文档库 最新最全的文档下载
当前位置:文档库 › 传感器期末复习资料)

传感器期末复习资料)

传感器期末复习资料)
传感器期末复习资料)

传感器期末复习资料)

传感器

绪论

概念:

1.传感器的定义:

①:能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

②:狭义的定义:能把外界非电信息转换成电信号输出的器件。 2.传感器组成:

传感器一般由敏感元件、转换元件、基本转换电路三部分组成。

第一章

概念:

1.传感器的一般特性:描述此种变换的输入与输出关系。 静特性:输入量为常量或变化极慢时(慢变或稳定信号)。

1) 线性度:传感器的输出与输入关系呈线性,实际上这往往是不可能的。

假设传感器没有迟滞和蠕变效应,其静态特性可用下列多项式来描述:

x ——输入量; y ——输出量;a 0——零点输出;a 1——传感器的灵

敏度,常用k 表示;a 2,a 3,…,a n ——非线性项系数。

非线性误差(线性度) 定义:输出输入的实际测量曲线与某一选定拟合直

线之间的最大偏差,用相对误差γL

表示其大小。即传感器的正、反行程平

∑=+=++++=n

i i i n

n x a a x a x a x a a y 1

02210...

均测量曲线与拟合直线之间的最大偏差对满量程(F.S.)输出之比(%):

γ

——非线性误差(线性度);ΔLmax——输出平均值与拟合直线间的

L

最大非线性误差;y F.S.——满量程输出。满量程输出用测量上限标称值y H与测量下限标称值y L之差的绝对值表示,即y F.S.=|y H-y L|。

大多数传感器的输出曲线是通过零点的,或者使用“零点调节”使它通过零点。某些量程下限不为零的传感器,也可以将量程下限作为零点处理。目前常用的拟合方法有:①理论拟合;②过零旋转拟合;③端点连线拟合;

④端点连线平移拟合;⑤最小二乘拟合;⑥最小包容拟合等。

2)迟滞:迟滞表明传感器在正(输入量增大)、反(输入量减小)行程期间,

输出-输入曲线不重合的程度(信号大小不相等)。

迟滞产生原因:传感器的机械部分和结构材料方面不可避免的弱点,如轴承摩擦、灰尘积塞、间隙不适当,元件磨蚀、碎裂等。迟滞的大小一般由实验确定.

3)重复性:指传感器在输入按同一方向连续多次变动时所得特性曲线不一致的

程度。

正行程的最大重复性误差为ΔRmax1,反行程的最大重复性误差为ΔRmax2。重复性误差取这两个误差之中较大者为ΔRmax,再以满量程y FS输出的百分数

表示,即

4)灵敏度与灵敏度误差:传感器输出的变化量Δy与引起该变化量的输入变化

量Δx之比即为其静态灵敏度,其表达式为。斜率就是其灵敏度,灵敏度k是一常数,与输入量大小无关。

灵敏度误差用相对误差表示,即

5)阈值、分辨力

阈值:当一个传感器的输入从零开始极缓慢地增加时,只有在达到了某一最小值后才测得出输出变化,这个最小值就称为传感器的阈值。

分辨率:分辨力是指传感器能检测到的最小的输入增量。分辨力用绝对值表示,用与满量程的百分数表示时称为分辨率。

阈值说明了传感器的最小可测出的输入量。

分辨力说明了传感器的最小可测出的输入变量。

6)稳定性:指传感器在长时间工作的情况下输出量发生的变化,有时称为长时

间工作稳定性或零点漂移。

漂移量的大小是表征传感器稳定性的重要性能指标。传感器的漂移有时会致使整个测量或控制系统处于瘫痪。

7)温度稳定性:温度稳定性又称为温度漂移,它是指传感器在外界温度变化时

输出量发生的变化。

8)抗干扰稳定性:这是指传感器对外界干扰的抵抗能力,例如抗冲击和振动的

能力、抗潮湿的能力、抗电磁场干扰的能力等。

9)静态测量不确定度(传统上也称为静态误差):指传感器在其全量程内任一

点的输出值与其理论值的可能偏离程度。

静态误差的求取方法:求出标准偏差取2σ或3σ

即为静态误差。或用相对误差来表示。静态误差是一项综合性指标,它包括非线性误差、迟滞误差、重复性误差、灵敏度误差等,

动特性:输入量随时间变化极快时(快变信号)。

1)时域性能指标:通常在阶跃函数作用下测定传感器动态性能的时域指标。阶

跃输入对一个传感器来说是最严峻的工作状态。

2)频域性能指标:通常在正弦函数作用下测定传感器动态性能的频域指标。

大题:

1、什么是传感器的静态特性?它有哪些性能指标?

答:输入量为常量或变化很慢情况下,输出与输入两者之间的关系称为传感器的静态特性。它的性能指标有:线性度、迟滞、重复性、灵敏度与灵敏度误差、分辨率与阈值、稳定性、温度稳定性、抗干扰稳定性和静态误差(静态测量不确定性或精度)。

3、某传感器给定相对误差为2%FS,满度值输出为50mV,求可能出现

的最大误差δ(以mV 计)。当传感器使用在满刻度的1/2 和1/8 时计算可能产生的百分误差。并由此说明使用传感器选择适当量程的重要性。

已知:γ= 2%FS , y mV FS = 50 ;求:δm=?

第二章

概念:

1.金属的电阻应变效应:金属导体的电阻随着机械变形(伸长或缩短)的大小

发生变化的现象称为金属的电阻应变效应。

2.电阻应变片的工作原理是基于金属电阻丝的电阻应变效应。

位移、加速度、力矩、应力、压力、拉力、温度等等。

3.转换电路

1)直流电桥:IL=0是电桥平衡:平衡条件

2)不平衡直流电桥的工作原理:当电桥后面接放大器是,放大器的输入阻抗很

高,比电桥输出电阻大很多,可以吧电桥输出端看出开路。应变片工作时,其电阻变化为△R。

既n=1时,当电源电压U及电阻相对值一定时,电桥的输出电压及电压灵敏度与各臂阻值得大小无关。n=1时的电桥,称对称电桥,目前常采用这种电桥形式。

3)减小非线性误差

1.下图为一直流应变电桥,其中,E=4V ,R 1=R 2=R 3=R 4=120Ω,试求:

(1)R 1为应变片,其余为外接电阻,当R 1的增量为ΔR 1=1.2Ω时,电桥输出电压为多少? (2)R 1、R 2均为应变片,批号相同,感受应变的极性和大小相同,其余为外接电阻,电桥输出电压为多少?

(3)R 1、R 2均为应变片,批号相同,感受应变的极性相反,且Ω

=?=?2.121

R R

,其余为外接电阻,

电桥输出电压为多少?

(4)由题(1)~(3)能得出什么主要结论?

答:(1)U

0=

4

1

R

R

1

?U=

4

120

2.1×4=0.01(V)=10(mv)

(2) U

=0(V)

(3) U

0=

2

1

R

R

?U=20(mV)

(4)由(1)~(3)可以看出,双臂电桥比单臂电桥灵敏度提高一倍;

可利用双臂电桥消除温度变化对测量误差的影响。

(已)6、在材料为钢的实心圆柱形试件上,沿轴线和圆周方向各贴一片电阻为120Ω的金属应变片R1 和R2,把这两应变片接入差动电桥(参看图2-9a)。若钢的泊松系数μ=0.285,应变片的灵敏系数k=2,电桥电源电压U=2V,当试件受轴向拉伸时,测得应变片R1 的电阻变化值

△R =0.48Ω,试求电桥的输出电压U0。

第三章:

概念

1.自感式传感器:

大题:

1.(已)☆下图为一气体压力传感器结构示意图,试分析其工作原理。图中,1

—弹簧管,2—衔铁,3、4—铁芯,5、6—线圈,7—调节螺钉。

解:压力P↑↓→弹簧管自由端发生移动,带动衔铁上下移动,引起线圈电感值变化,分别把两线圈接入交流电桥的两臂,引起交流电桥输出电压变化,则U∝P。

2..1—两片簧片,2—质量块

测量时,质量块的位移与被测加速度成正比,把对加速度的测量转变为对位移测量。既当质量块2以△X振动时,引起线圈电感值变化,产生电流,导致变压器输出的也按相同规例变化,通过这个变化就可以测加速度。

3.何谓电感式传感器?它是基于什么原理进行检测的?

答:电感式传感器是利用电磁感应原理将被测量转换成线圈自感量或互感量的变换,再由测量电路转换为电压或电流的变化量输出的一种装置。它是基于电磁感应原理进行检测的。

第4章

概念:

1.根据其改变参数不同,可将电容式传感器分为下三种:

改变极板间距离(δ)的变极距型传感器

改变极板遮盖面积(A)的变面积型传感器

改变电介质介电常数(ε)的变介电常数型传感器

2.运算放大器式测量电路

运算放大器的放大倍数K非常大, 而且输入阻抗Z i很高。运算放大器的这一特点可以使其作为电容式传感器的比较理想的测量电路。

由运算放大器工作原理可得

式中:

C x为电容式传感器是输出信号电压

U是交流电源电压C为固定电容

如果传感器是一只平板电容,则C x=εS/δ, 代入上式, 有

式中“-”号表示输出电压U0 的相位与电源电压

反相

此式说明运算放大器的输出电压与极板间距离呈线性关系。运算放

大器电路解决了单个变极板间变极距式电容传感器的非线性问题。

但要求Z i及K足够大。为保证仪器精度, 还要求电源电压的幅值和

固定电容C值稳定。

3.(已)

4.(已)减少和消除寄生电容的影响:(1)增加传感器原始电容值(2)注意

传感器的接地和屏蔽(3)集成化(4)采用“驱动电缆”技术(6)整体屏蔽

大题:

1.下图为电容式差压传感器结构示意图和转换电路图,试分析其工作原理。

答:当两边压力P 1,P 2相等时,金属膜片处在中间位置与左、右固定电极间距相等。即C ab =C bd ,u 0=0。

当P 1>P 2(或P 2>P 1)时,膜片弯向P 2(或P 1)边,C ab C db ),u 0输出与21p p -成正比信号。

2. (10分)如图所示,简述此电路为什么能够改善变间隙式电容传感器的非

线性?图中,d

s

C X ε=

,ε为传感器极间间隙介质的介电常数,s 为传感器

极板耦合的面积,d 为两极板间的距离,C 为标准电容。

答:Z x =x

C j ω1

C x =

d

s ε

U 0=-C

j Z x

ω1U i =-C

j C j x ωω11U i =-

s

dC

εU i 在U i ,ω,ε,s,C 不变的情况下,U o ∝d

3. 如何改善单组式变极距型电容传感器的非线性?

答:方案1:采用差动形式电容传感器,有效地改善了传感器的线性度,而且灵敏度也提高1倍。

方案2:采用运算放大器电路

C 为标准电容;

δ

εs C x =

δ

εs

C u u i -=0

可见,0u 与δ成正比。所以,使用此测量电路能够改善变间隙式电容传感

器非线性。

4. 九、下图为变极距型平板电容电容传感器的一种测量电路,其中C X 为传感器

电容,C 为固定电容,假设运放增益A=∞,输入阻抗Z=∞;试推导输出电压U 0与极板间距的关系,并分析其工作特点。

5.(已)单组式变面积型平板形线位移电容传感器,两极板相对覆盖部分的宽度

为4mm,两极板的间隙为0.5mm,极板间介质为空气,试求其静态灵敏度?若两极板相对移动2mm,求其电容变化量。(答案为0.07pF/mm,0.142pF)(运算放大器结合)

已知:b=4mm,δ=0.5mm,ε0=8.85×10-12F/m

求:(1)k=?;(2)若△a=2mm 时△C=?

第五章

概念:

1.(已)霍尔效应:

一块长为l、宽为b、厚为d的半导体薄片置于磁感应强度为B的磁场(磁场方向垂直于薄片)中。当有电流I流过时,在垂直于电流和磁场的方向上将

产生电动势U

(霍尔电势或称霍尔电压)。这种现象称为霍尔效应。霍尔H

式传感器是由霍尔元件所组成。

,霍尔系数,与材料有关它由载流

材料的物理性质决定。霍尔灵敏度表示单位磁感应强度和单位控制电流时的霍尔电势的大小。一般要求它越大越好。

(1)对于金属而言,n很大,所以R H很小,而半导体尤其是N型半导体霍尔常数R H则较大,所以在实际应用中,一般都采用N型半导体材料做霍尔元件。

(2)k H与元件材料的性质和几何尺寸有关。元件的厚度d对灵敏度的影响也很大,元件越薄,灵敏度就越高。如采用薄膜技术的薄膜霍尔元件。

(3)U H标量规定正方向可正可负

当控制电流的方向或磁场的方向改变时,输出电势的方向也将改变。但当磁场与电流同时改变方向时,霍尔电势极性不变。

当磁感应强度B和元件平面法线成一角度θ时,作用在元件上的有效磁场是其法线方向的分量,这时,U H=K H IB cosθ。

2.霍尔元件的电磁特性

UH-I特性:固定磁场B,在一定温度下,霍尔输出电势U H与控制电流I之间呈线性关系。

U H-B特性:固定控制电流,元件的开路霍尔输出随磁场的增加并不完全呈线性关系,而有所偏离。霍尔元件工作在0.5T(弱磁场)以下时线性度较好。

3.(已)霍尔元件的误差及补偿:零位误差(不等位电动势:霍尔元件

在额定控制电流作用下,不加外磁场时,霍尔输出端之间的空载电动势。寄生直流电动势),温度误差。方法:1.采用恒流源供电和输入回路并联电阻

2.合理选取负载电阻RL的阻值

3.采用恒压源和输入回路串联电阻

4.采用温度补偿元件

5.霍尔元件不等位电动势U0的温度补偿。

4.霍尔位移传感器:

式中,k是位移传感器的输出灵敏度。积分后得U H=kx。

霍尔电势与位移量成线性关系。霍尔电势的极性反映了元件位移的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度越好。

大题:

7、某霍尔元件l、b、d 尺寸分别为1.0cm×0.35cm×0.1cm,沿l 方向通以电流I=1.0mA,在垂直于lb 面方向加有均匀磁场B=0.3T,传感器的灵敏度系数为

22V/A·T,试求其输出霍尔电动势及载流子浓度。

已知:l×b×d=1.0cm×0.35cm×0.1cm;I=1.0mA;B=0.3T;kH=22V/A·T;求:UH=?;n=?

解:如图

1传感器技术基础习题

第1章 传感器技术基础 1.1衡量传感器的静态特性主要有那些?说明它们的含义。 答:衡量传感器的静态特性主要有:线性度、回差、重复性、灵敏度、分辨力、阈值、稳定性、漂移、静态误差等。 线性度是表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。 回差是反映传感器在正反行程过程中输出-输入取下的不重合程度的指标。 重复性是衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度的指标。 灵敏度是传感器输出量增量与被测输入量增量之比。 阈值是能使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。 稳定性是指传感器在相当长时间内保持其性能的能力。 漂移是指在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。 精度是指传感器在满量程内任一点的输入值相对其理论值的可能偏离程度。 1.2某测温系统由以下四个环节组成,各自的灵敏度如下: 铂电阻温度传感器:0.45Ω/℃;电桥: 0.02V/Ω 放大器: 100(放大倍数) ;笔式记录仪: 0.2cm/V 求:(1)测温系统的总灵敏度;(2)记录仪笔尖位移4cm 时,所对应的温度变化值。 解:(1)测温系统的总灵敏度为0.450.021000.20.18/K cm C =???=? (2)L K t ?= ? 记录仪笔尖位移4L cm ?=时,所对应的温度变化值为: 4 22.220.18 L t C K ??= ==? 1.3有一只压力传感器的校准数据如下表:

(1)端点法平移直线法线性度; (2)最小二乘法线性度; (3)重复性; ( 4)回差; (5)总精度。 解:(1)求端点法平移直线法线性度 如下表所示,求出各个校准点正反行程6个输出电压的算术平均值(最后一个校准点只有3个输出电压的平均值)。 由两个端点的数据,可求出端点直线截距为b =0.0031V ,斜率为 50.99950.0031 0.3985610/2.50 y k V Pa x -?-= ==??- ti 出电压的平均值与理论值的差值△y i ,在上表中同时给出。 端点平移直线法是将端点直线平移,让平移后的最大正误差与最大负误差的绝对值相等,即让截距改变为

柔性可穿戴电子传感器常用材料

毕业论文设计

柔性可穿戴电子传感器常用材料 摘要随着智能终端的普及,可穿戴电子设备呈现出巨大的市场前景。传感器作为核心部件之一,将影响可穿戴设备的功能设计与未来发展。柔性可穿戴电子传感器具有轻薄便携、电学性能优异和集成度高等特点,使其成为最受关注的电学传感器之一。经过分析近年来柔性传感器的研究、设计和制造现状后,综述了柔性可穿戴电子传感器的常用材料,最后并提出了柔性可穿戴电子传感器面临的挑战与未来的发展方向。 关键词可穿戴电子;柔性传感器 The Common Materials of Flexible Wearable Electronic Sensors Abstract With the development of intelligent terminals, wearable electronic devices show a great market prospect. As one core component of the wearable electronic device, the sensor will exert a significant influence on the design and function of the wearable electronic device in the future. Compared with the traditional electrical sensors, flexible wearable sensors have the advantages of being light, thin, portable, highly integrated and electrically excellent. It has become one of the most popu-lar electronic sensors. This review focused on recent research advances of flexible wearable sensors, including signal trans-duction mechanisms, general materials, manufacture processes and recent applications. Piezoresistivity, capacitance and pie-zoelectricity are three traditional signal transduction mechanism. For accessing the dynamic pressure in real time and devel-oping stretchable energy harvesting devices, sensors based on the mechanoluminescent mechanism and triboelectric mecha-nism are promising. Common materials used in flexible wearable electronic sensors, such as flexible substrates, metals, inor-ganic semiconductors, organics and carbons, are also introduced. In addition to the continuously mapping function, wearable sensors also have the practical and potential applications, which focused on the temperature and pulse detection, the facial expression recognition and the motion monitoring. Finally, the challenges and future development of flexible wearable sen-sors are presented. Keywords wearable electronics; flexible sensor; printing manufacture; body monitoring 目录 1 引言 (4)

传感器原理及应用期末复习资料

信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 1.什么是传感器? 广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 2.传感器由哪几个部分组成?分别起到什么作用? 传感器一般由敏感元件、转换原件和基本电路组成。敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。传感器的核心部分是转换原件,转换原件决定传感器的工作原理。 3.传感器的总体发展趋势是什么?传感器的应用情况。 传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。 4.了解传感器的分类方法。所学的传感器分别属于哪一类? 按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器按传感器的输出信号分类:模拟传感器、数字传感器 按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器 按传感器的功能分类:单功能传感器、多功能传感器、智能传感器 按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器 电化学传感器 按传感器的能源分类:有源传感器、无源传感器 国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器

(整理)分别列举10种接触、非接触传感器种类及原理

分别列举10种接触、非接触传感器种类及原理 接触式位移传感器: 1位移传感器及其原理:计量光栅是利用光栅的莫尔条纹现象来测量位移的。 “莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为辐射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图 1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π。 (上海德测电子科技有限公司产品) 2螺杆式空压机压力传感器螺杆式空压机压力传感器:是工业实践中最为常用 的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压力传感器。 压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石

机器人最实用的10种传感器盘点

机器人最实用的10种传感器盘点 随着智能化的程度提高,机器人传感器应用越来越多。智能机器人主要有交互机器人、传感机器人和自主机器人3种。从拟人功能出发,视觉、力觉、触觉最为重要,早已进入实用阶段,听觉也有较大进展,其它还有嗅觉、味觉、滑觉等,对应有多种传感器,所以机器人传感产业也形成了生产和科研力量。 内传感器 机器介机电一体化的产品,内传感器和电机、轴等机械部件或机械结构如手臂(Arm)、手腕(Wrist)等安装在一起,完成位置、速度、力度的测量,实现伺服控制。 位置(位移)传感器 直线移动传感器有电位计式传感器和可调变压器两种。角位移传感器有电位计式、可调变压器(旋转变压器)及光电编码器三种,其中光电编码器有增量式编码器和绝对式编码器。增量式编码器一般用于零位不确定的位置伺服控制,绝对式编码器能够得到对应于编码器初始锁定位置的驱动轴瞬时角度值,当设备受到压力时,只要读出每个关节编码器的读数,就能够对伺服控制的给定值进行调整,以防止机器人启动时产生过剧烈的运动。 速度和加速度传感器 速度传感器有测量平移和旋转运动速度两种,但大多数情况下,只限于测量旋转速度。利用位移的导数,特别是光电方法让光照射旋转圆盘,检测出旋转频率和脉冲数目,以求出旋转角度,及利用圆盘制成有缝隙,通过二个光电二极管辨别出角速度,即转速,这就是光电脉冲式转速传感器。此外还有测速发电机用于测速等。 应变仪即伸缩测量仪,也是一种应力传感器,用于加速度测量。加速度传感器用于测量工业机器人的动态控制信号。一般有由速度测量进行推演、已知质量物体加速度所产生动力,即应用应变仪测量此力进行推演,还有就是下面所说的方法: 与被测加速度有关的力可由一个已知质量产生。这种力可以为电磁力或电动力,最终简化为对电流的测量,这就是伺服返回传感器,实际又能有多种振动式加速度传感器。

水质监测设备中常用的5种传感器

水质监测设备中常用的5种传感器 水质监测设备中常用的5种传感器。在越来越看重环境保护的今天,水质检测仪对于一些行业来讲是必不可少的设备。而不同行业对检测的需求也不一样,因此检测人员相应的操作也不同,对于检测设备的选择也不一样。比如说工业废水大部分检测的是重金属含量,饮用水厂可能就需要检测微生物、有机物、重金属、消毒剂等多种参数。而这些参数的检测工作主要是由水质检测仪的各种传感器来完成的。 水质多参数检测探头 今天我们就为大家介绍一些水质检测仪常用的传感器 1.余氯传感器 余氯 氯是最广泛的消毒剂,尤其是在饮用水的杀菌消毒过程中。而余氯传感器可以检测出水体样本中游离氯、一氯胺和总氯的含量。 2.TOC传感器 TOC也被称为总有机碳,它是分析水体样本中有机物污染情况的重要指标,而TOC传感器也多用于制药行业的水质分析中。 2.电导率传感器 电导率 电导率传感器可以说是水质检测仪中使用最多的传感设备,它主要用于检测水体中总离子的浓度,而且根据测量原理的不同可以分为电极型、电感型以及超声波型。

3.PH传感器 PH PH传感器主要通过检测氢离子来获取水体的酸碱值,而PH值是水体的一个重要指标,在多个行业中对水体PH值都有严格的要求。 4.ORP传感器 氧化还原反应计 ORP传感器主要用于溶液的氧还原电位,它不仅能多针对水体进行检测,还可以对土壤和培养基中的ORP数据进行检测,因此它也是应用领域最多的传感器,通常它会跟PH传感器一起使用。 5.浊度传感器 浊度检测探头 浊度传感器是通过测量透过水的光量来测量水中的悬浮固体,而这些悬浮固体可以反映出水体受污染的情况。因此在水质检测仪对河流、污水以及废水的测量中会经常使用到。 总的来说传感器是水质检测仪用来测量水体数据的重要设备,正确的操作和使用可以帮检测人员获得更有价值的数据信息。 安徽省碧水电子技术有限公司成立于2004年3月,以研发、生产、销售及托管运营环境保 护监测仪器仪表为主要业务。目前拥有员工130余人,其中高级工程师4名,运维工程师90人, 专业运维车辆60余辆。2006年取得国家环保部颁发的水质、烟气在线运营维护证书,目前接受

图文传感器大全

霍尔位移传感器外形编号HK外观尺寸 M12×1*50可检测物体永磁铁检测距离埋入式:0-15mm额定工作电压4.5~10.5VDC功耗检测时:≤20mA…<4mA;无检测时:≤20mA负载电阻电流型:0~300Ω;电压型:≥2.2KΩ输出电流型:4~20mA;电压型:0~5V允许电压波动≤5%输出信号PNP模拟线形误差≤1.5%温度飘移≤0.01mm/℃重复精度≤1%环境温度 -40℃~150℃外壳材料金属防护等级 IP67 BURKERT宝德液位传感器技术参数:测量范围:1Hz~45KHz输出方式:低电平有效,驱动能力不小于15mA 输出信号:波形:矩形波幅值:高电平接近供电电源,低电平≤0.5V供电电源:(4.5~24)VDC,(12~18)V最值每转脉

冲数:与贴的磁片数量一致检测距离:≤4mm 正常工作条件温度:-20℃~+80℃相对湿度:不大于85%大气压力:86KPa~106KPa周围无爆炸性、腐蚀性气体□外形及开孔尺寸总长:L+21.9(不包括输出导线) 外螺纹:M12×1螺纹有效长度:L,L=50,75,100mm输 出导线:2m 极限参数参数符号量值单位电源电压V CC :4.5-24 V磁感应强度B 不限mT输出反向击穿电压V ce 40 V输出低电平电流I OL 25 mA工作环境温度T A -40~150℃高 温贮存温度T S 150℃磁场 低噪音模拟信号路径可通过新的滤波引脚设置器件带宽 5 μs 输出上升时间,对应步进输入电流80 千赫带宽总输出误差为 1.5%(当TA = 25°C时)小型低厚度SOIC8 封装1.2 mΩ 内部传导电阻引脚1-4 至5-8 之间2.1 VRMS 最小绝缘电压 5.0 伏特,单电源操作66 至185 mV/A 输出灵敏度输出电压与交流或直流电流成比例出厂时精确度 校准极稳定的输出偏置电压近零的磁滞电源电压的成比例输出

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

测试技术基础答案 第三章 常用传感器

第三章 常用传感器 一、知识要点及要求 (1)掌握常用传感器的分类方法; (2)掌握常用传感器的变换原理; (3)了解常用传感器的主要特点及应用。 二、重点内容及难点 (一)传感器的定义、作用与分类 1、定义:工程上通常把直接作用于被测量,能按一定规律将其转换成同种或别种量值输出的器件,称为传感器。 2、作用:传感器的作用就是将被测量转换为与之相对应的、容易检测、传输或处理的信号。 3、分类:传感器的分类方法很多,主要的分类方法有以下几种: (1)按被测量分类,可分为位移传感器、力传感器、温度传感器等; (2)按传感器的工作原理分类,可分为机械式、电气式、光学式、流体式等; (3)按信号变换特征分类,可概括分为物性型和结构型; (4)根据敏感元件与被测对象之间的能量关系,可分为能量转换型与能量控制型; (5)按输出信号分类,可分为模拟型和数字型。 (二)电阻式传感器 1、分类:变阻式传感器和电阻应变式传感器。而电阻应变式传感器可分为金属电阻应变片式与半导体应变片两类。 2、金属电阻应变片式的工作原理:基于应变片发生机械变形时,其电阻值发生变化。金属电阻应变片式的的灵敏度v S g 21+=。 3、半导体电阻应变片式的工作原理:基于半导体材料的电阻率的变化引起的电阻的变化。半导体电阻应变片式的的灵敏度E S g λ=。 (三)电感式传感器 1、分类:按照变换原理的不同电感式传感器可分为自感型与互感型。其中自感型主要包括可变磁阻式和涡电流式。 2、涡电流式传感器的工作原理:是利用金属体在交变磁场中的涡电流效应。 (四)电容式传感器 1、分类:电容式传感器根据电容器变化的参数,可分为极距变化型、面积变化型、介质变化型三类。 2、极距变化型:灵敏度为201 δ εεδA d dC S -== ,可以看出,灵敏度S 与极距平方成反比,极距越小灵敏度越高。显然,由于灵敏度随极距而变化,这将引起非线性误差。 3、面积变化型:灵敏度为常数,其输出与输入成线性关系。但与极距变化型相比,灵敏度较低,适用于较大直线位移及角速度的测量。 4、介质变化型:可用来测量电介质的液位或某些材料的厚度、湿度和温度等;也可用于测量空气的湿度。 (五)压电式传感器 1、压电传感器的工作原理是压电效应。

传感器的发展史word资料10页

传感器的发展史 传感器的发展史2019-04-26 11:28传感器的发展史 这是本词条的历史版本,由diany于2009-09-18创建。1微型化(Micro) 为了能够与信息时代信息量激增、要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性、可靠性、灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小、重量轻、反应快、灵敏度高以及成本低等优点。 1.1由计算机辅助设计(CAD)技术和微机电系统(MEMS)技术引发的传感器微型化 目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本、高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。 对于微机电系统(MEMS)的研究工作始于20世纪60年代,其研究范畴涉及材料科学、机械控制、加工与封装工艺、电子技术以及传感器和执行器等多种学科,是一个极具前景的新兴研究领域。MEMS的核心技术是研究微电子与微机械加工与封装技术的巧妙结合,期望能够由此而制造出体积小巧但功能强大的新型系统。经过几十年的发展,尤其最近十多年的研究与发展,MEMS技术已经显示出了巨大的生命力,此项技术的有效采用将信息系统的微型化、智能化、多功能化和可靠性水平提高到了一个新的高度。在当前技术水平下,微切削加工技术已经可以生产出来具有不同层次的3D微型结构,从而可以生产出体积非常微小的微型传感器敏感元件,象毒气传感器、离子传感器、光电探测器这样的以硅为主要构成材料的传感/探测器都装有极好的敏感元件。目前,这一类元器件已作为微型传感器的主要敏感元件被广泛应用于不同的研究领域中。 1.2微型传感器应用现状

传感器与检测技术第2章 传感技术基础 参考答案

第2章传感技术基础 一、单项选择题 1、下列测量方法属于组合测量的是()。 A. 用电流表测量电路的电路 B. 用弹簧管压力表测量压力 C. 用电压表和电流表测量功率 D. 用电阻值与温度关系测量电阻温度系数 2、测量者在处理误差时,下列哪一种做法是无法实现的() A.消除随机误差 B.减小或消除系统误差 C.修正系统误差 D.剔除粗大误差 3、在整个测量过程中,如果影响和决定误差大小的全部因素(条件)始终保持不变,对同一被测量进行多次重复测量,这样的测量称为() A.组合测量 B.静态测量 C.等精度测量 D.零位式测量 4、用不同精度的仪表或不同的测量方法,或在环境条件不同时,对同一被测量进行多次重复测量,这样的测量称为() A.动态测量 B.静态测量 C.组合测量 D.不等精度测量 二、多项选择题 1、下列属于测量误差的有:() A.相对误差 B.绝对误差 C.引用误差 D.基本误差 E.附加误差 三、填空题 1、以确定被测值为目的的一系列操作,称为。 2、明显偏离测量结果的误差称为。 3、在同一测量条件下,多次测量被测量时,其绝对值和符号以不可预定方式变化,但误差总体具有一定的规律性,这类误差称为。 4、仪表的精度等级是用仪表的(①相对误差,②绝对误差,③引用误差)来表示的。 5、测量过程中存在着测量误差,按性质可被分为、和引用误差三类,其中可以通过对多次测量结果求平均的方法来减小它对测量结果的影响。 6、测量误差是。

7、随机误差是在同一测量条件下,多次测量被测量时,其 和 以不可预定方式变化着的误差。 8、在同一测量条件下,多次测量被测量,其绝对值和符号保持不变的称为 。 9、系统误差有 和 系统误差两种。 10、某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度分别为:S 1=0.2mV/℃、S 2=2.0V/mV 、S 3=5.0mm/V ,则系统总的灵敏度为 。 四、简答题 1、什么是等精度测量和非等精度测量? 2、什么是直接测量、间接测量和组合测量? 五、计算题 1、铜电阻的电阻值R 与温度t 之间的关系为)1(0t R R t ?+=α,在不同温度下,测得铜电阻的电阻值如下表所示。请用最小二乘法求0℃时的铜电阻的电阻值0R 和铜电阻的电阻温度系数α。 2、某电路的电压数值方程为2211R I R I U += 当电流 A I 21=, A I 12=时,测得电压U 为50 v ; 当电流 A I 31= ,A I 22=时,测得电压U 为80 v ; 当电流 A I 41= ,A I 32=时,测得电压U 为120 v ; 试用最小二乘法求两只电阻1R 、2R 的值。 3、已知某金属棒的长度和温度之间的关系为)1(0t L L t ?+=α。在不同温度下,测得该金属棒α。 一、单项选择题 1、D 2、A 3、C 4、D 二、多项选择题 1、ABCDE

几种常见传感器总结

几种常见传感器总结 1、红外对管: 红外对管是根据红外辐射式传感器原理制作的一种红外对射式传感器。与一般红外传感器一样,红外对管也由三部分构成:光学系统(发射管)、探测器(接收管)、信号调理及输出电路。红外探测器是利用红外辐射与物质相互作用所呈现的物理效应来探测红外辐射的。在此接收管通过对发射管所发出的红外线做出反应实现,实现信号的采集,再通过后续信号处理电路完成信号的采集和输出。 2、霍尔传感器: 霍尔传感器是基于霍尔效应的一种传感器。霍尔效应是指置于磁场中的静止载流导体, 当它的电流方向与磁场方向不一致时, 载流导体上平行于电流和磁场方向上的两个面之间产生电动势的现象。该电势称霍尔电势。霍尔传感器是利用霍尔效应实现磁电转换的一种传感器,它具有灵敏度高,线性度好,稳定性高、体积小和耐高温等特点。对测速装置的要求是分辨能力强、高精度和尽可能短的检测时间。目前市场上的霍尔传感器都是集成了外围的测量电路输出的是数字信号,即当传感器检测到磁场时将输出高低电平信号。传感器主要包括两部分,一为检测部分的霍尔元件,一为提供磁场的磁钢。霍尔电流传感器反应速度一般在7微妙,根本不用考虑单片机循环判断的时间. 3、光电开关: 光电开关是一种利用感光元件对变化的入射光加以接收, 并进行光电转换, 同时加以某种形式的放大和控制, 从而获得最终的控制输出“开”、“关”信号的器件。上图为典型的光电开关结构图。是一种反射式的光电开关,它的发光元件和接收元件的光轴在同一平面且以某一角度相交,交点一般即为待测物所在处。当有物体经过时, 接收元件将接收到从物体表面反射的光, 没有物体时则接收不到。透射式的光电开关, 它的发光元件和接收元件的光轴是重合的。当不透明的物体位于或经过它们之间时, 会阻断光路, 使接收元件接收不到来自发光元件的光, 这样起到检测作用。光电开关的特点是小型、高速、非接触, 而且与TTL、MOS等电路容易结合。此类传感器目前也多为开关量传感器,输出的为1,0开关量信号,可以和单片机直接连接使用。光电开关广泛应用于工业控制、自动化包装线及安全装置中作光控制和光探测装置。可在自控系统中用作物体检测,产品计数, 料位检测,尺寸控制,安全报警及计算机输入接口等用途。 4、超声波传感器: 利用超声波在超声场中的物理特性和各种效应而研制的装置可称为超声波换能器、探测器或传感器。超声波探头按其工作原理可分为压电式、磁致伸缩式、电磁式等, 而以压电式最为常用。压电式超声波探头常用的材料是压电晶体和压电陶瓷, 这种传感器统称为压电式超声波探头。它是利用压电材料的压电效应来工作的: 逆压电效应将高频电振动转换成高频机械振动, 从而产生超声波, 可作为发射探头; 而利用正压电效应, 将超声振动波转换成电信号, 可用为接收探头。超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

传感器技术复习资料

传感器技术复习资料 《传感器技术》复习资料 一.填空题 1. 热释电效应:当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷,这种由于热变化而产生的电极化现象,称为热释电效应。 2.传感器的发展方向:①新材料将不断被开发②集成化、多功能③智能化④微加工技 术和新工艺⑤高稳定、高可靠、高精度。 3. 湿度: 空气中含有水分的多少,即空气的干湿程度叫湿度。 4. 热敏电阻的非线性问题解决办法:线性化网络;利用其他器件综合修正;计算修正法。 5. 磁阻效应:将一载流导体置于外磁场中,除了产生霍尔效应,其电阻也会随磁场而变化。这种现象称为磁电阻效应,简称磁阻效应。 二.简答题 1. 压电陶瓷为什么会有压电效应? 答:压电陶瓷是一种多晶铁电体,它是具有电畴结构的压电材料。电畴是分子自发形成的区域,它有一定的极化方向。 在无外电场作用时,各个电畴在晶体中无规则排列,它们的极化效应互相抵消。因此,在原始状态压电陶瓷呈现中性,不具有压电效应。 当在一定的温度条件下,对压电陶瓷进行极化处理,即以强电场使电畴规则排列,这时压电陶瓷就具有了压电性,在极化电场去除后,电畴基本上保持不变,留下了很强的剩余极化。此时,当有压力作用时,压电陶瓷就会有压电效应。 2. .画出微处理器引入传感器构成智能传感器的框图。

三.单项选择题 1、在使用热电偶测温时,要进行冷端温度补偿。下面哪种方法能用来进行补偿( B )(A)线性化网络法(B)恒温法 (C)利用温度——频率转换电路进行修正(D)计算修正法 2、AD590是那种类型的集成温度传感器( C ) (A)频率输出型(B)电荷输出型(C)电流输出型(D)电压输出型 3、传感器在正向行程和反向行程期间,输出-输入特性曲线不重合的程度是( A ) (A)迟滞(B)重复性(C)精度(D)分辨力 4、磁敏二极管进行磁电转换所利用的效应是( B ) (A)霍尔效应(B)磁阻效应 C)形状效应(D)压电效应 5、传感器在规定的范围所能检测输入量的最小变量叫( A ) (A)分辨力(B)灵敏度(C)阈值(D)效应 6、光纤的纤芯折射率n1与包层折射率n2 的关系为( B ) (A)n1< n2 (B)n1> n2 (C)n1=n2 (D)n1n2 7、在压电传感器测量电路中前置放大器的作用是( D ) (A)放大和频率变换(B)放大和整流(C)放大和相位调整(D)放大和阻抗变换8、若对压电陶瓷施加力,得到的压电常数为d31,则此时的力应为( A ) (A)沿X轴施加力(B)沿Y轴施加力(C)沿Z轴施加力(D)在XY平面的剪切应力 四.原理叙述 1、简述电阻应变式传感器工作原理

传感器介绍

产品名称: T JH-1称重传感器 规 格: 3,5,10,20,30,50,100,150kg 产品备注: 传统产品,成熟可靠,特有的T 型过载保护装置,抗过载能力强。可 选择一体化标准信号输出,如4-20mA 或0-5V 三线制放大器。适用于 皮带秤、配料秤等。 产品类别: 称重传感器系列 传感器 用途与特点 ⊙特有的T 型过载保护装置,抗过载能力强。 ⊙适用于皮带秤、配料秤等。 ⊙可选择一体化标准信号输出,三线制,0~10mA 、4~20mA 或0~5V 输出。 量程 3,5,10,20,30,50,100,150kg 技术参数

产品名称:T JH-2B平行梁传感器 规格:200,300,500,700,1000kg 产品出厂时经过四角调整,保证其在规定的受载平面内各点输出一致,产品备注: 可用于制造由单支传感器构成的各种形式的电子秤、专用秤。 产品类别:称重传感器系列 传感器用途与特点 最大秤台平面650×650mm 经四角误差修正,保证在额定受载平面内各点输 出一致。 适用于固体、液体流动秤、人体秤、配料秤、案 秤及精细化工配比秤。 量程、规格、外形及安装尺寸 200,300,500,700,1000kg 技术参数

产品编号:10200104716 产品名称:T JH-2A平行梁传感器 规格:100,200,300,500,700kg 产品备注:产品出厂时经过四角调整,保证其在规定的受载平面内各点输出一致,可用于制造由单支传感器构成的各种形式的电子秤、专用秤 产品类别:称重传感器系列传感器用途与特点 最大秤台平面600×600mm 经四角误差修正,保证在额定受载平面内各点输出一致。 适用于固体、液体流动秤、人体秤、配料 秤、案秤及精细化工配比秤。 量程、规格、外形及安装尺寸 100,200,300,500,700kg 技术参数

工业中常用的传感器

什么是传感器? 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能 将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 特点: 传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 传感器在工业中的应用: 化学传感器在石化工业中的应用 石油化工产业对国民经济有重要影响,整个石化工业领域包括:上游的轻油裂解炼油厂、中游的塑料中间原料厂和属于下游的塑料加工及塑料化工厂等。在上述各类工厂的生产工艺过程中经常会不同程度的产生或排放一些污染性 石油化工产业对国民经济有重要影响,整个石化工业领域包括:上游的轻油裂解炼油厂、中游的塑料中间原料厂和属于下游的塑料加工及塑料化工厂等。在上述各类工厂的生产工艺过程中经常会不同程度的产生或排放一些污染性有 害气体如:h2s、so2、nox、voc、co、ch4、nh3、cl2等,因此,除需使用各种化学传感器来检测这些有害排放物质之外,还将它们用于生产工艺过程的控制、工业安全保障、工艺卫生、环保与污染防止等多项用途。尤其是在生产安全和环境保护方面越来越引起各方面的高度重视。 目前石化工厂对许多化学物质的检测,主要依靠使用各种化学传感器,在石化工厂中比较常见的化学传感器有:加氢裂解反应工艺过程检测h2泄漏或 h2s排放的传感器,锅炉燃烧过程的sox和nox排放及内燃机等的燃烧过程控制的o2浓度的检测传感器,以及制造工艺所排放的voc的监测等。使用化学传感器可快速准确的检测待测物或排放物的种类与浓度,传感器对不论液相还是气相的化学物质或污染物质,在分析检测过程中都起着重要作用,并且随着化学传感

传感器技术课程准则

传感器技术课程(项目)标准(一)课程性质与任务 1.课程性质 传感器是现代控制的基本工具,《传感器技术及应用》是一门多学科交叉的专业课程,重点介绍各种传感器的工作原理和特性,结合工程应用实际,了解传感器在各种电量和非电量检测系统中的应用,培养学生使用各类传感器的技巧和能力,掌握常用传感器的工程测量设计方法和实验研究方法,了解传感器技术的发展动向。? 本课程后续的综合实训、中级职业资格证书、毕业设计、顶岗实习等基本技能养成课程,即是职业素质养成与职业能力培养最基本的理论实践一体化课程。 2、课程任务 本课程的任务是通过课堂理论学习和实际操作训练,使学生掌握一线高级技术人员所必需的传感器与检测技术的应用知识,并能结合控制技术中的传感器与控制技术的应用,掌握检测的理论依据和检测设备的结构、工作原理、使用与维护方法的知识和技能。 (二)课程教学目标 1.知识目标 (1)掌握传感器的基础知识,了解检测的基本原理及相关知识; (2)掌握温度传感器的工作原理,了解温度检测的基本方法;? (3)掌握电容式传感器的功能及工作特点,了解电容式传感器的结构及工作原理及电容式传感器的测量方法;

(4)掌握电感式传感器的功能及工作特点,了解电感式传感器的工作原理及分类方法及电感式传感器的测量方法; (5)掌握压电式传感器的结构及工作原理,了解压电效应的原理、压电式传感器的功能及工作特点、压电元件串联和并联的特性及压电式传感器的测量方法; (6)掌握磁电式传感器的工作原理、基本特性,了解磁电式传感器的测量电路、霍尔元件的构造及测量电路、霍尔元件的补偿电路; (7)了解并掌握光电效应、光电器件及其特征、光电、光纤式传感器的功能和应用; (8)掌握超声波传感器的工作原理及应用,了解核辐射式传感器的原理及应用范围。 2.能力目标 (1)能够用常用万用表等常用仪器仪表做各种传感器性能的检查,判别其好坏; (2)能够根据检测要求合理选用各种类型的传感器; (3)能够根据被测信号的特点,合理设计合理的检测电路; (4)能够用不同类型的传感器设计制作相应的模块测量电路; (5)能够用制作的模块电路正确进行物理量的测量; (6)能够用所学传感器知识进行常用传感器测量电路的检修; 3.素质目标 (1)能独立承担电子产品的装配与工艺管理、质量检验、设计开发及设备维护管理等岗位的工作,具有良好的团队合作意识; (2)养成良好的工作责任心、坚强的意志力和严谨的工作作风;

避障常用哪些传感器-几种传感器的基本工作原理

避障常用哪些传感器?几种传感器的基本工作原理 导读 避障是指移动机器人在行走过程中,通过传感器感知到在其规划路线上存在静态或动态障碍物时,按照一定的算法实时更新路径,绕过障碍物,最后达到目标点。 避障常用哪些传感器 不管是要进行导航规划还是避障,感知周边环境信息是第一步。就避障来说,移动机器人需要通过传感器实时获取自身周围障碍物信息,包括尺寸、形状和位置等信息。避障使用的传感器多种多样,各有不同的原理和特点,目前常见的主要有视觉传感器、激光传感器、红外传感器、超声波传感器等。下面我简单介绍一下这几种传感器的基本工作原理。超声波 超声波传感器的基本原理是测量超声波的飞行时间,通过d=vt/2测量距离,其中d是距离,v是声速,t是飞行时间。由于超声波在空气中的速度与温湿度有关,在比较精确的测量中,需把温湿度的变化和其它因素考虑进去。 上面这个图就是超声波传感器信号的一个示意。通过压电或静电变送器产生一个频率在几十kHz的超声波脉冲组成波包,系统检测高于某阈值的反向声波,检测到后使用测量到的飞行时间计算距离。超声波传感器一般作用距离较短,普通的有效探测距离都在几米,但是会有一个几十毫米左右的最小探测盲区。由于超声传感器的成本低、实现方法简单、技术成熟,是移动机器人中常用的传感器。超声波传感器也有一些缺点,首先看下面这个图。 因为声音是锥形传播的,所以我们实际测到的距离并不是一个点,而是某个锥形角度范围内最近物体的距离。 另外,超声波的测量周期较长,比如3米左右的物体,声波传输这么远的距离需要约20ms 的时间。再者,不同材料对声波的反射或者吸引是不相同的,还有多个超声传感器之间有

最常用的传感器用途简介

目录 1.常用传感器分类 (1) 1.1生活常见类 (1) 1.2光电类传感器 (2) 1.3力学方面传感器 (3) 1.4 其他常见方面的传感器 (4) 2传感器功能分类 (5) 2.3电阻式传感器 (5) 2.4. 变频功率传感器 (5) 2.5称重传感器 (6) 2.6电阻应变式传感器 (6) 2.7压阻式传感器 (6) 2.8热电阻传感器 (6) 2.9 激光传感器 (6) 2.10. 霍尔传感器 (6) 2.11无线温度传感器 (6) 2.12智能传感器 (7) 2.13光敏传感器 (7) 2.14生物传感器 (7) 2.15 位移传感器 (7) 2.16. 压力传感器 (8) 2.17. 24GHz雷达传感器 (8) 2.18 液位传感器 (8) 2.18.1、浮球式液位传感器 (8) 2.18.2、浮简式液位传感器 (8) 2.18.3、静压或液位传感器 (8) 1.常用传感器分类 1.1生活常见类 DS18b20温度传感器 作用:检测温度 湿度传感器: 检测湿度 温湿度传感器 作用:检测室内温度跟湿度 烟雾传感器 作用:检测烟雾浓度

作用:安卓手机上的的屏幕旋转 防水型DS18B20 作用:防水也可测温度 声音检测传感器 作用:可以用于声控灯,配合光敏传感器做声光报警,以及声音控制,声音检测的 驻极体话筒传感器 作用:声控开关 煤气传感器 作用:预防火灾 1.2光电类传感器 超声波传感器 作用:测距离 红外避障传感器 作用:避障 反射式光电管RP220 作用:可应于小车、机器人等黑白线寻迹 光敏电阻P1201-04传感器 作用:可见光控制电阻阻值 U型光电传感器 作用:常用于工件计数、测量电机的转速、电机转的圈数 红外接收头HS0038 作用:可应于红外信号检测 CHQ1838传感器 作用:接收红外线 红外光电传感器 作用:光电开关,红外光电开关的种类很多,有镜反射式、漫反射式、槽式、对射式和光纤式等。 接触传感器 作用:识别障碍物 开环式电流传感器 作用:测量磁场 闭环式电流传感器 作用:测量磁场 霍尔开关传感器 作用:可用于电机测速/位置检测等场地,主要作为开关使用 防跌落传感器 作用:饭跌落 防碰撞传感器: 作用:防碰撞

相关文档