文档库 最新最全的文档下载
当前位置:文档库 › 小波变换降噪处理及其Matlab实现

小波变换降噪处理及其Matlab实现

小波变换降噪处理及其Matlab实现
小波变换降噪处理及其Matlab实现

 万方数据

 万方数据

 万方数据

小波变换降噪处理及其Matlab实现

作者:冯毅, 王香华, Feng Yi, Wang Xianghua

作者单位:华南理工大学工业装备与控制工程学院,广州,510640

刊名:

数据采集与处理

英文刊名:JOURNAL OF DATA ACQUISITION & PROCESSING

年,卷(期):2006,21(z1)

被引用次数:24次

参考文献(4条)

1.Chui C K An introduction to wavelets 1992

2.Zhu Hailong;Kwok J T Improving de-noising by coefficient de-noising and dyadic wavelet transform pattern recognition 2002

3.潘显兵一种改进的小波阈值降噪方法性能分析[期刊论文]-微计算机信息 2006(7)

4.王亚,吕新华,王海峰一种改进的小波阈值降噪方法及Matlab实现[期刊论文]-微计算机信息 2006(6)

本文读者也读过(3条)

1.朱来东.廉小亲.江远志.ZHU Lai-dong.LIAN Xiao-qin.JIANG Yuan-zhi小波变换在信号降噪中的应用及MATLAB实现[期刊论文]-北京工商大学学报(自然科学版)2009,27(2)

2.赵海英.纪超辉.ZHAO Hai-ying.JI Chao-hui小波变换降噪技术及其在Matlab中的实现[期刊论文]-兵工自动化2006,25(2)

3.仝飞.顾晓辉.吕艳新基于小波变换的战场声信号去噪方法研究[期刊论文]-电脑知识与技术2010,6(4)

引证文献(22条)

1.朱来东,廉小亲,江远志小波变换在信号降噪中的应用及MATLAB实现[期刊论文]-北京工商大学学报(自然科学版) 2009(02)

2.刘浩波,韩宝栋,余道友小波去噪在缓变机械故障检测中的应用[期刊论文]-电子世界 2012(19)

3.刘伟,朱玉婷,付平勇基于小波降噪的铁路边坡测斜监测分析[期刊论文]-四川建筑 2011(06)

4.张鹏军,薄玉成,王惠源,李强基于小波和PCA的火炮输弹系统故障诊断研究[期刊论文]-计算机工程与设计

2012(12)

5.蒯伟,段佳佳基于小波变换的图像重构算法研究[期刊论文]-电子测试 2011(09)

6.李黎基于小波变换的信号噪声平滑处理[期刊论文]-河南科技 2013(09)

7.狄芳,顾辉弹痕三维数据与图像处理研究[期刊论文]-兵工自动化 2011(12)

8.朱启兵,覃莎,杨慧中基于二进小波的相合束广义特征分解盲源分离算法[期刊论文]-数据采集与处理 2010(05)

9.宋佳忆,李斌,黄绍锋基于DSP的涡街流量计小波去噪研究平台[期刊论文]-工业控制计算机 2015(04)

10.刘力天,刘小兵,刘盛铭基于小波变换的频谱检测算法改进[期刊论文]-装备指挥技术学院学报 2011(06)

11.朱来东,廉小亲,江远志小波变换在信号降噪中的应用及Matlab实现[期刊论文]-电子元器件资讯 2008(12)

12.鲍光海,张培铭基于高速摄像机的电磁电器动态特性测试及其图像处理的研究[期刊论文]-南昌大学学报(工科版) 2009(04)

13.曹堃锐,陈砚圃,谭薇基于互相关改进法的高精度测量电信号效果研究[期刊论文]-电测与仪表 2014(20)

14.吴晓静光纤故障定位系统的设计与实现[学位论文]硕士 2010

15.周宏晟小波变换在光缆监测系统中的研究与应用[学位论文]硕士 2008

16.颜世森气流式喷嘴火焰噪声声学特性研究[学位论文]硕士 2009

17.李能禾基于虚拟仪器的心音采集分析系统的研究[学位论文]硕士 2010

18.汪向阳基于地震波检测的管道安全预警系统[学位论文]硕士 2008

19.张金云扫描电机运动特性参数的非接触测试计量技术研究[学位论文]硕士 2012

20.沈彬气流式雾化火焰声学特性与声学诊断[学位论文]硕士 2011

21.覃莎广义特征分解盲源分离算法的若干问题研究[学位论文]硕士 2009

22.颜世森气流式喷嘴火焰噪声声学特性研究[学位论文]硕士 2009

引用本文格式:冯毅.王香华.Feng Yi.Wang Xianghua小波变换降噪处理及其Matlab实现[期刊论文]-数据采集与处理 2006(z1)

最新小波去噪matlab程序.优选

[转帖]小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换[coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2);

energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8

Matlab小波变换函数

Matlab小波函数 Allnodes 计算树结点 appcoef 提取一维小波变换低频系数 appcoef2 提取二维小波分解低频系数 bestlevt 计算完整最佳小波包树 besttree 计算最佳(优)树 *biorfilt 双正交样条小波滤波器组 biorwavf 双正交样条小波滤波器 *centfrq 求小波中心频率 cgauwavf Complex Gaussian小波 cmorwavf coiflets小波滤波器 cwt 一维连续小波变换 dbaux Daubechies小波滤波器计算 dbwavf Daubechies小波滤波器dbwavf(W) W='dbN' N=1,2,3,...,50 ddencmp 获取默认值阈值(软或硬)熵标准 depo2ind 将深度-位置结点形式转化成索引结点形式detcoef 提取一维小波变换高频系数 detcoef2 提取二维小波分解高频系数 disp 显示文本或矩阵 drawtree 画小波包分解树(GUI) dtree 构造DTREE类 dwt 单尺度一维离散小波变换

dwt2 单尺度二维离散小波变换 dwtmode 离散小波变换拓展模式 *dyaddown 二元取样 *dyadup 二元插值 entrupd 更新小波包的熵值 fbspwavf B样条小波 gauswavf Gaussian小波 get 获取对象属性值 idwt 单尺度一维离散小波逆变换 idwt2 单尺度二维离散小波逆变换 ind2depo 将索引结点形式转化成深度—位置结点形式*intwave 积分小波数 isnode 判断结点是否存在 istnode 判断结点是否是终结点并返回排列值 iswt 一维逆SWT(Stationary Wavelet Transform)变换iswt2 二维逆SWT变换 leaves Determine terminal nodes mexihat 墨西哥帽小波 meyer Meyer小波 meyeraux Meyer小波辅助函数 morlet Morlet小波 nodease 计算上溯结点 nodedesc 计算下溯结点(子结点)

matlab小波去噪详解

小波去噪 [xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname') 式中: 输入参数x 为需要去噪的信号; 1.tptr :阈值选择标准. 1)无偏似然估计(rigrsure)原则。它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。 2)固定阈值(sqtwolog)原则。固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。 3)启发式阈值(heursure)原则。它是rigrsure原则和sqtwolog 原则的折中。如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。 4)极值阈值(minimaxi)原则。它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。 2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h). 3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整. 4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd]. 常见的几种小波:haar,db,sym,coif,bior haar db db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 sym sym2 sym3 sym4 sym5 sym6 sym7 sym8 coif coif1 coif2 coif3 coif4 coif5 coif6 coif7 coif8 coif9 coif10 bior bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.5 bior3.7 bior3.9 bior4.4

基于MATLAB的(小波)图像处理

基于MATLAB的(小波)图像处理 姓名:宋富冉 学号:P1******* 院系:电子信息工程学院 专业:电子与通信工程 日期:2015年11月7日

目录 摘要 (3) 第一章初期准备 1.1软件知识储备及学习 (4) 1.2 MATLAB操作平台安装及应用 (4) 1.3操作函数功能及调试 (5) 第二章图像准备 2.1图像采集 (6) 2.2 图像选择和保存 (6) 第三章程序设计及实现 3.1 软件编程调试 (7) 3.2 实现及优化程序 (11) 第四章完成任务报告 4.1报告书写 (12) 4.2总结 (12) 附录 (13)

摘要 本报告主要阐述有关于MABLAT在图像处理方面实际应用中的 六个方面的问题,分别涉及图像的读取、图像添加噪声、利用小波 函数对图像进行分割、分割后图像的重构、图像去除噪声、将程序 处理过程中所得各种图像确定存储格式并保存到指定的磁盘及命名。最终得到预期任务的要求,完成任务。 关键词:图像读取,图像加噪,图像去噪,图像重构,图像保存

第一章初期准备 1.1软件知识储备及学习 由于本人从未学习过MATLAB这门课程及其编程语言,对其一无所知,在之前的学习过程中,比较多的是应用C语言进行一些简单的及较复杂的任务编程。因此,接到任务之日起,本人就开始学习储备有关于此方面的软件知识,并逐步学习了解它的奥妙所在。 首先,是漫无目的的到图书馆查找有关于此类的各种书籍,并上网搜索各类处理程序和文档,以期寻求到刚好符合此次作业任务要求的完整程序设计及源代码。结果是可想而知的,并没有完全吻合的程序与代码。其次,在以上的查找翻看过程中,本人接触到了很多与此任务相关相通的程序设计和处理函数的功能及应用知识,受其启发,自我总结,将实现本任务所要用到的功能函数一一搜集了起来,初步了解了本任务如何开启。 1.2 MATLAB操作平台安装及应用 通过前期的理论准备,下一步就要开始上机实际操作和仿真各个函数在实际应用中的效果。第一步,就是寻求MATLAB操作平台的安装包或安装程序,在自己的桌面上把它装起来,以便后面随时随地使用操作,也为后期更深入的学习此门语言而准备好最基本的学习工具,从而为以后完全掌握此门语言工具打下基础。第二步,就是对本平台的安装和使用,由于此平台有中英文两个版本,于是这对我本人又是一种考验,由于英语专业词汇并不完全过关,对操作菜单中多个名词词组的用意并

matlab小波变换

matlab小波变换 Matlab 1. 离散傅立叶变换的 Matlab实现 Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。这些函数的调用格式如下: A=fft(X,N,DIM) 其中,X 表示输入图像;N 表示采样间隔点,如果 X 小于该数值,那么Matlab 将会对 X 进行零填充,否则将进行截取,使之长度为 N ;DIM 表示要进行离散傅立叶变换。 A=fft2(X,MROWS,NCOLS) 其中,MROWS 和 NCOLS 指定对 X 进行零填充后的 X 大小。别可以实现一维、二维和 N 维 DFT A=fftn(X,SIZE) 其中,SIZE 是一个向量,它们每一个元素都将指定 X 相应维进行零填充后的长度。 函数 ifft、ifft2 和 ifftn的调用格式于对应的离散傅立叶变换函数一致。 别可以实现一维、二维和 N 维 DFT 例子:图像的二维傅立叶频谱 1. 离散傅立叶变换的 Matlab实现% 读入原始图像 I=imread('lena.bmp');函数 fft、fft2 和 fftn 分 imshow(I) % 求离散傅立叶频谱 J=fftshift(fft2(I)); figure;别可以实现一维、二维和 N 维 DFT imshow(log(abs(J)),[8,10]) 2. 离散余弦变换的 Matlab 实现 Matlab

2.1. dct2 函数 功能:二维 DCT 变换 Matlab 格式:B=dct2(A) B=dct2(A,m,n) B=dct2(A,[m,n])函数 fft、fft2 和 fftn 分 说明:B=dct2(A) 计算 A 的 DCT 变换 B ,A 与 B 的大小相同;B=dct2(A,m,n) 和 B=dct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为 m×n。 2.2. dict2 函数 功能:DCT 反变换 格式:B=idct2(A) B=idct2(A,m,n)别可以实现一维、二维和 N 维 DFT B=idct2(A,[m,n]) 说明:B=idct2(A) 计算 A 的 DCT 反变换 B ,A 与 B 的大小相同;B=idct2(A,m,n) 和 B=idct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为m×n。 Matlab 2.3. dctmtx函数 功能:计算 DCT 变换矩阵 格式:D=dctmtx(n) 说明:D=dctmtx(n) 返回一个n×n 的 DCT 变换矩阵,输出矩阵 D 为double 类型。 1. 离散傅立叶变换的 Matlab实现 3. 图像小波变换的 Matlab 实现函数 fft、fft2 和 fftn 分 3.1 一维小波变换的 Matlab 实现 (1) dwt 函数 Matlab

小波去噪matlab程序

小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3');%[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw);

基于MATLAB的小波变换在信号分析中应用的实现

基于MATLAB的小波变换在信号分析中应用的实现 院系:应用技术学院 专业:电子信息工程 姓名:李成云 指导教师单位:应用技术学院 指导教师姓名:王庆平 指导教师职称:讲师 二零一一年六月

The application of wavelet transform based on MTLAB in signal analysis Faculty:Application and Technology Institute Profession:Electronic information engeering Name:Li Chengyun Tutor’s Unit:Application and Technology Institute Tutor:Wang Qingping Tutor’s Title:Lecturer June 2011

第 I 页 目录 摘要 (1) ABSTRACT (2) 前言 (3) 第1章 绪论 (4) 1.1 本文的研究背景意义 (4) 1.2 国内外研究现状 (5) 1.3 本文的研究内容 (7) 第2章 MATLAB 简介 (8) 2.1 MATLAB 的概况 (8) 2.2 MATLAB6.1 的功能 (8) 2.3 MATLAB 的主要组成部分 (9) 2.4 MATLAB 的语言特点 (10) 第3章 基本理论 (12) 3.1 从傅里叶变换到小波变换 (12) 3.1.1 傅里叶变换 (12) 3.1.2 短时傅里叶变换 (13) 3.1.3 小波变换 (14) 3.2 连续小波变换 (15) 3.3 离散小波变换 (17) 3.4 小波包分析 (18) 3.5 多分辨率分析与M ALLAT 算法 (19) 3.5.1 多分辨率分析 (19) 3.5.2 Mallat 算法 (19) 3.6 本章小结 (20) 第4章 小波阈值法图像去噪 (21) 4.1 图像去噪 (21) 4.1.1 邻域平均法 (22) 4.1.2 中值滤波法 (24) 4.2 小波阈值去噪 (27) 4.2.1 阈值去噪原理 (28) 4.2.2 选取阈值函数 ................................................ 28 4.2.3 几种阈值选取方法 .. (29)

基于MATLAB的小波消噪仿真实现 (1)

收稿日期:2007-12-10 作者简介:史振江(1979-),男,汉,河北唐山人,学士,讲师,研究方向智能检测与控制技术。 基金项目:河北省教育厅自然科学项目(Z2006442) 基于MATLAB 的小波消噪仿真实现 史振江1) 安建龙 2) 赵玉菊1) (石家庄铁路职业技术学院1) 河北石家庄 050041 衡水学院2) 河北衡水 053000)  摘要:小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的小波系数限定阈值来消除噪声的方法。分析小波消噪的算法和实现步骤,并基于MATLAB 软件平台编写仿真程序。进行光纤光栅反射信号的小波消噪仿真实验,消噪效果良好。  关键词:小波消噪 阈值 分解 重构 光纤光栅  中图分类号:TP272 文献标识码:A 文章编号:1673-1816(2008)01-0063-04 1 引言  微弱信号检测[1]是关于如何提取和测量强噪声背景下微弱信号的方法,有效的去除信号中的噪声是实现微弱信号检测的关键。小波变换[2]是一种信号的时间、频率分析方法,具有多分辨分析的特点,是时间窗和频率窗都可以改变的时频局部化分析方法,已经广泛应用于信号消噪、信号处理、图像处理、语音识别与合成等领域。小波消噪[3~5]的方法可以分为三类:模极大值法、相关法以及阈值方法。其中,小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的各层系数限定阈值来消除噪声的方法,因其实现简单、计算量小,取得了广泛应用。 MATLAB 即矩阵实验室,是一种建立在向量、数组和矩阵基础上,面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络、图像处理于一体,具有极高的编程效率[6]。其中的小波处理工具箱可以方便实现小波消噪算法,对含噪信号进行消噪处理和研究。 本文详细分析了小波消噪算法,利用MATLAB 软件编写了程序,并对光纤光栅反射谱信号进行了小波消噪仿真实验。 2 小波变换与Mallat 算法  小波变换是指,把某一被称为基本小波的函数()t ψ平移位移b 后, 在不同尺度a 下作伸缩变换,得到连续小波序列,()a b t ψ,再与待分析信号()f t 作内积: 1/2(,)()()f R t b W a b a f t dt a ψ??=∫ (1) 在实际应用中,经常将,()a b t ψ作离散化处理,令2j a =,2j b k =g ,Z k j ∈,则得到相应的离散

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

小波图像去噪及matlab分析

小波图像去噪及matlab实例 图像去噪 图像去噪是信号处理的一个经典问题,传统的去噪方法多采用平均或线性方法进行,常用的是维纳滤波,但是去噪效果不太好(维纳滤波在图像复原中的作用)。 小波去噪 随着小波理论的日益完善,其以自身良好的时频特性在图像去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。具体来说,小波能够去噪主要得益于小波变换有如下特点: (1)低熵性。小波系数的稀疏分布,使图像变换后的熵降低。意思是对信号(即图像)进行分解后,有 更多小波基系数趋于0(噪声),而信号主要部分多集中于某些小波基,采用阈值去噪可以更好的保留原 始信号。 (2)多分辨率特性。由于采用了多分辨方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等(例如0-1突变是傅里叶变化无法合理表示的),可以在不同分辨率下根据信号和噪声的分布来消除噪声。(3)去相关性。小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪。(4)基函数选择灵活。小波变换可灵活选择基函数,也可根据信号特点和去噪要求选择多带小波和小波 包等(小波包对高频信号再次分解,可提高时频分辨率),对不同场合,选择不同小波基函数。 根据基于小波系数处理方式的不同,常见去噪方法可分为三类: (1)基于小波变换模极大值去噪(信号与噪声模极大值在小波变换下会呈现不同变化趋势)

(2)基于相邻尺度小波系数相关性去噪(噪声在小波变换的各尺度间无明显相关性,信号则相反)(3)基于小波变换阈值去噪 小波阈值去噪是一种简单而实用的方法,应用广泛,因此重点介绍。 阈值函数选择 阈值处理函数分为软阈值和硬阈值,设w是小波系数的大小,wλ是施加阈值后小波系数大小,λ为阈值。(1)硬阈值 当小波系数的绝对值小于给定阈值时,令其为0,而大于阈值时,保持其不变,即: (2)软阈值 当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即: 如下图,分别是原始信号,硬阈值处理结果,软阈值处理结果。硬阈值函数在|w| = λ处是不连续的,容易造成去噪后图像在奇异点附近出现明显的伪吉布斯现象。 阈值大小的选取 阈值的选择是离散小波去噪中最关键的一部。在去噪过程中,小波阈值λ起到了决定性作用:如果阈值太小,则施加阈值后的小波系数将包含过多的噪声分量,达不到去噪的效果;反之,阈值太大,则去除了有用的成分,造成失真。小波阈值估计方法很多,这里暂不介绍。 小波去噪实现步骤 (1)二维信号的小波分解。选择一个小波和小波分解的层次N,然后计算信号s到第N层的分解。

一个小波变换实例及matlab实现

1、 选择()t ?或?()? ω,使{}()k Z t k ?∈-为一组正交归一基; 2、 求n h 。 1,(),()n n h t t ??-= 或??()(2)/()H ω?ω?ω= 3、 由n h 求n g 。 1(1)n n n g h -=- 或()()i G e H t ωωωπ-= 4、 由n g ,()t ?构成正交小波基函数() t φ 1,()()n n t g t φ?-=∑ 或??()(/2)(/2)G φωω?ω= Haar 小波的构造 1)、选择尺度函数。 101 ()0t t ? ≤≤?=? ?其他 易知(n)t ?-关于n 为一正交归一基。 2)、求n h 1,(),()n n h t t ??- =()2t-n)t dt ??( 其中 1 1(2)220n n t t n ?+? ≤≤?-=?? ?其他 当n=0时, 1 1(2)20t t ?? 0≤≤?=?? ?其他 当n=1时,

1 11(21)20t t ?? ≤≤?-=?? ?其他 故,当n=0,n=1时 1()(2)0n n t t n ?? =0,=1 ??-=? ?其他 当n=0时, ()(2)t t n ???-1 120t ? 0≤≤?=?? ?其他 当n=1时, ()(2)t t n ???-1 1120t ? ≤≤?=?? ?其他 故 n h ()2t-n)t dt ?? (1/0n n ?=0,=1 ?=? ??其他 3)、求n g 。 11/0 (1)1/10n n n n g h n -?=??=-=-=?? ??其他 4)、求()t φ。 1,()()n n t g t φ?-=∑ =0-1,011,1()()g t g t ??-+ (2)(21)t t - =1 102 111 20t t ? ≤≤???- ≤≤?? ??? 其他

基于小波去噪matlab程序示例

clear all clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8 output1(i)=0; elseif corr<=0.1

matlab小波函数

Matlab小波函数 一、Matlab小波去噪基本原理 1、带噪声的信号一般是由含有噪声的高频信号和原始信号所在的低频 信号。利用多层小波,将高频噪声信号从混合信号中分解出来。 2、选择合适的阈值对图像的高频信号进行量化处理 3、重构小波图像:依据图像小波分解的低频信号与处理之后的高频信 号来重构图像的信息。 二、第二代小波变换 1、构造方法特点: (1)继承了第一代小波的多分辨率的特性。 (2)不依赖fourior变换,直接在时域完成小波变换。 (3)变换之后的系数可以是整数。 (4)图像恢复质量与变换是边界采用何种延拓方式无关。 2、优点:算法简单,速度快,适合并行处理。对内存需求量小,便于DSP 芯片实现、可用于本位操作运算。 3、提升原理:构造紧支集双正交小波 (1)步骤:分裂—预测—更新 (2)分解与重构 三、matlab小波函数库 1、matlab小波通用函数: (1)wavemngr函数【小波管理器(用于小波管理,添加、删除、储存、读取小波)】 wavemngr(‘add’,FN,FSN,WT,NUMS,FILE) wavemngr(‘add’,FN,FSN,WT,NUMS,FILE,B) % 添加小波函数,FN为family name,FSN为family short name WT为小波类型:WT=1表示正交小波,=2表示非正交小波,=3表示带尺度函数的小波,=4表示无尺度函数的小波,=5表示 无尺度函数的复小波。 小波族只有一个小波,则NUMS=“,否则NUMS表示小波参数的字符串 FILE表示文件名 B=[lb ub]指定小波有效支撑的上下界 wavemngr(‘del’,N) %删除小波 wavemngr(‘restore’)/ wavemngr(‘restore’,IN2) %保存原始小波 OUT1= wavemngr(‘read’) %返回小波族的名称 OUT1= wavemngr(‘read’,IN2) %返回所有小波的名称 OUT1= wavemngr(‘read_asc’) %读取wavelets.asc文件并返回小波信息 (2)scal2frq函数【尺度转换频率】 F=scal2frq(A,’wname’,DELTA) %返回由尺度A,小波函数“wname”和采样周期DELTA决定的准 频率。 (3)orthfilt函数【正交小波滤波器组】

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。

五种常用小波基含MATLAB实现

1.给出五种常用小波基的时域和频域波形图。 与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数(t)ψ 具有多样性。小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等5种。 (1)Haar 小波 Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简答的一个小波函数,它是支撑域在[0,1]∈t 围的单个矩形波。 Haar 函数的 定义如下:其他 1212 1 001-1(t)≤≤≤≤?????=ψt t Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。但它也有自己的优点,如: 计算简单; (t)ψ不但与t)2(j ψz][j ∈正交,而且与自己的整数位移正交。 因此,在2j a =的多分辨率系统中Haar 小波构成一组最简单的正交归一的小波 族。 ()t ψ的傅里叶变换是: 2/24=sin ()j e a ψ-ΩΩ ΩΩ()j

Haar 小波的时域和频域波形图 -1.5 -1 -0.5 0.5 1 1.5 t haar 时域 x 10 5 1 2 3 4 5 6 75 f haar 频域 i=20; wav = 'haar'; [phi,g1,xval] = wavefun(wav,i); subplot(1,2,1); plot(xval,g1,'-r','LineWidth',1.5); xlabel('t') title('haar 时域'); g2=fft(g1); g3=abs(g2); subplot(1,2,2);plot(g3); xlabel('f') title('haar 频域')

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

相关文档
相关文档 最新文档