文档库 最新最全的文档下载
当前位置:文档库 › 降低接地电阻的方法

降低接地电阻的方法

降低接地电阻的方法
降低接地电阻的方法

为了防止电能的浪费、保护人身安全和设备安全等,降低接地电阻1是很有必要的,I降低接地电阻的方法有

很多种,下面是我在网上看到的总结比较全比较常用的方法,不知道有没有和我一样对降低接地电阻的方

法存在疑惑的朋友,不管怎么样,大家一起学习一下咯!如果你知道更多的方法,也可以分享啊!共同学

习共同进步!

1更换土壤

这种方法是采用电阻率较低的土壤(如:粘土、黑土及砂质粘土等)替换原有电阻率较高的土壤,置换范围在接地体周围0.5m以内和接地体的1/3处。但这种取土置换|方法对人力和工时耗费都较大。

2人工处理土壤(对土壤进行化学处理)

在接地体周围土壤中加入化学物,如食盐、木炭、炉灰、氮肥渣、电石渣、石灰等,提高接地体周围土壤的导电性。采用食盐,对于不同的土壤其效果也不同,如砂质粘土用食盐处理后,土壤电阻率可减小1/3?

1/2,砂土的电阻率减小3/5?3/4,砂的电阻率减小7/9?7/8 ;对于多岩土壤,用1%食盐溶液浸渍后,其导电率可增加70%。这种方法虽然工程造价较低且效果明显,但土壤经人工处理后,会降低接地的热稳定性、

加速接地体的腐蚀、减少接地体的使用年限。因此,一般来说,是在万不得以的条件下才建议采用。

3深埋接地极

当地下深处的土壤或水的电阻率较低时,可采取深埋接地极来降低接地电阻值。这种方法对含砂土壤最有效果。据有关资料记载,在3m深处的土壤电阻系数为100%,4m深处为75%,5m深处为60%,6m深处为60%,6.5m深处为50%,9m深处为20%,这种方法可以不考虑土壤冻结和干枯所增加的|电阻系数,但施工困难,土方量大,造价高,在岩石地带困难更大。

4多支外引式接地装置

如接地装置附近有导电良好及不冻的河流湖泊,可采用此法。但在设计、安装时,必须考虑到连|接接地极干线自身电阻所带来的影响,因此,外引式接地极长度不宜超过100m。

5利用接地电阻降阻剂

在接地极周围敷设了降阻剂后,可以起到增大接地极外形尺寸,降低与起周围大地介质之间|的接触电阻的作用,因而能在一定程度上降低接地极的接地电阻。降阻剂用于小面积的集中|接地、小型接地网时,其降阻效果较为显著。

降阻剂是由几种物质配制而成的化学降阻剂,是具有导电性能良好的强电解质和水分。这些强电解质和水分被网状胶体所包围,网状胶体的空格又被部分水解的胶体所填充,使它不致于随地下水和雨水而流失,

因而能长期保持良好的导电作用。这是目前采用的一种较新和积极推广普及的方法。

6利用水和水接触的钢筋混凝土体作为流散介质

充分利用水工建筑物(水井、水池等)以及其它与水接触的混凝土内的金属体作为自然|接地体,可在水下

钢筋混凝土结构物内梆扎成的许多钢筋网中,选择一些纵横交叉点加以焊接,与接地网连接起来。当利用

水工建筑物做为自然接地体仍不能满足要求,或者利用水工建筑物作为自然接地体有困难时,应优先在就

近的水中(河水、池水等)敷设外引(人工)接地装置(水下接地网),接地装置应敷设在水的流速不大之处或静水中,并要回填一些大石块加以固定。

7采取伸长水平接地体

结合工程实际运用,经过分析,结果表明,当水平接地体长度增大时,电感的影响随之增大,从而使冲

击系数增大,当接地体达到一定长度后,再增加其长度,冲击接地电阻也不再下降。一般说来,水平接地

体的有效长度不应大于。接地体的有效长度根据土壤电阻率。

8采取污水引入

为了降低接地体周围土壤的电阻率,可将污水引到埋设接地体处。接地体采用钢管,在钢管上每隔20cm 钻一个直径5mm的小孔,使水渗入土壤中。

9采取深井接地

有条件时还可采用深井接地。用钻机钻孔(也可利用勘探钻孔),把钢管接地极打入井孔内,并向钢管内和井内灌注泥浆。在确定降低高土壤电阻率地区接地电阻的具体措施时,应根据当地原有运行经验、气

候状况、地形地貌的特点和土壤电阻率的高低等条件进行全面、综合分析,通过技术经济比较来确定,因地制宜地选择合理的方法。这样,既可保障线路、设备的正常运行,又可避免I接地装置工程投资过高情况的发生。

三种深井接地极的工作原理

常规深井接地

常规的深井接地极是一种最简单的长垂直接地极,是短垂直接地极在长度方面的一种延伸。根据垂直接地极接地电阻的计算公式

式中:R ------ 垂直接地极的接地电阻;

P ------ 土壤电阻率;

L ----- 垂直接地极的长度;

d ----- 接地极的等效直径。

常规深井接地极主要利用下列因素提高接地电阻的降低效率:

a)增加接地极的长度L;

b)利用电阻率较低的深层土壤,降低土壤的平均视在电阻率p;

c)在接地极周围形成低电阻率材料填充区,相当于增大了接地极的等效直径d o 深井爆破接地

生一定数量的裂缝,贯通岩石中固有的裂隙,将所有与接地极连通的缝隙用低电阻率材料进行机械加压填充,从而改善接地极周围土壤的电阻率分布和散流性能。

深井爆破接地极不但可以利用常规深井接地极降阻的有利因素,如利用了电阻率较低的深层土壤和增加了接地极的长度,而且利用人工爆破使地下岩石产生的裂

缝,通过填充低电阻率材料,在地下较大范围的岩石内形成一个网状、向外延伸的散流带。从整体看产生了一个低电阻率区域,并加强了接地极与土壤(岩石)的接触,从而大幅度增大接地极的等效直径,改善接地极周围土电阻率分布,以及接地极和土壤的散流性能。

深水井接地极

深水井接地极是利用自身的结构形成聚积地下水的空间和地下水运动通道,从而改变了接地极周围土壤的地下水分布,人为地增加接地极周围土壤的湿度,降低这部分土壤的电阻率。深水井接地极的降阻作用主要在于充分利用土壤中的地下水,在深水井接地极周围形成一个由远到近、土壤的湿度逐渐增大、土壤电阻率逐渐降低的区域(降低幅度取决于土壤和地下水的类型);地下水使接地极导体与周围土壤之间的空隙可以得到很好填充,从而降低了接地极与土壤的接触电阻。另外,深水井接地极与常规深井接地极一样,也可以利用电阻率较低的深层土壤、增加垂直接地极的长度等有利于降低接地电阻的因素,使深水井接地极的接地电阻在最不利的情况下也不低于常规深井接地极。

3三种深井接地的适用范围常规深井接地

常规的深井接地极形成前后并不改变深井以外土壤的结构、电阻率和地下水分布。也就是说,常规深井接地极对土壤的类型、地下水含量没有特殊要求,当位置选定后它的接地电阻取决于接地极的规格和土壤的电阻率。显而易见,当常规

的深井接地极用于上层土壤的电阻率很大、土层厚度小于接地极长度、下层土壤的电阻率很小的地区时,它的降低接地电阻的效果很明显。然而,常规的深井接地极在上层土壤的厚度小于接地极长度、下层土壤的电阻率较上层高的地区使用时,它的降低接地电阻的效果较差。因此,从降低接地电阻的效率的角度来说,常规的深井接地极适用于土壤均匀的地区,或上层土壤厚度小而且下层土壤电阻率很小的土壤结构分层的地区;它不适用于上层土壤厚度小于接地极长度、下层土壤电阻率高的地区。

常规的深井接地极对土壤的类型、地下水含量没有特殊要求。它适用于土壤均匀的地区,或上层土壤厚度小、下层土壤电阻率很小的土壤结构分层的地区,不适用于上层土壤厚度小于接地极长度、下层土壤电阻率较高的地区。

常规深井接地极适用于中、低电阻率土壤,深井爆破接地适用于高电阻率土壤,深水井接地适用于中、高电阻率土壤,三种深井接地方式有很强的互补性。

深井爆破接地

深井爆破接地极与常规深井接地极的最大区别是:在深井爆破接地极周围形成较大范围的岩石内部裂缝网,填充低电阻率材料后形成一个低电阻率区域。如果爆破或填充后在接地极周围形成的填充区极少甚至没有,这时深井爆破接地极的降

阻效果与常规深井接地极基本相同。由此可见,深井爆破接地极的成功与否,很大程度取决于爆破时形成的贯通性裂缝网的大小,因此深井爆破接地极要求土壤在爆破时能够形成较好的裂缝,也就是说要求土壤有一定的硬度。在裂隙较多、土壤干燥或岩石地区,如固结坚硬的沉积岩、岩浆岩、变质岩地区,硬度稍差的各种砂岩、片岩地区,当土壤干燥时它们的电阻率极高,在进行深井爆破时容易形成较稳定的裂缝,所以这些裂缝网用低电阻率材料填充后,形成一个明显的低电阻率区域的散流通道,使接地极有很好的接地降阻作用。因此深井爆破接地是这类地区最好的接地降阻方法,特别是在地下水奇缺、土壤电阻率极高的岩

石地区使用,更有其它方法无法比拟的优点。在硬度小的泥土或较松散的石砾土中进行地下爆破时,虽然可以产生较多裂隙,但是这些裂隙不够稳定,形成贯通性裂缝较为困难,能够被加压填充低电阻率材料的比例较低,深井爆破接地极在这些地方的接地降阻率比在土壤硬度大的地方低得多。因而深井爆破接地极不适用于硬度小、松散的土壤。

另外,虽然在深井爆破接地极施工时产生较大的贯通性裂缝网,但是这些裂缝最

终是被填充,不形成新的地下水通道,即在深井爆破接地极施工前后不改变周围的地下水分布,所以深井爆破接地极对土壤的地下水特性没有特殊要求。

深井爆破接地极适用于裂隙较多、土壤干燥或岩石地区,如固结坚硬的沉积岩、岩浆岩、变质岩地区,硬度稍差的各种砂岩、片岩地区,特别是在地下水奇缺、土壤电阻率极高的岩石地区有其它方法无法比拟的优点,但不适用于硬度小、松

散的土壤。

深水井接地

聚集的井水水面越高,潮湿层越大;土壤的透水性越好,潮湿层越厚;潮湿层越大降阻效果越明显;当土壤中的地下水含量极少时,深水井接地极产生的潮湿层很小,甚至没有明显的潮湿层,这时它的接地降阻能力与常规深井接地极基本相同,因此要求在深水井接地极周围的土壤有一定含量的地下水和较好的透水性。深水井接地极适合常年有地表水补充或在接地极到达的深度以内最低限度有少量地下水的地区,如我国南方地区、人口密集地区、周围有河流或水塘的地区。

从各类土壤特性可以看到,深水井接地极适用于透水能力强、空隙度特别是孔隙度大的土壤,如粘土、石砾土、松散岩石、砂岩和片岩的土壤。从土壤结构来看,深水井接地极更适用于土壤是分层结构的地区,特别是适用在各层土壤中有一层是明显的含水层或隔水层的地区。如果深水井接地极用于含有承压水层、其它各层的透水性强的地方,则它的接地降阻效果更好。从另一方面看,深水井接地极不适用于在接地极埋设深度以内基本没有地下水或透水性极差的地区,

如特别干

旱区、密实岩石区等。

深水井接地极适用于有一定地下水含量、透水能力强、空隙度大的土壤,更适用于土壤分层结构、在各层土壤中有一层是明显的含水层或隔水层的地区

高土壤电阻率地区变电站接地网长效降阻的实现

麦杰恒(广东省广电集团有限公司广州番禺供电分公司,广东广州511400)

摘要:广州番禺110 kV祈福变电站所处地域的土壤电阻率较高,地网电阻值高达1.3 a

为使地网电阻达到国家标准,首次在国内采用了世界先进的接地系统辅助设计工具

――CDEG S软件包对祈福变电站接地系统进行了可行性设计论证,并予以实施。最终使地

网电阻降到了0.2 0以下,确保了设备的安全运行。在此基础上,更纵深考虑了如何使在高土壤电阻率地区的变电站设计和改造工作更加科学合理,为今后在探讨相关工作时提供一套

较完整的可行性系统解决方案。

关键词:高电阻率;接地网;长效降阻;设计论证;解决方案;改造

Realizati on of long acting resista nee reduct ion for gro unding system in substatio n with high soil resistivity MAI Jiehe ng(Gua ngzhou Panyu Power Supply Bran ch, GPG , Guan gzhou 511400, Chi na) Abstract: Due to the high soil resistivity in 110 kV Qifu Substation area of Guangzhou, the

gro unding system resista nee is as high as 1.3 0 .In order to meet t he n ati onal resista nee sta ndard,

an intern ati on ally adva need aided desig n tool f or grounding systems, CDEGS software package, was employed for the first time in China to dem on strate the feasibility of Qifu Substati on grounding system. An ap propriate solution is implemented to reduce the resistance to below

0.2 0 ens ur ing the safe operation of the equipment. On this basis, an in depth discussion i s made on how to further rati on alize the desig n and modificatio n of substati ons in areas with high

soil resistivity, thus provid ing a relatively complete and fe asible soluti on for such systems.

Key words: high resistivity; gro und n etwork; long acting resista nee reduct ion; desig n and dem on strati on; solutio n; modificati on

广州番禺110 kV祈福变电站于2000年建成运行,位于高土壤电阻率的丘陵地区,是典

型的郊区户外敞开式变电站,地网电阻值高达 1.3 Q严重威胁着设备安全运行。因此,必

须进行工程改造。如何采取有效措施,使高土壤电阻率地区地网的接地电阻符合国家标准的规定,是摆在我们面前的重要课题。我们在参照以往工程设计、研究成果和经验的基础上,深入了解了当今世界接地系统设计的最新进展,综合考虑了现场的地理环境特点,采用当今

世界上最先进的辅助设计工具进行了工程分析设计及对方案的充分论证,提供一套较完整的

系统解决方案,付诸工程实践,达到了降低地网接地电阻的目的。

1、接地系统辅助设计软件包的简介

我们与国内某著名大学电机系合作,首次在国内采用了世界先进的接地系统辅助设计工

具一一CDEGS,对测量数据进行处理,对各种方案进行校核。

CDEGS 是加拿大SES 公司(Safe Engineering Services & Technologies Ltd )推出的集成工程

软件包。CDEGS (current distribution , electromagnetic interferenee , groun ding and soil

structure analysis)是精确接地系统设计分析、电磁干扰分析、交流信号干扰抑制研究等一系

列功能模块的集合。CDEGS的核心主要是计算在稳态、故障、雷击和暂态条件下,由地上

或地下导体所构成的任意形状网络周围的电磁场分布与导体及地表电位分布。该软件包的总

体设计师(亦是SES公司的创始人)FDawalibi是目前国际上知名的接地系统设计分析、电磁干扰研究领域的权威。

2、土壤真实电参数的获取

高土壤电阻率地区变电站接地网长效降阻的实现来自:第一范文网

2.1现场测量不同测量间距下的土壤视在电阻率:为了得到该地区的土壤分层情况,我们分别于2002年7月、10月到该变电站站址进行了现场测量。我们所采用的是大家所熟知的Wenner方法。测量接线图如图1所示。

由于土壤分层的存在,导致以上测量得到的土壤电阻率并非某一层的真实电阻率,而是

综合各种情况时的视在电阻率。测量时,通过改变极间距a,可以得到相应电流电压法的电

压Ua与电流Ia数值,并根据测量结果,利用以下公式计算得到相应的视在电阻率:式中:p a――在电阻率;

a――测量间距;

Ua ――电压数值;

Ia——电流数值。

计算可得视在电阻率pa电流电压法)。两次测量的方向不同,季节也不同。结果分别见表

1,表2所示。

论文由表1和表2我们可以看出,两次测量的结果有比较大的差异。一是由于测量方向不同,第一次引线布置在水塘边,第二次在山上,这样底层电阻率差异比较大;二是由于第一次在夏季测量,第二次在冬季测量。因此两次表层电阻率也有比较大差异。

2.2 土壤地质分层结构的分析:根据以上视在电阻率随测量极间距变化的关系,我们利用建立在电磁场散流理论基础]1]上的土壤参数计算程序RESAP :2]对以上数据进行了

分析、计算。当用户输入由Wenner, Sch umberger或任意电极布置方法测得的土壤视在电阻

或电阻率后,RESAP程序就可给出与测量结果非常接近的土壤分层结构。但是这种计算需要比较深的理论基础以及较多的实际设计经验,因为这一程序需要人工干预才能够得到满意

的结果。表3是由RESAP程序得到的土壤真实电阻率分层情况。表3计算结果可以看

出:表层土壤电阻率比较大,中间层土壤电阻率相对较小(这是由于地下水所致),而深层

土壤电阻率相对较大(地下岩层起作用)。因此,我们不难发现,如果只是采用水平地网,

短路电流的流散存在较大的电阻率层阻挡,适当深度的垂直极会对于降低接地电阻有较好效

果。

3、接地系统降阻的可行性论证

针对施工现场具体的地形、地质条件,我们选择了几种基本可行的设计方案,分别进行分析计算。分析计算的

主要辅助工具是CDEGS软件包中的MALT模块,它被广泛应用于电力系统接地网络分析和非屏蔽金属导体与管道

的散流特性的研究。

MALT可以根据电力系统发、变电站,输电线路杆塔附近的土壤特性,建立起均匀的或

水平、垂直、半球形的多层土壤结构模型。并以此模型为依据,分析计算出接地电阻、地电位升、接地系统土壤中

任意点的电位和接触及跨步电压,以及邻近与主网不连接导体的感应

电势分布。

MALT的计算是建立在以下假设基础上的,即:所有的导体是非屏蔽的,相互连接的导

体在工频范围内是等电位的。显然,这一假设在我们这里是满足的,由计算结果也可以看出

这一点。

根据湖南省电力勘测设计院提供的入地短路电流值约为16 000 A。

3.1原有地网方案论证:原地网水平占地面积约为90 m XI30 m ,按水平地网常规设计对接地电阻进行计算,有关参数为:

水平接地体间距约为 6 m;水平接地体采用50 mmX5 mm镀锌扁钢;水平接地体埋设深度为0.8 m;地网布置为常规水平网格布置。

经计算(由CDEGS软件包计算论证),接地电阻为1.49 Q由软件模拟计算的结果比实际测量的结果1.25 Q 要大,主要是因为我们在计算土壤电阻率时的取值是由测量点处电阻率均匀计算所致。

这一电阻率值远不能达到规程中0.5 Q的要求。因此,必须考虑其它设计方案进行降阻。

如果仅仅采用增大接地网面积的设计方案,要想降低到规程要求的范围,几乎是不可能的。因此我们考虑向纵深发

展的策略。

3.2在站址西侧加垂直极方案论证(无爆破)高土壤电阻率地区变电站接地网长效降阻的实现来自:第一范文网。在不改变现有变电站设计面积的情况下,考虑用加设垂直接地极的措施来降低接地电阻,方案如下:

水平接地体间距约为8 m;水平接地体采用50 mmX5 mm镀锌扁钢;水平接地体埋设深度为0.8 m;垂直接地极采用的镀锌钢管外径为110 mm,深60 m,共8根。计算结果为0.92 Q

(由CDEGS软件包计算论证)。

3.3垂直接地极爆破、压灌低电阻率材料相结合的方案论证:根据以上计算的结果,我

们还得考虑用其它方法来降低接地电阻。我们采用目前比较成熟、有效的方法:钻探深井爆

破,力口压灌注低电阻率材料 :3]o这样做可以使低电阻率材料紧密包覆接地体并向四周扩散,从而将电流引入较

深的地层散流,同时降低接地体与土壤的接触电阻。反映在理论分析上,则可以用其对于垂直接地极的等效直径]

3]的影响来等效,从而起到较好的降阻效果[ 4 ]。

方案如下:

水平接地体间距约为8 m;水平接地体采用50 mmX5 mm镀锌扁钢;水平接地体埋设深度为0.8 m;垂直接地极采用镀锌等边角钢50 mn K 50 mm,深50 m,共13根(具体垂直极的位置在地网边沿,基本等间隔布置,并在其中某一侧外延增加4根,以根据现场情况作调整)。计算结果为0.48 Q (由CDEGS软件包计算论证)。

3.4设计论证及风险控制:我们曾于2000年8月22日邀请广东某工程勘察设计院对祈

福110 kV变电站地网进行过常规深井接地改造处理,在变电站四周布设8个导电孔,钻孔

直径为110 mm,深度60 m,但并没有把电阻降下来。结合以往经验与本站址的具体地质、地形条件,对以上几种

接地电阻国家标准

建筑物接地电阻的要求 依据GB50057-94(2000版)《建筑物防雷设计规范》第三章、建筑物的防雷措施;第二节、第一类防雷建筑物的防雷措施要求,第3.2.1条:防雷电感应的接地装置应和电气设备接地装置共用,其工频接地电阻不应大于10Ω。第三节、第二类防雷建筑物的防雷措施要求,第3.3.4条:每根引下线的接地电阻不小于10Ω,防直击雷接地装置宜和防雷电感应、电气设备、信息系统等共用接地装置。第3.3.9条:避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于10Ω。架空和直接埋地的金属管道在进出建筑物处应就近与防雷的接地装置相连;当不相连时,架空管道应接地,其冲击接地电阻不应大于10Ω。本规范第.2.0.3条四、五、六款所规定的建筑物,引人、引出该建筑物的金属管道在进出处应与防雷的接地装置相连;对架空金属管道尚应在距建筑物约25m处接地一次,其冲击接地电阻不应大于10Ω。第四节、第三类防雷建筑物的防雷措施要求,第3.4.2条:每根引下线的冲击接地电阻不宜大于30Ω。第3.4.9条:避雷器、电缆金属外皮和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于30Ω。 电源系统接地电阻的要求 依据JGJ/T16-92《民用建筑电气设计规范》第14章接地与安全:第14.7.5.3条要求,当机房接地与防雷接地系统共用时,接地电阻要求小于1Ω。因此对于监控机房和通讯机房接地均应与建筑物防雷地等共用同一接地装置,接地电阻要求小于1Ω。 依据GB50089-98《民用爆破器材工厂设计安全规范》第12章:电气;第12.6.4条:在电缆与架空线连接处,应装设避雷器。避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于10Ω。第12.7.2条:输送危险物质的各种室外架空管,应每隔20~25米接地一次,每处冲击接地电阻不应大于10Ω。第12.7.3条:危险区域应采取相应的防静电措施。凡生产、加工或储存危险品的过程中,有可能积聚静电电荷的金属设备、金属管道和导电物体,均应直接接地,接地电阻不应大于100Ω。第

降低接地电阻阻值的方法

接地电阻降阻方法 为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。由公式R=ρε/C可以看出,降低接地电阻有以下两种途径,一是增大接地体几何尺寸,以增大接地体的电容C;二是改善地质电学性质,减小地的电阻率和介电系数ε。下面分别讨论降低接地电阻的一些方法。 1、增大接地网面积 由上面接地电阻的物理概念,依据式(2.10),大地电阻率ρ和介电系数ε不容易改变,而接地电阻R与接地网电容C成反比:从理论上分析,接地网电容C主要由它的面积尺寸决定,与面积成正比,所以接地网面积与接地电阻成反比。减小接地网接地电阻,增大接地网面积是可行途径。一个有多根水平接地体组成的接地网可以近似地看成一块孤立的平板,借用平板接地体接地电阻计算公式2.11,当平板面积增大一倍时,接地电阻减小29.3%。 2、增加垂直接地体 当增加的垂直增加垂直接地体可以增大接地网电容。依据电容概念,

接地体长度和接地网长、宽尺寸可比拟时,接地网由原来的近似于平 板接地体趋近于一个半球接地体,电容会有较大增加,接地电阻会有 较大减小。由埋深为零半径为r的圆盘和半径为r的半球电容之比4 εr/2πεr可得,接地电阻减小36%。但是对于大型接地网, 其电容主要是由它的面积尺寸决定,附加于接地网上有限长度(2~ 3m)的垂直接地体,不足以改变决定电容大小的几何尺寸,因而电 容增加不大,亦接地电阻减小不多。所以大型接地网不应加以增加垂 直接地体作为减小接地电阻的主要方法,垂直接地体仅作为加强集中 接地散泄雷电流之用。 3、人工改善地电阻率 在高电阻率地区采用人工改善地电阻率的方法,对减小接地电阻具有 一定效果。例如,对于一个半径为r的半圆球接地体而言,其接地电 阻的50%集中在自接地体表面至距球心2r的半圆球内,如果将r至 2r间的土壤电阻率降低,可使接地电阻大大减小。设原地电阻率为 ρ2,将r至2r范围内的电阻率为ρ2的土壤用低电阻率的材料ρ1 置换,则半圆球接地体的接地电阻为:RX=(ρ1+ρ2)/4лr 置换前的接地电阻RX为: RX=ρ2/2πr R与RX之比为: R/RX=(ρ1+ρ2)/2ρ2

电缆隧道接地电阻计算书

接地电阻计算书 一、垂直接地体接地电阻计算: 1.单根接地体接地电阻计算: 计算公式:() (1) 式中:R v ——垂直接地极的接地电阻(Ω); ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); d ——接地极的直径(0.03m)。 数值代入公式计算得:R v=529.88(Ω) 2.间距为s的多根垂直接地极并联后的接地电阻计算: 计算公式: (2) 式中:R N——n根垂直接地极的并联接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m); ι——垂直接地极的长度(1.5m); s ——接地极的间距(5m); n ——接地极的总根数(920); d ——接地极的直径(0.03m); 数值代入公式计算得:R N=97.82(Ω) 二、水平接地体接地电阻计算: 计算公式:() 式中:R h——水平接地极的接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m);

L ——水平接地极的总长度(4600m); h ——水平接地极的埋设深度(0.2m); d ——水平接地极的等效直径(0.02m); A——水平接地极的形状系数(1)。 数值代入公式计算得:R h=0.81(Ω) 三、综合接地电阻计算: 计算公式: (3) 式中:——综合接地电阻(Ω); R N——垂直接地极的并联接地电阻(Ω); R h——水平接地极的接地电阻(Ω); R Nh——垂直接地极和水平接地极之间的互阻(Ω),可根据公式(4)计算; (4) 式中:ρ ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); ——水平接地极的总长度(4600m); 数值代入公式计算得: R Nh=0.60(Ω) Rz=0.81(Ω) 石墨基柔性接地体的接地电阻可用降阻效果系数带入进行计算:最终接地电阻为: =0.7×0.81=0.567(Ω)。

药物分析常用计算公式

色谱外标法含量计算 对:对照品溶液样:供试品溶液峰的峰面峰的峰面积计算公式 对:对照品稀释平均重:供试品平均100 =含Spe.AV均 对照品比样:供试品稀释对:对照品取样×含———————————————————————————————————————W样:供试品取样量———————

供试品标示Spec色谱外标法均匀度计算对:对照品溶液样:供试品溶液主峰的峰面峰的峰面对照品比值平AV计算公式 对:对照品稀释样:供试品稀释体V样样×VA×100%=含量积AVGSpec. ×积 W对:对照品取样量A对×V对Spec.:供试品标示量对照品比值=W对×含量 AVG:对照品比值平均———————————————————————————————————————系数A= |100-含量平值 ———————均值| 色谱外标法溶出度计算供试品标示量:Spec.样:供试品溶液主A含量标准差S=系数 峰的峰面积计算公式对:对照品溶液主AA+1.80S 判断值为 峰的峰面积样:供试品稀释体V对W样×样×AV100%×=溶出度

对×对VA.×Spec积 对:对照品稀释体V积对:对照品取样量W ×含量—————————————————————————————————————————————— 样:供试品溶液主A内:对照溶液内标A峰的峰面积峰面积色谱内标法含量计算 样:供试品稀释体V对:对照品取样量W计算公式: 积×含量 内VW对×A内× =校正因子(f)AV对对×W内×平均重:供试品平W内:对照溶液内标V均重稀释体积平均重W×V样×A样×W内100%××=f含量样W内′×Spec.×A内′ ×VA内':供试溶液内标A对:对照溶液主峰———————————————————————————————————————峰面积的峰面积——————— V内':供试溶液内标W内:内标物质取样色谱内标法均匀度计算稀释体积量×含量样:供试品溶液主A 峰的峰面积计算公式样:供试品取样量W对:对照品稀释体V 积样:供试品稀释体V样V内×:供试品标示量A样×Spec.W100%××f含量=.×SpecVA内′×内′积 ;含量平均值系数A= |100-|A内':供试溶液内标峰面积系数S=含量标准差;判断值为A+1.80S V内':供试溶液内标———————————————————————————————————————稀释体积——————— Spec.:供试品标示量 光谱法(有参照)含量计算A样:供试品吸光度A对:对照品吸光度 计算公式:V样:供试品稀释体V对:对照品稀释体积积A样×V样×W平均重×W对×100%=含量样WSpec.××V对×A 对W平均重:供试品平Spec.:供试品标示量———————————————————————————————————————均重 W样:供试品取样量——————— W对:对照品取样量光谱法(有参照)均匀度计算×含量 计算公式: A样:供试品吸光度A对:对照品吸光度 A样×V样×W对×100%=含量V样:供试品稀释体V对:对照品稀释体 .SpecV对×A对×积积

接地电阻测试方法(图解)

For personal use only in study and research; not for commercial use 接地系统接地电阻测试方法(图解) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 五、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 测量小于1Ω接地电阻时接线图 1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤

接地网电阻计算公式

接地网电阻计算公式 三维方法设计变电站的接地电阻 陈光辉1 江建武2 (1 深圳市长科防雷技术有限公司,深圳) (2 深圳供电局变电部,深圳) 【摘要】用三维方法设计变电站的接地电阻,可使接地电阻比传统设计更加准确,结合现有国内外接地新材料.新技术,新 工艺,可使变电站接地网接地电阻达到最佳效果 【关键词】三维地网设计、新材料,新工艺施工。 前言 目前,由于征地等原因,变电所的占地面积越来越小,有的GIS 室内型110kV 变电站占地面积仅有1500m2, 且大部分建在山上,这些地方往往电阻率很高,欲在这样的地方不扩网、不外引,在原地使其工频接地电阻达到 规程要求标准,用常规方法很难实现。我公司在实践过程中,采用三维方法设计,即A-T-N 方案,成功解决了 土壤电阻率300Ωm,占地面积为5000m2 情况下的接地电阻R≤0.5Ω的国家规定标准。 1 A 方案 用常规的方法实现工频接接地电阻RA,主要是用于解决地网的电位分布均匀,均衡最大值下的冲击电压,以 及降低水平网的工频接地电阻,它可以利用工地的自然接地体,如建筑物、自来水管等来完成网格式接地网的接 地电阻,它是在不扩网、不外引、不使用任何降阻剂的情况下计算出的工频接地阻抗值,计算公式采用部颁《交流 电气装置的接地》[1]有关规定的公式进行。 a e R a R 1 = (1) 1 3ln 0 0.2 L S S L a ? ?? ? ? ?? ? = ?(2) ?? ? ??= + + ? ? B

hd S L B S Re 5 9 ln 2 0.213 (1 ) π ρρ (3) S h B 1 4.6 1 + = (4) 式中:Ra—任意形状边缘闭合接地网的接地电阻(Ω); Re—等值(即等面积、等水平接地极总长度)方形接地网的接地电阻(Ω); S—接地网的总面积(m2); d—水平接地极的直径或等效直径(m); h—水平接地极的埋设深度(m); LO—-接地网的外缘边线总长度(m); L—水平接地极的总长度(m)。 简化后的计算方法: S R a ′ = 0.5ρ(5) 式中:ρ—土壤电阻率(Ωm); S—地网面积(m2)。 上式公式中, a R 和土壤电阻率ρ成正比,和地网占地面积S 成反比。如果取p=300Ωm,欲达到R=0.5Ω面 积S 则必须达到90000m2。 在正方型接地网中,当网格数超过16 个时,基本(1)式=(5)式;当网格数少于16 个时,a R > R′a 。 日本川漱太朗公式为: ?? ? ?? ? + ? ′

常用的计算公式

一:常用布宽计算公式 D:素材外径d:铁芯外径W:布宽T:布厚N:圈数π:圆周率 (1):N=(D-d)/2T (2) : D=d+2TN (3) : d=D-2TN (4) : T= (D-d)/2TN (A) W=dπN+1.27(适用于4圈内) (B) W=dπN+1.1(适用于4圈内) (C) W=【d+(N-1)T】πN (最为精确) (D) W={ d+【NT(N-1)】/2}π (此公式T为2倍布厚) 例如:D=10mm d=8mm T=0.1mm π=3.1416 求W:布宽和N:圈数 则N=(D-d)/2T = (10-8)/(2*0.1)=10圈 **如果用公式(A)则w=dπN+1.27=8*3.1416*10+1.27=252.6mm(此公式未考虑布厚,圈数多时误差大) ** 公式(C)则W=【d+(N-1)T】πn=【8+(10-1)*0.1】*3.1416*10=279.6mm(此公式考虑布厚) 二:常用物料用量计算公式 D=元径d=先径π=圆周率 L=长度W=宽度 (A)SLIT(或varn)用量公式计算:单位:米W1=slit宽度W2=间距N=为缠绕次数(1.2倍含宽放) (1)全满=1.2*(D+ d)/2*π* LN/W1(重叠需减去重叠宽度) 例如:D=10mm d=2mm π=3.1416 L=1000mm W=7mm 假设为外车slit全满 则用公式(1)=1.2*(D+ d)/2*π* LN/W1=1.2*(10+2)/2*(3.1416*1000*1)/7=3231 mm =3.231m (2) 半满=1.2*(Dπ+ dπ+2W2) * LN/2(W1+W2 ) (如交叉需乘交叉道数) 例如:D=10mm d=2mm π=3.1416 L=1000mm W1=7mm W2=7mm假设为外车slit交叉两道 则用公式(1)= 1.2*(Dπ+ dπ+2W2) * LN/2(W1+W2 ) =1.2*(10*3.1416+2*3.1416+2*20)*1000*2/2 (7+20) =3453.2 mm =3.453m (B)布料用量= 拉布长度= 裁布块数 (C)碳纤含量= 碳纤用量/ (GLASS用量+碳纤用量)*100% 假设:一支钓竿的碳纤用量= 0.15㎡玻纤用量= 0.05㎡ (D)纸带用量计算公式:(米) 用量= 1.4*【(D+ d)/2*π*L】/ 间距(*1.4倍含宽放用量) 假设D=10mm d=2mm π=3.1416 L=1000mm 间距=2mm 则用量= 1.4*【(D+ d)/2*π*L】/ 间距=1.4*【(10+2)/2*3.1416*1000】/ 2 = 13194.7 mm=13.19 m

用摇表测接地电阻的方法及参数

一般使用的是摇表测量 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一 你搞错了,你所说的这种ZC25-3型表是兆欧表,是不能用来测接地电阻的,只能测某线路或设备间的绝缘电阻或其对地的绝缘电阻,因为绝缘电阻越大越好,所以用兆欧(1000000欧),型号普遍都是为ZC25等 而接地电阻值是越小越好的,所以一般要求测能到欧及以下,这种接地电阻仪型号一般为ZC29开头,上面一般有四个端子:C1、C2、P1、P2(还有一种三个端子,分别为E、P、C),其中C2和P2是连通的(带接地符号),直接接被测物接地极;然后P1端接20米线,拉直后将探针插入地下;C1端接40米线,拉直后要和接地极以及之前插入地下的探针在同一直线上,在这个位置插入第二根探针。 摇表的时候保持摇速120转/分,打好1x几,大转盘的一格就是几,转动大转盘使指针停在中间,大转盘上被箭头对准的数就是电阻值。 比如如打好,大转盘上被箭头对准的数是,电阻值就是为欧。 摇表使用及接地电阻测试 收藏此信息打印该信息添加:佚名来源:未知 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇

降低接地装置接地电阻的措施详细版

文件编号:GD/FS-8381 (解决方案范本系列) 降低接地装置接地电阻的 措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

降低接地装置接地电阻的措施详细 版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 接地装置能否符合规程要求,主要指标为接地电阻。接地电阻实际是两部分电阻之和,一部分是接地体金属物的电阻,另一部分是整个大地的电阻也称流散电阻。由于金属接地体的电阻很小,因此接地电阻主要决定于流散电阻的大小。流散电阻主要由接地装置的结构和土壤电阻率决定,土壤的电阻率越低,流散电阻也就越低。一些地区土壤电阻率较大,致使接地电阻值超出规程要求。为有效降低克拉玛依地区接地电阻,通过近10年来我们在该地区工作中的不断探索研究,总结出一些有效降低接地电阻的措施。 接地系统技术要求和计算方法

1 接地系统的技术要求 a)需接地的设备容量越大,接地电阻应越小。 b)需接地的设备越重要,接地电阻应越小。 c)需接地设备工作性质不同,接地电阻要求也不同。 d)设备数量越多或价值越大,要求接地电阻越小。 e)几台设备共同的接地装置,接地电阻应以接地要求最高的一台设备为标准。 原则上接地电阻越小越好,但施工中应考虑经济合理的原则,部分接地装置的技术规范见表1。 2 接地电阻计算方法 为了达到技术规范要求中的接地电阻值,在设计、制作接地装置时可采用理论与实际相接合的原则,利用经验公式计算出接地电阻值。

接地电阻降阻方法

接地电阻降阻方法(总8页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1 引言 变电站接地网对于电力系统的可靠运行和变电站工作人员的人身安全起着重要作用,其接地电阻、跨步电压与接触电压是变电站接地系统的重要技术指标,是衡量接地系统的有效性、安全性以及鉴定接地系统是否符合要求的重要参数。然而,有些变电站由于受地理条件的限制,不得不建在高土壤电阻率地区,导致这些变电站的接地电阻、跨步电压与接触电压的设计计算值偏高,无法满足现行标准的要求。近年来,随着电力系统短路容量的增加,由于接地不良引起的事故扩大问题屡有发生,因此接地问题越来越受到重视。在设计施工过程中如何合理确定接地装置的设计方案,降低接地电阻,这是变电站电气设计施工的重点之一。 2 变电站接地网电阻偏高的原因 变电站接地网电阻偏高的原因有多方面的,归纳起来有以下几个方面的原因。 2.1客观条件方面 一是土壤电阻率偏高。特别是山区,由于土壤电阻率偏高,对系统接地电阻影响较大;二是土壤干燥。干旱地区、沙卵石土层等相当干燥,而大地导电基本是靠离子导电,干燥的土壤电阻率偏高。 2.2勘探设计方面 在地处山区复杂地形地段的变电站,由于士壤不均匀,土壤电阻率变化较大,这就需要对每处地网进行认真的勘探、测量。根据地形、地势、地质情况,设计出切合实际的接地装置。如果不根据每处地网的地形、地势情况合理设计接地装置并计算其接地电阻,而是套用一些现成的图纸或典型设计,那么就从设计上就留下了先天性不足,造成地网接地电阻偏高。 2.3施工方面

对于不同地区变电站的接地来说,精心设计重要,但严格施工更重要。因为对于地形复杂,特别是位于山岩区的变电站,接地地网水平接地沟槽的开挖和垂直接地极的打入都十分困难,而接地工程又属于隐蔽工程,如施工过程中不能实行全过程的技术监督和必要的监理,就可能出现如下一些问题:一是不按图施工。尤其是在施工困难的山区,屡有发生水平接地体敷设长度不够,少打垂直接地极等;二是接地体埋深不够。山区、岩石地区,由于开挖困难,接地体的埋深往往不够,由于埋深不够会直接影响接地电阻值;三是回填土的问题,有关规范要求用细土回填,并分层夯实,在实际施工时往往很难做到,尤其是在岩石地段施工时,由于取土不便,往往采用开挖出的碎石及建筑垃圾回填,这样还会加快接地体的腐蚀速度;四是采用木炭或食盐降阻,这是最普遍的做法。采用木炭或食盐降阻,会在短期内收到降阻效果,但这是不稳定的。因为这些降阻剂会随雨水而流失,并加速接地体的腐蚀,缩短接地装置的使用寿命。 2.4运行方面 有些接地装置在建成初期是合格的,但经一定的运行周期后,接地电阻就会变大,除了前面介绍的由于施工时留下的隐患外,以下一些问题也值得注意:一是由于接地体的腐蚀,使接地体与周围土壤的接触电阻变大,特别足在山区酸性土壤中,接地体的腐蚀速度相当快,会造成一部分接地体脱离接地装置;二是在接地引下线与接地装置的连接部分因锈蚀而使电阻变大或形成开路:三是接地引下线接地极受外力破坏时误损坏等。 3 接地电阻降阻方法 为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。由公式(1)可以看出,降低接地电阻有以下两种途径,一是增大接地体几何尺寸,以增大接地体的电容;二是改善地质电学性质,减小地的电阻率和介电系数。 接地网是在接地系统的基础,由接地环(网)、接地极(体)和引下线组成,以往常有种误解,把接地环作为接地的主体,很少使用接地体,在接地要求不高或地质条件相当优越的情况下,接地环也能够起到接地的作用,但是通常的情况下,这是不可行的,接

常用计算公式

常用公式 1、采出程度=累积产油量/动用地质储量(可采储量)*100% 阶段采出程度=(阶段内累计产油量/动用地质储量)*100% 2、采油(液)速度=核实年产油(液)量/动用地质储量(可采储量)*100% 3、剩余可采储量采油速度=当月平均日产油*当年日历天数/(当年可采储量-上年底累积产油量) 4、综合递减率:老井采取增产措施情况下的产量递减速度。 (1)、标定老井综合递减率: 标定老井综合递减率=[A*T-(B-C)]/(A*T)*100% 式中: A:上年末(12月)标定的日产油水平(t); T :当年1-n月的日历天数(d); A*T:老井当年1-n月的标定年累积产油量(t) B:当年1-n各月的年累积核实产油量(t) C:当年新井1-n月年累计产油量(t) (2)、同期老井综合递减率 同期老井综合递减率=(B - A)/B*100% A:上年老井在当年1-n月的累计产油量(t) B:上年老井在去年1-n月的累计产油量(t) (3)、对四季度老井综合递减率 对四季度老井综合递减率=(B/92-A/T)/(B/92)*100%

A:上年老井在当年1-n月的累计产油量(t) T:上年老井在当年1-n月的日历天数(d) B:上年老井在去年第四季度的产油量(t) (4)对12月老井综合递减率 对12月老井综合递减率=(B/31-A/T)/(B/31)*100% A:上年老井在当年1-n月的累计产油量(t) T:上年老井在当年1-n月的日历天数(d) B:上年老井在去年12月的产油量(t) 5、自然递减率:老井在未采取增产措施情况下的产量递减速度。(1)标定老井自然递减率 标定老井自然递减率=[A*T-(B-C-D)]/(A*T)*100% 式中: A 上年末(12月)标定的日产油水平(t); T 当年1-n月的日历天数(d); A*T 老井当年1-n月的标定年累积产油量(t) B 当年1-n各月的年累积核实产油量(t) C 当年新井1-n月年累计产油量(t) D 老井当年1-n月的年累积措施增产油量(t)。 (2)、同期老井自然递减率 同期老井自然递减率=(B -A- C)/B*100% A:上年老井在当年1-n月的累计产油量(t) B:上年老井在去年1-n月的累计产油量(t)

(推荐)降低接地电阻的方法

接地电阻降阻方法

接地电阻降阻方法 为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。由公式R=ρε/C可以看出,降低接地电阻有以下两种途径,一是增大接地体几何尺寸,以增大接地体的电容C;二是改善地质电学性质,减小地的电阻率和介电系数ε。下面分别讨论降低接地电阻的一些方法。 1、增大接地网面积 由上面接地电阻的物理概念,依据式(2.10),大地电阻率ρ和介电系数ε不容易改变,而接地电阻R与接地网电容C成反比:从理论上分析,接地网电容C主要由它的面积尺寸决定,与面积成正比,所以接地网面积与接地电阻成反比。减小接地网接地电阻,增大接地网面积是可行途径。一个有多根水平接地体组成的接地网可以近似地看成一块孤立的平板,借用平板接地体接地电阻计算公式2.11,当平板面积增大一倍时,接地电阻减小29.3%。 2、增加垂直接地体 依据电容概念,增加垂直接地体可以增大接地网电容。当增加的垂直接地体长度和接地网长、宽尺寸可比拟时,接地网由原来的近似于平板接地体趋近于一个半球接地体,电容会有较大增加,接地电阻会有较大减小。由埋深为零半径为r的圆盘和半径为r的半球电容之比4εr/2πεr可得,接地电阻减小36%。但是对于大型接地网,其电容主要是由它的面积尺寸决定,附加于接地网上有限长度(2~3m)的垂直接地体,不足以改变决定电容大小的几何尺寸,因而电容增加不大,亦接地电阻减小不多。所以大型接地网不应加以增加垂直接地体作为减小接地电阻的主要方法,垂直接地体仅作为加强集中接地散泄雷电流之用。3、人工改善地电阻率 在高电阻率地区采用人工改善地电阻率的方法,对减小接地电阻具有一定效果。例如,对于

施工常用计算公式大全

施工常用计算公式大全 各类钢材理论重量计算公式大全,欢迎收藏哦! 1. 钢板重量计算公式 公式:7.85 X长度(m)X宽度(m)X厚度(mm) 例:钢板6m(长)X 1.51m(宽)X 9.75mm厚) 计算:7.85X6X1.51 X9.75=693.43kg 2. 钢管重量计算公式 公式:(外径-壁厚)X壁厚mn X 0.02466 X长度m 例:钢管114mm外径)X 4mm壁厚)X 6m长度)计算:(114-4)X 4X0.02466X6=65.102kg 3. 圆钢重量计算公式 公式:直径mrr X直径mn X 0.00617 X长度m 例:圆钢①20mm直径)X 6m(长度) 计算:20X20X 0.00617X6=14.808kg 4. 方钢重量计算公式 公式:边宽(mm)X边宽(mm)X长度(m)X 0.00785 例:方钢50mm边宽)X 6m(长度) 计算:50X50X 6X0.00785=117.75(kg) 5. 扁钢重量计算公式 公式:边宽(mm)X厚度(mm)X长度(m)X 0.00785 例:扁钢50mm边宽)X 5.0mm(厚)X 6m(长度) 计算:50X5X6X0.00785=11.7.75(kg) 6. 六角钢重量计算公式 公式:对边直径X对边直径X长度(m)X 0.00068 例:六角钢50mm(直径)X 6m(长度) 计算:50X50X 6X0.0068=102(kg) 7. 螺纹钢重量计算公式 公式:直径mrr X直径mn X 0.00617 X长度m 例:螺纹钢①20mm直径)X 12m低度) 计算:20X20X 0.00617X12=29.616kg 8. 扁通重量计算公式 公式:(边长+边宽)X 2X厚X 0.00785 X长m 例:扁通100mm X 50mm< 5mm厚X 6m(长) 计算:(100+50)X 2X 5X 0.00785X 6=70.65kg 9. 方通重量计算公式 公式:边宽mm X4X厚X 0.00785 X长m 例:方通50mm< 5mm厚X 6m低) 计算:50X4X5X0.00785X 6=47.1kg 10. 等边角钢重量计算公式 公式:边宽mm X厚X 0.015 X长m粗算) 例:角钢50mm< 50mn X 5 厚X 6m(长) 计算:50X5X0.015X 6=22.5kg(表为22.62) 11. 不等边角钢重量计算公式

接地电阻的国家标准

依据GB50057-94(2000版)《建筑物防雷设计规范》第三章、建筑物的防雷措施;第二节、第一类防雷建筑物的防雷措施要求,第3.2.1条:防雷电感应的接地装置应和电气设备接地装置共用,其工频接地电阻不应大于10Ω。第三节、第二类防雷建筑物的防雷措施要求,第3.3.4条:每根引下线的接地电阻不小于10Ω,防直击雷接地装置宜和防雷电感应、电气设备、信息系统等共用接地装置。第3.3.9条:避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于10Ω。架空和直接埋地的金属管道在进出建筑物处应就近与防雷的接地装置相连;当不相连时,架空管道应接地,其冲击接地电阻不应大于10Ω。本规范第.2.0.3条四、五、六款所规定的建筑物,引人、引出该建筑物的金属管道在进出处应与防雷的接地装置相连;对架空金属管道尚应在距建筑物约25m处接地一次,其冲击接地电阻不应大于10Ω。第四节、第三类防雷建筑物的防雷措施要求,第3.4.2条:每根引下线的冲击接地电阻不宜大于30Ω。第3.4.9条:避雷器、电缆金属外皮和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于30Ω。 电源系统接地电阻的要求 依据JGJ/T16-92《民用建筑电气设计规范》第14章接地与安全:第14.7.5.3条要求,当机房接地与防雷接地系统共用时,接地电阻要求小于1Ω。因此对于

监控机房和通讯机房接地均应与建筑物防雷地等共用同一接地装置,接地电阻要求小于1Ω。 依据GB50089-98《民用爆破器材工厂设计安全规范》第12章:电气;第12.6.4条:在电缆与架空线连接处,应装设避雷器。避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于10Ω。第12.7.2条:输送危险物质的各种室外架空管,应每隔20~25米接地一次,每处冲击接地电阻不应大于10Ω。第12.7.3条:危险区域应采取相应的防静电措施。凡生产、加工或储存危险品的过程中,有可能积聚静电电荷的金属设备、金属管道和导电物体,均应直接接地,接地电阻不应大于100Ω。第12.7.4条:低压配电线路的接地应采用TN-S或TN-C-S系统,引入建筑物的电源线路,中性点应重复接地,接地电阻不应大于10Ω。 石化接地电阻的要求 依据GB50074-2002《石油库设计规范》第14章:电气装置;第14.2.2条:钢油罐接地点沿油罐周长的间距,不宜大于30m,接地电阻不宜大于10Ω。第14.2.3条:覆土油罐的罐体及罐宝的金属构件以及呼吸阀、量油孔等金属附件,应做电气连接并接地,接地电阻不宜大于10Ω。第14.2.10条:进出洞内的金属管道接地电阻不宜大于20Ω。电力和信息线路应采用铠装电缆埋地引入洞内。接地电阻不宜大于20Ω。电缆与架空线路的连接处,应装设过电压保护器。过电压保护器、电缆外皮和瓷瓶铁脚,应做电气连接并接地,接地电阻不宜大于

架空输电线路杆塔降低接地电阻的措施探讨

架空输电线路杆塔降低接地电阻的措施探讨 摘要:输电线路的杆塔接地是输电线路里最重要的一环,是防止雷电危害不可或缺的措施之一。为保证输电系统安全稳定运行,降低杆塔接地电阻是提高线路耐雷水平、减少线路雷击跳闸率的主要措施。本文通过分析杆塔接地装置的一般要求、杆塔接地电阻超标的原因,从而探讨有效降低杆塔接地电阻的措施。 关键词:架空输电线路;杆塔;接地装置;接地电阻 输电线路的杆塔接地是线路防雷的主要措施之一,其可靠性对保证电力系统的安全稳定运行具有重大的意义。其中接地电阻指的是接地引下线、接地散流电阻和接触电阻,它是用来确保外来雷电流入地面,绝缘线路的设备,以便减少线路被雷击的跳闸率,避免跨步电压对人体产生伤害和提高运行可靠性。降低杆塔接地电阻是提高线路耐雷水平、降低线路雷击跳闸率的主要措施。 1 雷电对输电线路的危害 架空输电线路在运行中,由于杆塔接地不良而引发的雷害事故占线路故障率的比例较高,这主要是由于雷击杆顶或地线(避雷线)时,当雷电流通过杆塔接地装置泄流人地,由于接地电阻偏高,从而产生了较高的反击过电压所致。这种由于线路遭受雷击时产生的过电压称为大气过电压,会使线路设备及其绝缘受到破坏而产生事故,若变电站防雷措施不良,甚至会造成变电站设备的损坏。 2 杆塔接地装置的一般要求 根据《110—500kV架空送电线路设计技术规程》(DL/T5092—1999)中9.0.11节的要求:有地线的杆塔应接地。在雷季干燥时,每基杆塔不连地线的工频接地电阻,不宜大于表l的要求。 表1 有地线(避雷线)的线路杆塔工频接地电阻范围 在常规的输电线路工程中,高压架空线路杆塔的接地装置一般要求采用下列几种形式。 (1)在土壤电阻率P≤100Ω•m的潮湿地区,可利用铁塔和钢筋混凝土杆自然接地。对发电厂、变电站的进线段应另设雷电保护接地装置。在居民区,当自然接地电阻符合要求时,可不设人工接地装置。 (2)在土壤电阻率100Ω•m2000Ω•m的地区,可采用6~8根总

各种临床常用的公式

各种临床常用的公式(心外) 各种临床常用的公式 1. 补钠计算器 男性可选用下列公式 应补钠总量(mmol)=[142-病人血Na+(mmol/L)]×体重(kg)×0.6 应补氯化钠总量(g)=[142-病人血Na+(mmol/L)] ×体重(kg) ×0.035 应补生理盐水(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×3.888 应补3%氯化钠=[142-病人血Na+(mmol/L)] ×体重(kg)×1.1666 应补5%氯化钠(ml) =[142-病人血Na+(mmol/L)] ×体重(kg)×0.7 女性可选用下列公式 应补钠总量(mmol) =[142-病人血Na+(mmol/L)] ×体重(kg)×0.5 应补氯化钠总量(g)=[142-病人血Na+(mmol/L)] ×体重(kg)×0.03 应补生理盐水(ml) =[142-病人血Na+(mmol/L)] ×体重(kg)×3.311 应补3%氯化钠(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×3.311 应补5%氯化钠(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×0.596 注:①上述式中142为正常血Na+值,以mmol/L计。 ②按公式求得的结果,一般可先总量的1/2~1/3,然后再根据临床情况及检验结果调整下一步治疗方案。 ③单位换算: 钠:mEq/L×2.299=mg/dlmg/dl×0.435=mEq/L mEq/L×1/化合价=mmol/L 氯化钠:g×17=mmol或mEq,(mmol)×0.0585=g/L 2.补液计算器 (1)根据血清钠判断脱水性质: 脱水性质血 Na+mmol/L 低渗性脱水 >130 等渗性脱水 130~150 高渗性脱水 >150 。 (2)根据血细胞比积判断输液量: 输液量=正常血容量×(正常红细胞比积/患者红细胞比积) (3)根据体表面积计算补液量: 休克早期800~1200ml/(m2?d); 体克晚期1000~1400ml(m2?d); 休克纠正后补生理需要量的50~70%。 (4)一般补液公式: 补液量=1/2累计损失量+当天额外损失量+每天正常需要量 2. 补铁计算器

接地电阻的要求

接地电阻的要求(常用标准的规定) 接地电阻的要求(常用标准的规定) 建筑物接地电阻的要求 依据GB 50057-94(2000版)《建筑物防雷设计规范》第三章、建筑物的防雷措施;第二节、第一类防雷建筑物的防雷措施要求,第3.2.1条:防雷电感应的接地装置应和电气设备接地装置共用,其工频接地电阻不应大于10Ω。第三节、第二类防雷建筑物的防雷措施要求,第3.3.4条:每根引下线的接地电阻不小于10Ω,防直击雷接地装置宜和防雷电感应、电气设备、信息系统等共用接地装置。第3.3.9条:避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于10Ω。架空和直接埋地的金属管道在进出建筑物处应就近与防雷的接地装置相连;当不相连时,架空管道应接地,其冲击接地电阻不应大于10Ω。本规范第.2.0.3条四、五、六款所规定的建筑物,引人、引出该建筑物的金属管道在进出处应与防雷的接地装置相连;对架空金属管道尚应在距建筑物约25m处接地一次,其冲击接地电阻不应大于10Ω。第四节、第三类防雷建筑物的防雷措施要求,第3.4.2条:每根引下线的冲击接地电阻不宜大于30Ω。第3.4.9条:避雷器、电缆金属外皮和绝缘子铁脚、金具等应连在一起接 地,其冲击接地电阻不宜大于30Ω。 电源系统接地电阻的要求 依据JGJ/T16-92《民用建筑电气设计规范》第14章接地与安全:第14.7.5.3条要求,当机房接地与防雷接地系统共用时,接地电阻要求小于1Ω。因此对于监控机房和通讯机房接地均应与建筑物防雷地等共用同一接地装置,接地电阻要 求小于1Ω。

依据GB50089-98《民用爆破器材工厂设计安全规范》第12章:电气;第12.6.4条:在电缆与架空线连接处,应装设避雷器。避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于10Ω。第12.7.2条:输送危险物质的各种室外架空管,应每隔20~25米接地一次,每处冲击接地电阻不应大于10Ω。第12.7.3条:危险区域应采取相应的防静电措施。凡生产、加工或储存危险品的过程中,有可能积聚静电电荷的金属设备、金属管道和导电物体,均应直接接地,接地电阻不应大于100Ω。第12.7.4条:低压配电线路的接地应采用TN-S或TN-C-S系统,引入建筑物的电源线路,中性点应重 复接地,接地电阻不应大于10Ω。 石化接地电阻的要求 依据GB50074-2002《石油库设计规范》第14章:电气装置;第14.2.2条:钢油罐接地点沿油罐周长的间距,不宜大于30m,接地电阻不宜大于10Ω。第14.2.3条:覆土油罐的罐体及罐宝的金属构件以及呼吸阀、量油孔等金属附件,应做电气连接并接地,接地电阻不宜大于10Ω。第14.2.10条:进出洞内的金属管道接地电阻不宜大于20Ω。电力和信息线路应采用铠装电缆埋地引入洞内。接地电阻不宜大于20Ω。电缆与架空线路的连接处,应装设过电压保护器。过电压保护器、电缆外皮和瓷瓶铁脚,应做电气连接并接地,接地电阻不宜大于10Ω。第14.2.13条:进入油品装卸区的输油(油气)管道在进入点应接地,接地电阻不应大于20Ω。第14.2.16条:避雷针(网、带)的接地电阻,不宜大于10Ω。第14.3.5条:每组绝缘轨缝的电气化铁路侧,应设一组向电气化铁路所在方向

有效降低接地电阻的措施

有效降低接地电阻的措施 克拉玛依地区的土壤电阻率一般为1000~400&Omegam,为有效降低接地电阻,通过我们在该地区多年施工情况来看,可以从以下几个方面考虑: 1从接地装置的材料选用方面考虑 接地材料一般选用结构钢制成。必须对材料进行检查,材料不应存在严重的锈蚀、厚薄或粗细不均匀等现象。垂直安装的接地体通常用角钢或钢管制成,虽然角钢制成的接地体在散流效果方面比钢管差一点,但施工难度小、成本低,所以现场安装一般采用角钢。规范中要求的比较理想的为50mm×50mm×5mm的镀锌角钢,但由于当地一些地方的土壤腐蚀性严重,逐渐改用63mm×63mm×6mm 的镀锌角钢,实践中证明其防腐效果较好。在施工过程中发现,有些单位采购来的镀锌角钢或扁钢虽然都是电镀的,但是防腐效果较差,引起接地电阻增大,对这些地区建议采用热镀锌材料。 2从人工接地体的安装形式方面考虑 对于垂直接地体的埋设安装,要求接地体与土壤必须保持有效的接触,因此要求接地极的埋设深度在2~3m左右比较合适,埋土深度太浅、太深对减少流散电阻效果均不明显。同时,接地体与接地体的间距为接地极的2倍是比较合理的,可减少屏蔽效应而造成的接地装置利用率下降的问题。垂直安装的接地体应采用角钢或钢管制成,角钢制成的接地体在散流效果方面虽比钢差一点,但施工较为容易。为了减少建

筑物的接触电压,接地与建筑物的基础间应保持不小于1.5m的水平距离,一般最好取2~3m。 3从人工处理换土法方面考虑 为了降低接地电阻,过去我们常采用外引接地方法,即使电气装置的土壤电阻率较低(克拉玛依地区的土壤电阻率一般为1000~400&Omegam),但实际效果也并不理想。或者采用增加接地体的方法,但效果不太好,而且材料的消耗比较大。在实践中采用了人工处理换土法,效果较好。我们在新疆油田采油三厂五二西区采用了此方法。通过在接地体周围土壤中加入煤渣、木炭、碳墨或炉黑等,以提高接地体周围土壤的导电率,同时将氧化铜等溶液浇在接地体周围,对降低土壤电阻率起到较好效果。但对环境有一定程度污染。 在克拉玛依石西油田临时接地采用的方法是在接地体周围0.5m及接地体埋深1/3处挖一个坑,然后将盐和木炭灰一层隔一层地依次填入坑内,每层盐的厚度1~2cm,并将盐用水湿润,最上层用土覆盖。采用上述方法,也能提高接地体周围土壤的导电率,达到降低接地电阻的目的,满足设计要求。在无材料的时候,我们采取了换土的方法,挖一个2~3m的坑,将黑土代替电阻较高的土壤。 4采用降阻剂法 降阻剂表面有活性剂,粒度较细,吸水后施用于接地体与土壤间,能够使金属与土壤紧密地接触,形成足够大的电流流通面,有效减小接地电阻;另一方面,它能向周围土壤渗透,降低周围土壤电阻率,在

相关文档