的变化(C ?);

4f θ?—进入水加热器的热水温度的变化引起的散热量变化折合成送风

温度的变化(C ?);

4K —水加热器的放大系数(/C ? 小时公斤 )。他的物理意义是当热水流

量变化一个单位是引起的散热量变化社和送风温度的变化。

当热水器前送风温度为常量且进入水加热的温度不变时,即00θ?= ,

0f θ?= ,由上式可以得到热水加热器1SR 对象调节通道的微分方程式如下: 4400c c f d T K W dt

θθθθ?+?=?+?+? 当热水加热器前送风温度为常量且进入加热器的热水流量变化为常量,即 00θ?=,0W ?= ,由上述可得到热水加热器2SR 的对象

调节通道的微分方程式如下:

44c c f d T dt

θθθ+?=? 对上加热器1SR 及2SR 取拉式变换,可得二者传递函数的传递函数如下: ()4441

K W s T S =+ '441()1W s T S =+ 三、 敏感元件及变送器的特性

敏感元件及变送器也是自动调节系统中的一个重要组成部分,他是自动调节系统的“感觉器官”,调节器根据特的信号作用。

1.敏感元件的微分方程

根据热平衡原理,热电阻每小时有周围介质吸收的热量与每小时周围介质传入的热量相等,故无套管热电阻的热量平衡方程式为: 2()z a z d C F dt

θαθθ=- 式中 2C —热电阻热容量(/C ?千卡);

z θ —热电阻温度(C ?)

; a θ —介质温度(C ?);

α —介质对热电阻的传热系数(2/C ?

千卡米小时); F —热电阻的表面积 (2米);

由式 得 22z a d z T K dt

θθθ+= 如令敏感元件的放大系数21K =,则上式可写成 2z a d z T dt

θθθ+= 式中 222T R C = —敏感元件的时间常数(小时),其中21R F α=

为敏感元件的热阻力系数(/C ? 小时千卡)。

其时间常数与对象的时间常数相比较 ,一般都较小。当敏感元件的时间常数小道可以忽略时,式就变成

2z a K θθ=

2.变送器的特性

采用电动单元组合仪表时,一般需要将被测的信号转换成统一0—10毫安的电流信号,采用气动单元组合仪表需转换成统一的0.2—1.0公斤/2厘米信号。他们在转换时其时间常数和之滞后时间都很小,可以略去不计。所以实际上相当于一个放大环节。此时变送器特性可用下式表示:

Z B Z B K θ=

式中 Z B —经变送器将成比例变幻后的相应信号(2/毫安或公斤厘米);

Z θ—敏感元件反映的被测参数(温度)( C ? );

B K —变送器的防大系数。

四、 敏感元件及变送器特性

考虑到敏感元件为一阶惯性元件,二变送器为比例环节,将式(2—19)代入式(2—16)得: 22Z Z B a dB T B K K dt

θ+= 其增量方程式: 22

Z Z B a d B T B K K dt θ?+?=? 如果敏感元件的时间常数的数值与对象常数比值可略去时,则有: 2Z B a B K K θ?=?

即敏感元件加变送器这一环节可以看成是一个比例环节。

对敏感器及变送器微分方程取拉式变换可得其传递函数如下:

()2W s K =

五、 执行器的特性

执行器是调节系统中得一个重要组成部分,人们把它比喻成工艺自动化的“手脚”.它的特性也将直接印象调节系统的调节质量,根据流量平衡关系,可列出气动执行机构的微分方程式如下: 3dW T W F P dt k

α+=? 式中 333T R C = —气动执行机构的时间常数 (分);

3C —薄膜式的容量系数,并假定为常数3

3/?? ???

米公斤厘米; 3R —是从调节器到调节阀之间到导管的阻力系数23//?? ???

公斤厘米米小时; W —热水流量( 3米/小时);

P —调节起来的气压信号(2/公斤厘米);

α—流量系数;

k —执行器的弹簧的弹簧系数;

在实际应用中,一般都将气动调节阀作为一阶惯性环节来处理,其时间常数为数秒之数十秒之间,而对象时间常数较大时,可以把气动调节发作为放大环节来处理、则简化的调节系统的微分方程如下: W F P k

α?=? 3W K P ?=?

式中 3K k

α= —气动调节阀的防大系数。 对敏感器及变送器微分方程取拉式变换可得其传递函数如下: ()33W s K =

空调温度控制系统

目录 第一章过程控制课程设计任务书 (2) 一、设计题目 (2) 二、工艺流程描述 (2) 三、主要参数 (2) 四、设计内容及要求 (3) 第二章空调温度控制系统的数学建模 (4) 一、恒温室的微分方程 (4) 二、热水加热器的微分方程 (6) 三、敏感元件及变送器微分方程 (7) 四、敏感元件及变送器微分特性 (8) 五、执行器特性 (8) 第三章空调温度控制系统设计 (9) 一、工艺流程描述 (9) 二、控制方案确定 (10) 三、恒温室串级控制系统工作过程 (13) 四、元器件选择 (13) 第四章单回路系统的MATLAB仿真 (17) 第五章设计小结 (19)

第一章过程控制课程设计任务书 一、设计题目:空调温度控制系统的建模与仿真 二、工艺过程描述 设计背景为一个集中式空调系统的冬季温度控制环节,简化系统图如附图所示。

系统由空调房间、送风道、送风机、加热设备及调节阀门等组成。为了节约能量,利用一部分室内循环风与室外新风混合,二者的比例由空调工艺决定,并假定在整个冬季保持不变。用两个蒸汽盘管加热器1SR、2SR对混合后的空气进行加热,加热后的空气通过送风机送入空调房间内。本设计中假设送风量保持不变。 设计主要任务是根据所选定的控制方案,建立起控制系统的数学模型,然后用MATLAB对控制系统进行仿真,通过对仿真结果的分析、比较,总结不同的控制方式和不同的调节规律对室温控制的影响。 三、主要参数 (1)恒温室: 不考虑纯滞后时: 容量系数C1=1(千卡/ O C) 送风量G = 20(㎏/小时) 空气比热c1= 0.24(千卡/㎏·O C) 围护结构热阻r= 0.14(小时·O C/千卡) (2)热水加热器ⅠSR、ⅡSR: 作为单容对象处理,不考虑容量滞后。 时间常数T4=2.5 (分) 放大倍数K4=15 (O C·小时/㎏) (3)电动调节阀: 比例系数K3= 1.35 (4)温度测量环节:

基于PLC的中央空调温度控制系统的设计

基于PLC的中央空调温度控制系统的设计 目前中央空调已经广泛应用于各类建筑,在传统的设计中,中央空调根据最大负荷外加一定裕量设计,无论季节、气候等怎样变化,中央空调都始终在工频状态下全速运行。实际冷负荷根本远远达不到最大负荷,这样就造成了极大的能源浪费。本设计采用西门子S7-200 PLC作为主控制器,基于传统的PID算法,通过西门子MM430变频器控制水泵转速,采用了亚控Kingview进行组态。 标签:中央空调;变频器;PLC;PID 一、引言 目前中央空调已经被广泛地应用于各类建筑中,起着维持建筑物内温湿度恒定的作用。在传统的设计中,中央空调系统的容量的选择一般是依据建筑物的最大制冷、制热负荷或新风交换量的需求,而且保留了充足余量。但是实际上在一年的绝大部分时间中,实际冷负荷根本远远达不到最大负荷,这样就造成了极大的能源浪费。因此,对中央空调进行节能改造的重要性不言而喻。合理地控制中央空调的能耗,就可以减少不必要的能源浪费、节能减排,有利于构建节约型、环保型社会。 二、中央空调系统的节能改造方案 基本控制系统包括四个部分,简单地说,控制系统分为两个部分:控制器、广义对象。其中广义对象包括三部分:测量变送器、执行器、被控对象。为了实现控制系统的稳定,保证控制质量,需要依据工艺要求来为控制器选择合适的控制规律并且运用某种整定方法来对控制器参数进行整定,从而找寻到最佳的控制器参数。本论文所要讨论的是中央空调温度控制系统的设计,采用的算法为传统的PID算法。本系统为温差闭环控制系统。闭环控制的实质是利用负反馈的作用来减小误差。 三、硬件设计 (一)温度传感器选型 传感器是将生产过程工艺参数转换为电参数的装置,当温度超过150℃后,铜在空气中容易被氧化而失去线性特性,因此铜电阻不适宜在腐蚀性环境和高温环境下应用。而且由于铜的电阻率较小,这样铜电阻的机械强度就会变得很低。镍电阻虽然比较灵敏,但是它的热稳定性较差。在本设计中,综合比较铂电阻、铜电阻、镍电阻的特性以及分析中央空调温度控制系统的特点后,选择了Pt100温度传感器。 (二)PLC及扩展模块选型

温度控制系统研究背景与现状

温度控制系统研究背景与现状 1 研究背景 (1) 2 国内外现状 (1) 定值开关温度控制法 (1) PID线性温度控制法 (2) 智能温度控制法 (3) 国内外实例 (4) 1 研究背景 温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。自然界中任何物理、化学过程都紧密地与温度相联系。在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。自18世纪工业革命以来,工业过程离不开温度控制。温度控制广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等。温度控制的精度以及不同控制对象的控制方法选择都起着至关重要的作用,温度是锅炉生产质量的重要指标之一,也是保证锅炉设备安全的重要参数。同时,温度是影响锅炉传热过程和设备效率的主要因素。基于此,运用反馈控制理论对锅炉进行温度控制,满足了工业生产的需求,提高了生产力。 2 国内外现状 温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等。恒值温度控制的目的是使被控对象的温度恒定在某一数值上,且要求其波动幅度(即稳态误差)不能超过某一给定值。从工业温度控制器的发展过程来看,温度控制技术大致可分以下几种: 定值开关温度控制法 所谓定值开关控温法,就是通过硬件电路或软件计算判别当前温度值与设定目标温度值之间的关系,进而对系统加热源(或冷却装置)进行通断控制。若当前温度值比设定温度值高,则关断加热器,或者开动制冷装置;若当前温度值比设定温度值低,则开启加热器并同时关断制冷器。这种开关控温方法比较简单,在没有计算机参与的情况下,用很简单的模拟电路就能够实现。目前,采用这种控制方法的温度控制器在我国许多工厂的老式工业电炉中仍被使用。由于这种控制方式是当系统温度上升至设定点时关断电源,当系统温度下降至设定点时开通

家用空调温度控制器的控制程序设计

《微机原理及接口技术》 课程设计说明书 课题:家用空调温度控制器的控制程序设计专业: 班级: 姓名: 学号: 指导老师:王亚林 2015年1月8 日

目录 第1章、设计任务与目标................................................................................ 错误!未定义书签。 设计课题:................................................................................................ 错误!未定义书签。 设计目的:................................................................................................ 错误!未定义书签。 设计任务:................................................................................................ 错误!未定义书签。 基本设计要求:............................................................................................................. 错误!未定义书签。 第2章、总体设计规划与方案论证 (6) 设计环节及进程安排 (6) 方案论证 (5) 第3章、总体软件设计说明及总流程图 (10) 总体软件设计说明 (10) 总流程图 (11) 第4章、系统资源分配说明 (13) 系统资源分配 (13) 系统内部单元分配表 (13) 硬件资源分配 (15) 数据定义说明 (16) 部分数据定义说明 (16) 第5章、局部程序设计说明 (17) 总初始化以及自检 主流程 按键音模块 (17) .2 单按键消抖模块 (17) PB按键功能模块 (18) 基本界面拆字模块 (19) 4*4矩阵键盘模块 (19) 模式显示模块 (20) 显示更新模块 (21) 室内温度AD转换模块 (21) 4*4矩阵键盘扫描子程序 (21) 整点报时模块 (23) 空调进程判断及显示模块 (23) 三分钟压缩机保护模块 (23) 风向摆动模块 (24) 驱动控制模块 (24) 定时开关机模块 (25) 第6章、系统功能与用户操作使用说明 (26)

空调机温度控制系统

单片机课程(设计) (设计目)题:空调机温度控制系统 学院:明德学院 专业:机械设计制造及其自动化 班级:机电12151 学号: 学生姓名: 指导教师:

2015年6月 贵州大学单片机课程(设计) 诚信责任书 本人郑重声明:本人所呈交的课程设计,是在指导老师的指导下独立进行研究所完成。在文本设计中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。 特此声明。 课程(设计)作者签名: 日期:

空调机温度控制系统 摘要 新世纪里,人们生活质量不断提高,同时也对高科技电子产业提出了更高的要求,为了使人们生活更人性化、智能化。我设计了这一个基于单片机的空调温度控制系统,人们只有生活在一定的温度环境内才能长期感觉舒服,才能保证不中暑不受冻,所以对室内温度要求要高。对于不同地区空调要求不同,有的需要升温,有的需要降温。一般都要维持在22~26°C。 目前,虽然我国大量生产空调制冷产品,但由于我国人口众多,需求量过盛,在我国的北方地区,还有好多家庭还没有安装有效地室内温控系统。温度不能很好的控制在一定的范围内,夏天室内温度过高,冬天温度过低,这些均对人们正常生活带来不利的影响,温度、湿度均达不到人们的要求。以前温度控制主要利用机械通风设备进行室内、外空气的交换来达到降低室内温度,实现室内温度适宜人们生活。以前通风设备的开启和关停,均是由人手动控制的,即由人们定时查看室内外的温度、湿度情况,按要求开关通风设备,这样人们的劳动强度大,可靠性差,而且消耗人们体力,劳累成本过高。为此,需要有一种符合机械温控要求的低成本的控制器,在温差和湿度超过用户设定值范围时,启动制冷通风设备,否则自动关闭制冷通风设备。鉴于目前大多数制冷设备现在状况,我设计了一款基于MCS51单片机空调温度控制系统。

中央空调温度控制系统

过程控制课程设计报告 ——中央空调温度控制系统 一、课程设计目的 1、熟悉并掌握组态王软件的基本使用; 2、通过组态王软件的使用,进一步掌握了解过程控制理论基础知识; 3、培养自主查找资料、收索信息的能力; 4、培养实践动手能力与合作精神。 二、选题背景 随着计算机技术、信息技术、控制理论的快速发展,人们对生活质量和工作环境的要求也不断增长,智能建筑应运而生。中央空调是智能建筑的重要组成部分,中央空调的能耗占整个建筑能耗的50%~70%,因此中央空调系统的监控是楼宇自动化系统研究的重点。在民航业中,中央空调系统是航站楼内最为重要的系统之一,其系统的性能直接影响到旅客的感受。 三、设计任务 由于中央空调系统非常复杂,本设计选取温度作为主要被控对象,使用组态王设计温度监控画面,能实现被控环境的温度设定并实时监控温度的变化趋势,控制器采用PID控制算法,可以在监控界面上对PID参数进行整定,实现稳态误差小于5%。 四、详细设计 1、监控界面说明 监控界面主要由三部分组成:系统组成部分、PID调节部分和显示部分,如图1所示。 系统组成部分位于画面左上侧,由被控环境、温度传感器、A/D模块、控制器、D/A模块、变频器、风机和管道组成。温度传感器检测被控环境的温度,经过A/D模块传送至控制器,与温度设定值比较,输出控制值,经D/A模块传送至变频器,控制风机的转速。值0-10对应管道流速,0为不流动,10为最快,运行时点击“系统运行”按钮,管道出现流动效果。 PID调节部分位于画面右侧,包括PID控件、环境温度设定显示按钮和PID参数输入按钮。利用系统PID控件内置的PID实现温度的控制,点击相应的按钮可输入值。 显示部分位于画面左下侧和右上侧,包括实时温度曲线、历史温度曲线、报警窗口和实时报表。实时温度曲线显示温度的调节变化过程。

空调温度控制系统的建模与仿真设计

过程控制工程课程设计 课题名称空调温度控制系统的建模与仿真 学院 专业 班级 学生 学号 时间 6 月13日至 6月19日 指导教师(签字) 2011 年 6 月 19 日

目录 第一章设计题目及要求 (1) 1.1设计背景 (1) 1.2设计任务 (1) 1.3主要参数 (2) 1.3.1恒温室: (2) 1.3.2热水加热器ⅠSR、ⅡSR: (2) 1.3.3电动调节阀: (2) 1.3.4温度测量环节: (2) 1.3.5调节器: (2) 第二章空调温度控制系统的数学模型 (3) 2.1恒温室的微分方程 (3) 2.1.1微分方程的列写 (3) 2.1.2 增量微分方程式的列写 (5) 2.2 热水加热器对象的微分方程 (5) 2.3敏感元件及变送器的特性 (6) 2.3.1敏感元件的微分方程 (7) 2.3.2变送器的特性 (7) 2.3.3敏感元件及变送器特性 (8) 2.4 执行器的特性 (8) 第三章控制系统方案设计 (9) 3.1系统分析 (9) 3.2 单回路控制系统设计 (10) 3.2.1单回路控制系统原理 (10) 3.2.2单回路系统框图 (10) 3.3串级控制系统的设计 (11) 3.3.1串级控制系统原理 (11) 3.3.2串级控制系统框图 (12) 第四章单回路系统调节器参数整定 (13) 5.1.1、PI控制仿真 (16) 5.1.2 PID控制仿真 (17) 5.1.3、PI与PID控制方式比较 (17) 第六章设计小结 (18) 参考文献 (18)

第一章设计题目及要求 1.1设计背景 设计背景为一个集中式空调系统的冬季温度控制环节,简化系统图如附图所示。 系统由空调房间、送风道、送风机、加热设备及调节阀门等组成。为了节约能量,利用一部分室循环风与室外新风混合,二者的比例由空调工艺决定,并假定在整个冬季保持不变。用两个蒸汽盘管加热器1SR、2SR对混合后的空气进行加热,加热后的空气通过送风机送入空调房间。本设计中假设送风量保持不变。 1.2设计任务 设计主要任务是根据所选定的控制方案,建立起控制系统的数学模型,然后用MATLAB对控制系统进行仿真,通过对仿真结果的分析、比较,总结不同的控

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

中央空调温控器操作说明

现在很多小伙伴家里在装修的时候,都安装了中央空调,随之配套的还有中央空调的温控器,很多小伙伴还不知道温控器怎么操作,下面就一起来看看温控器的操作说明吧。 中央空调温控器分爲电子式和机器式两种,按显示不同分爲液晶显示和调理式。中央空调温控器是经过顺序编辑,用顺序来控制并向执行器收回各种信号,从而到达控制空调风机盘管以及电动二通阀的目的。 机器式 机器盘管温控器使用于商业、工业及民用修建物。可对采暖、冷气的中央空调末端风机盘管、水阀停止控制。使所控场所环境温度恒定爲设定温度范围内。温度设定拔盘指针应设定爲所需恒定温度地位。拔动开关功用辨别爲:电源开关(开ON—关OFF);运转形式开关(暖气HEAT—冷气COOL),FAN风速开关(低速L—中速M—高速H)。可控制设备:三档风机盘管风速,三线电动阀,二线电动阀,也可接电磁阀、开关型风阀或三线型风阀。外型尺寸。

操作办法 1、开关机:把拨动开关拨动到ON地位,温控器开机;把开关拨动到OFF 地位,温控器关机。 2、打工形式设定:把拨动开关拨动到COOL地位,温控器设定爲制冷形式;把拨动开关拨动到HEAF地位,温控器设定爲制热形式。 3、温度设定:机器式温控器,采用旋钮式设定温度,把红点对着面板标明的温度数据即可。 4、风速设定:把开关拨动到LOW地位;温控器设定爲高档风速;把开关拨动到WED地位,温控器设定爲中档风速;把开关拨动到High地位,温控器设定爲高档风速。 快益修以家电、家居生活为主营业务方向,提供小家电、热水器、空调、燃气灶、油烟机、冰箱、洗衣机、电视、开锁换锁、管道疏通、化粪池清理、家具维修、房屋维修、水电维修、家电拆装等保养维修服务。

发酵温度控制系统的数学模型及仿真

2 发酵罐温度控制系统的数学模型 发酵罐温度控制系统实验平台是以一个7L 发酵罐为主体,罐壁设置有冷却套,相应的设立测温点和调节阀,通过阀门调节冷却套内冷却液的流量来实现对发酵罐内温度的控制,发酵罐示意图如图1所示。 图1 发酵罐示意图 在白酒发酵的过程中,发酵罐内由于酵母的作用,在发酵过程中会产生生化反应热,热量的逐渐释放导致发酵温度逐渐上升。在整个发酵过程中,发酵温度必须根据具体的生产工艺进行严格控制,罐内温度通过控制冷却夹套内的冷却水的流量进行降温,整套系统没有外部加热措施。罐内发酵反应热有一部分使罐内温度升高,一部分热量散失到罐壁和冷媒中,在此不考虑发酵体与罐壁之间的热量传递,罐内的热平衡方程为: ? =-Tdt mC Q Q 21 (2-1) 式中 1Q :发酵过程产生的热量;2Q :发酵过程散失的热量;m :反应物质量 C :发酵罐内反应物的比热容;T 发酵罐温度。 公式1-1可以写成: ? =?Tdt MC Q (2-2) 式中 21Q Q Q -=? 对公式1-2求拉普拉斯变换得: s m C T Q S S )()(=? (2-3) 即可由罐内的热平衡方程式可以得到发酵罐内的传递函数为: m C s Q T G S S S 1 ) ()()(= ?= (2-4) 考虑到在实际的过程中的干扰因素,所以被控对象的数学模型中添加一个滞后环节。因此,用一阶惯性加纯滞后环节来表示,其传递函数为 mCs e Q T G s S S S τ-= ?= ) ()()( (2-5)

3 模糊预测控制器的设计及仿真结果 针对发酵罐中发酵对象大时滞、大时变、严格的非线性、多变量耦合等特点。采用了将模糊控制与预测控制结合的方法,利用模糊建模方法建立对象预测模型。将设定值与预测输入值之间的预测误差值及预测误差值的变化率作为模糊控制器的输入,模糊控制器再根据模糊规则来推理得到控制量,通过执行机构控制被控对象。其结构图如图2所示。 图2模糊控制系统结构图 3.1预测控制部分 预测控制算法与动态矩阵控制算法类似, 主要通过预测模型,利用系统的输入输出数据预测未来时刻系统输出,作为糊控制器的输入。 3.1.1预测模型 假设被控对象基于阶跃响应的预测模型向量为T N a a a a ],...,,[21=,N 为建模时域。则在k 时刻对系统施加一个控制增量Δu(k)时,即可算出在其作用下未来时刻N 个输出值的向量形式: )()()(k u a k y k y po m ??+= (3-1) 式中)(k y po 为k 时刻未加Δu(k)时的初始预测值,)(k y m 为k 时刻在Δu(k)作用下的模型预测值。 3.1.2在线校正 当k 时刻对系统施加控制u(k)时,利用预测模型即可得出未来时刻的输出预测值 )(k y m 。但是,由于实际存在的模型时变、非线性、环境干扰等因素的影响,预测值会偏离 实际值,故在k+l 时刻要利用系统的实际输出y (k+1)进行在线校正: )]|1()1([)()(k k y k y h k y k y m m p +-++= (3-2) 式中h 为N 维误差校正向量,这里取0.11=h ,9.0=i h ,i=2,3...,N 。)(k y p 为校正后的预测值,经过移位后即可作为k+1时刻的初始预测值,用向量形式可表示为: )()1(k y S k y p po ?=+ (3-3) 式中S 为位移阵。

空调温度控制系统流程图

网上找到以下两种空调的自动控制方案。 比较简单的一种是如下图所示的单回路的闭环控制系统,传感器采用温度传感器,调节器采用pid控制,执行器指电机,调节阀指的是出风口的阀门开度。 另一种比较复杂的是如下所示的串级控制, 分主回路和副回路,当室温偏离设定值时,调节器输出偏差指令信号,控制调节阀开大或关小,改变进入空气热交换器的蒸汽量或热水量,从而改变送风温度,达到控制室温的目的。 飞机飞行自动控制系统例子 1、高度控制系统 控制飞机在某一恒定高度上飞行的系统。它以飞机俯仰角控制系统为内回路,因此除包括与自动驾驶仪俯仰通道中相同的元、部件(如俯仰角敏感元件、计算机、舵回路等)外,还包括产生高度差(当前高度与期望高度的差值ΔH)信号和升降速度(夑)信号的敏感元件。专用的高度修正器或大气数据计算机能输出高度差和升降速度信号。高度控制系统有两种工作状态:一种是自动保持飞机在当时的高度上飞行,简称定高状态;另一种是自动改变飞行高度直到人工预先选定的高度,再保持定高飞行,简称预选高度状态。当驾驶员拨动预选高度旋钮调到预选高度刻度时,飞机自动进入爬高(或下滑)状态。在飞机趋近预选高度后,自动保持在预选的高度上作平直飞行。 2、速度控制系统 通过升降舵或升降舵加油门来自动控制空速或马赫数的系统。通过升降舵调节的系统与高度控制系统相似,也以自动驾驶仪俯仰通道作为内回路。在保持定速状态下,空速差(ΔV)等于当时空速(V)与系统投入该状态瞬间空速(V0)之差。在预选空速状态下,空速差等于当时空速与预选空速(Vg)之差。为提高控制速度的精度,须引入空速差的积分信号。在保持飞机

姿态或飞行高度不变的条件下,空速也可由油门自动控制。将空速差和空速变化率(妭)信号引入油门控制器来改变发动机油门的大小。如不满足上述条件,改变油门大小只能使飞机升高或降低,而速度不变。为防止随机阵风引起空速频繁变化以致对发动机过分频繁调节,一般将空速差和空速变化率信号经过阵风滤波器(通常为低通滤波器)进行滤波。为了改善飞机速度控制的质量,常采用比例加积分再加微分的控制方式。

基于PLC的变频中央空调温度控制系统的毕业设计说明

唐山学院 毕业设计 设计题目:基于PLC的变频中央空调温度控制系统设计 系别:智能与信息工程学院 班级: 姓名: 指导教师:田丽欣 2016年6月 1 日

基于PLC的变频中央空调温度控制系统 设计 摘要 为了保证环境温度和湿度的舒适,大多酒店、大型商场、工厂车间、写字楼甚至学校等都装有中央空调系统,方便管理以及节约能源。但传统的中央空调能源利用率还是相对较低,普遍存在30%左右的无效能耗。传统的中央空调能源消耗大,而效率相对低下,无论负荷的大小,电机已及系统都是在全负荷的状态下工作的,当用户不需要这么大的负荷时,就造成了资源的浪费。 中央空调系统由空调主机,冷却水泵、冷却塔,冷冻水泵、风机、盘管系统等组成。冷冻水是流过空调主机后,经过空调主机制冷降温,通过冷冻泵输送到各个房间中,然后通过盘管系统,和室内的空气进行热交换,最后再流回空调主机,形成循环。而冷却水系统则主要是给空调主机降温,在冷却泵的作用下,冷却水流经空调主机,把空调主机的热量带走,再在冷却塔处经由却塔风机进行散热,最后再流回空调主机,形成循环。冷冻水、冻却水作为热量的载体,不断地把室内的热量带到室外。 本论文所研究的中央空调系统可在PLC的控制下,利用PT-100温度变送器采集室内温度,通过EM235模拟量输入输出模块将采集到的温度度数转化为模拟量,进行PID计算,转化后输送给变频器,变频器再带动电机做出相应的加减速转动,使室内温度发生变化,从而形成闭环控制,实现最优控制,低能源高效率,保证居住、工作环境的温度和湿度的同时,最大空间的节约能源,提高能源利用率。 关键词:中央空调温度控制PLC EM235 变频器PID控制

温度控制系统设计文献综述

基于单片机的温度控制 系统设计文献综述 前言 随着现代工业的发展,人们需要对工业生产中有关温度系统进行控制,如钢铁冶炼过程需要对刚出炉的钢铁进行热处理,塑料的定型及各种加热炉、热处理炉、反应炉和锅炉中温度进行实时监测和精确控制温度是日常生活、工业、医学、环境保护、化工、石油等领域最常遇到的一个物理量。而且,很多领域的温度可能较高或较低,现场也会较复杂,有时人无法靠近或现场无需人力来监控。如加热炉大都采用简单的温控仪表和温控电路进行控制, 存在控制精度低、超调量大等缺点, 很难达到生产工艺要求。且在很多热处理行业都存在类似的问题,所以,设计一个较为通用的温度控制系统具有重要意义。这时我们可以采用单片机控制,这些控制技术会大大提高控制精度,不但使控制简捷,降低了产品的成本,还可以和计算机通讯,提高了生产效率. 单片机是指芯片本身,而单片机系统是为实现某一个控制应用需要由用户设计的,是一个围绕单片机芯片而组建的计算机应用系统,这是单片机应用系统。单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具

有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,应用日益广泛,并且正在逐步取代现有的多片微机应用系统。 1.陈岩《基于ARM 的远程控制温控系统的设计》一个基于ARM的远程控制系统的设计.该系统以无线寻呼网络接收POCSAG编码的控制命令字,同时利用DIMF信号发送器将要反馈的数据通过公用电话网络以DTMF编码传送回去,从而实现了一个功能完整的远程控制系统,弥补了以往远程控制系统的不足同。 2.金凯鹏胡即明《基于模糊PID 算法远程温度控制系统的实现》针对实时温度控制对象,算法远程温度控制系统是一套远程控制系统,并结合了模糊PID控制算法,利用其电路组成和设计原理,实现了对远程温度系统的监视和控制功能.采集端主要实现温度采集、数码显示、温度设定、无线编码发射、加热开关控制等功能;监控部分主要实现无线解码接收、温度显示、报警等功能模块.本系统实现了实时控制与无线传输结合. 3.王晓员《基于单片机多点温度控制的硬件构建设计》针对目前许多塑料反应炉温度控制不准确的现状,进行了基于MCS-51系列单片机多点温度控制的硬件构建的设计.采用数字化温度传感器DS18820,TLC2543型号的12位开关电容运次逼近模数A/D转换器.成本低、可靠性高 4.王芳《利用单片机实现温度智能控制》温度控制系统是

空调温度控制系统

关于空调温度控制系统的研讨 摘要本文介绍了空调机温度控制系统。本温度控制系统采用的是AT80C51单片机采集数据,处理数据来实现对温度的控制。主要过程如下:利用温度传感器收集的信号,将电信号通过A/D转换器转换成数字信号,传送给单片机进行数据处理,并向压缩机输出控制信号,来决定空调是出于制冷或是制热功能。当安装有LED实时显示被控制温度及设定温度,使系统应用更加地方便,也更加的直观。 关键字 AT80C51单片机 A/D转换器温度传感器 随着人们生活水平的日益提高,空调已成为现代家庭不可或缺的家用电器设备,人们也对空调的舒适性和空气品质的要求提出了更高的要求。现代的只能空调,不仅利用了数字电路技术与模拟电路技术,而且采用了单片机技术,实现了软硬件的结合,既完善了空调的功能,又简化了空调的控制与操作;不仅满足了不同用户对环境温度的不同要求,而且能全智能调节室内的温度。为此,文中以单片机AT80C51为核心,利用LM35温度传感器、ADC0804转换器和数码管等,对温度控制系统进行了设计。 一、总体设计方案 空调温度控制系统,只要完成对温度的采集、显示以及设定等工作,从而实现对空调控制。传统的情况时采用滑动电阻器电阻充当测温器件的方案,虽然其中段测量线性度好,精度较高,但是测量电路的设计难度高,且测量电路系统庞大,难于调试,而且成本相对较高。鉴于上述原因,我们采用了ADC0804将输入的模拟信号充当测温器件。外部温度信号经ADC0804将输入的模拟信号转换成8位的数字信号,通过并口传送到单片机(AT80C51)。单片机系统将接收的数字信号译码处理,通过数码管将温度显示出来,同时单片机系统还将完成按键温度设定、一段温度内空调没法使用等程序的处理,将处理温度信号与设定温度值比较形成可控制空调制冷、制热、停止工作三种工作状态,从而实现空调的智能化。原理图如下图所示: 图 1 系统原理图 二、硬件电路设计 该空调温度控制系统的硬件电路,只要由单片机AT80C51最小系统、8段译码管、数码管、按键电路、驱动电路、A/D转换电路、温度采样电路等组成。图2为该实验的系统框图,我们下面主要就几个模块进行扼要介绍。 图2 系统框图 2.1 温度的采集——温度传感器 通过查找资料我们发现,温度传感器并不是什么复杂和神秘的电子器件,在对精度要求不高的一般应用中,可以使用一个型号为LM35【1】的温度传感器,它的外观与一般的三极管没有什么区别,温度传感器LM35只有3个管脚:+Vs、Vout、GND。其中,+Vs接+4V~+20V 的电源,为器件工作供电,GND接地。当加上工作电压后,LM35的外壳就开始感应温度,并在Vout管脚输出电压。Vout的输出与温度具有线性关系。 当温度为0时,Vout=0V,如果温度上升,则每上升1°C,Vout的输出增加10mV。如果温度为25°C时,Vout=25*10=250mV。这样,使用一个简单的温度传感器LM35就可以把温度转换成电压信号,这个电压信号直观地反映环境的温度。 2.2 模拟/数字转换器ADC0804

基于PLC的中央空调温度控制系统设计

摘要 中央空调已经广泛应用于商用与民用建筑中,用于保持整栋建筑温度恒定。传统的设计中,无论季节、昼夜和用户负荷的怎样变化,各电机都长期固定在工频状态下全速运行,所以会造成极大的的能源浪费。 本设计采用变频器、PLC、温度传感器等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量达到节能目的。该系统采用西门子的S7—200PLC作为主控制单元,利用传统PID控制算法,通过西门子MM440变频器控制水泵运转速度,保证系统根据实际负荷的情况调整流量,实现恒温控制,从而最大程度的解决能源浪费问题。 本设计通过采用基于USS 协议的RS-485总线通讯的网络,通过西门子TD200文本显示器实现人机界面的设计,使用MCGS工控组态软件,对系统进行理论分析。通过分析该设计,验证了该设计的可靠性,可以解决中央空调的能源浪费问题。 关键词:中央空调,PLC,PID,变频器

ABSTRACT The central air conditioning has been widely used in commercial and civil buildings, which are used to maintain constant temperature of the building. In traditional design, regardless of the season, day and night, and how the user load changes, the motor is fixed to run at full speed for a long time in the condition of power frequency. It will cause great waste of energy. This design is developed based on the combination of frequency converter, PLC, temperature sensor. It makes up a temperature difference closed-loop automatic control system and automatically adjust the output flow of pump to achieve energy saving. The system adopts the Siemens S7-200 PLC as the main control unit, using the traditional PID to control algorithm, using Siemens MM440 inverter to control of pump speed, to guarantee system adjust load flow according to actual situation. All of these will bring out constant temperature control, so as to solve the problem of energy waste to a great extent. This design use RS - 485 bus communication networks which is based on USS protocol and using the Siemens TD200 to realize the human-computer interface design, and using the software made from MCGS, to carries on the theoretical analysis to the system. Verified the reliability of the design, the design can solve the problem of central air conditioning energy waste through the analysis of the design. KEY WORDS: The central air conditioning, PLC, PID, frequency converter

温度控制系统的设计与仿真

: 远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 、 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: " 2013 年 2 月 28 日

) 摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB &

( 目录 1单片机在炉温控制系统中的运用 (6) 1、1系统的基本工作原理 (6) 2温控系统控制算法设计 (7) 温度控制算法的比较 (7) 数字PID算法 (11) 、 3 结论 (21) 致谢 (22) 参考文献 (23) [

基于单片机的空调温度控制器设计

基于单片机的空调温度控制器设计 姓名:余学同 学号:B12040906 日期:2015.12.22

摘要 在自动控制领域中,温度检测与控制占有很重要地位。温度测控系统在工农业生产、科学研究和在人们的生活领域,也得到了广泛应用。因此,温度传感器的应用数量居各种传感器之首。目前,温度传感器正从模拟式向数字集成式方向飞速发展。 本论文概述了温控器的发展及基本原理,介绍了温度传感器的原理及特性。分析了各种温度传感器的优劣。在此基础上描述了系统研制的理论基础,温度采集等部分的电路设计,并对测温系统的一些主要参数进行了讨论。同时在介绍温度控制系统功能的基础上,提出了系统的总体构成。针对测温系统温度采集、接收、处理、显示部分的总体设计方案进行了论证,进一步介绍了单片机在系统中的应用,分析了系统各部分的硬件及软件实现。利用Proteus7.1进行了可行性的仿真,利用Protel DXP 2004进行了电路原理图的绘制,和PCB的制作。试验证明,这套温度控制器具有较强的可操作性,很好的可拓展性,控制简单方便。 本文详细介绍了一种以单片机89C52为核心的空调温度控制系统。空调温度控制系统的设计原理以达到更优的系统性能为目的,由单片机完成数据的采集,处理,显示。该系统以在普通环境下测量到的温度值为确定条件,利用单片机控制空调制冷和制暖来达到所需温度。课题初步计划是在普通环境下的测温,系统的设计及器件的选择也正是在这个基础上进行的。 关键词:DS18B20 单片机温度控制 LED显示

目录 第一章前言 第二章系统方案的确定 2.1 温度传感器产品分类与选择 2.1.1 常用的测温方法 2.1.2 温度传感器产品分类 2.1.3 温度传感器的选择 2.2 总体方案的确定 第三章系统电路总体设计 3.1 系统工作原理 3.2 系统硬件设计 3.2.1 温度采集电路 3.2.2 信号处理与控制电路 3.2.3 温度显示电路 3.2.4 温度设置电路 3.2.5 控制指示电路 3.3系统软件设计 3.3.1 DS18B20数据通信概述 3.3.2 系统流程图设计 总结 参考文献 附录

空调机温度控制系统-Read

空调机温度控制系统 1. 设计要求及预期功能 用MCS-51单片机设计一个空调机的温控系统。具体要求及功能如下: ①实时测量环境温度,并显示当前温度值。 ②当室温度高于设定温度,压缩机运转,使室温降低。 ③当室温低于设定温度,压缩机停止运转。 ④温度设定功能,通过按键输入压缩机启停的温度设定值。设定温度过程中显示设定温度值,以便于操作。设定完毕后,改为显示当前测定温度值。 2. 总体方案 (1)系统设计 1所示。 ① ②系统由四个主要功能模块组成:温度测量、按键输入,数码显示以及控制压缩机启停 模块。 ◆温度测量模块的主要功能是将环境温度转化为电参数(电压),并通过A/D转换得到 数字量送入单片机。 ◆按键输入模块主要功能是实现设定温度值的输入。 ◆LED显示模块主要功能是显示当前环境温度值。因空调对温度精度要求不高,本设 计只要求显示两位整数的温度值。 ◆压缩机控制模块主要功能是单片机根据环境温度与设定温度的比较结果送出开关信 号、控制压缩机的启停。 (2)关键技术 ◆本系统中的关键技术是如何实时测量室内温度。在对外界物理量如温度、湿度、压 力等进行测量时,首先要解决的问题是如何将这些非电量转换为电参数(电阻、电压、

电流),其次,是如何将模拟量(电压)转换为数字量。 ◆显然对温度的测量,温度传感器是必不可少的。温度传感器的种类、型号很多。在 本设计中选用的是AD590温度传感器。 3. 硬件设计及功能说明 ⑴系统的硬件电路:包括主机、温度控制、压缩机的控制、按键及显示5个部分,系统硬件电路原理图如图2所示。 ⑵功能说明 ①将AD590作为室内温度传感器,当温度变化时,AD590会产生电流变化,经OPA1将电流转换为电压,由OPA2做零位调整,最后由OPA3反相放大10倍。 ②ADC0804输出最大转换值=FFH(255),OPA3为放大10倍时,则本电路最大测量温度为:最大显示温度为5.1V/10=0.51V,即51o C(10为放大倍数) 255X=51 知X=0.2 即先乘2再除10 FF→255→255×2→510 R4=0.5 R3=10 即D4=0 D3=5 D2=1 D1=0 本电路显示器只取D3、D2两位数。 ③按下P2.1按钮,放开后立即进入温度设定模式,显示设定最高温度34C(建立TABLE 内),每按一次设定温度将减少1C直至最低设定温度20C,再按一次又回到34C。 ④当室温高于设定温度,压缩机(P3.0)运转,使室温降低,当室温低于设定温度,压缩机停止运转。 ⑤当进入设定温度模式,如未按下设定按钮(P2.1),经数秒后自动解除设定模式,回到室温显示模式。 ⑥本程序以计时中断,每50毫秒中断一次,比较室温与设定温度一次,而令压缩机运转或停止。 4. 软件设计 (1) 软件设计流程 主要包括5个模块: ●主程序 ●按键设定温度模块 ●十进制调整和数据转换模块 ●控制模块 ●显示模块

相关文档
相关文档 最新文档