文档库 最新最全的文档下载
当前位置:文档库 › 第十二章 红外吸收光谱法

第十二章 红外吸收光谱法

第十二章 红外吸收光谱法
第十二章 红外吸收光谱法

第十二章 红外吸收光谱法

一、选择题

1.中红外区的特征区是指( )cm -1范围内的波数。

A 、4000~200

B 、4000~1250

C 、1250~200

D 、10 000~10

2.已知CO 2的结构式为O=C=O ,请推测其红外光谱中,基本振动数为( )。

A 、4个

B 、3个

C 、2个

D 、1个

3.红外光谱中,不是分子的所有振动形式的相应红外谱带都能被观察到,这是因为( )

A 、分子中既有振动运动,又有转动运动

B 、分子中有些振动能量是简并的

C 、因为分子中有C 、H 、O 以外的原子存在

D 、分子中有些振动能量相互抵消

4.关于红外光谱的吸收峰,下列叙述不正确的是( )

A 、共轭效应使红外吸收峰向低波数方向移动

B 、诱导效应使红外吸收峰向高波数方向移动

C 、氢键使红外吸收峰向低波数方向移动

D 、氢键使红外吸收峰向高波数方向移动

5.若 O —H 键的键力常数 K = 7.12N /cm ,则它的振动波数( cm -1

)为( )

A 、3584

B 、3370

C 、3474

D 、3500

6.欲获得红外活性振动,吸收红外线发生能级跃迁,必须满足( )条件。

A 、△μ>0或△μ<0

B 、△μ≠0并服从νL=v △V

C 、△μ=0及vL=△Vv

D 、△μ≠0

7.CO 2的下列振动中,属于红外非活性振动的是( )。

8.下列三种物质:甲R-CO-CH 2CH 3、乙R-CO-CH=C (CH 3)2、、丙R-COCl ,问其V C=O 波数大小次序为( )。

A 、甲>乙>丙

B 、乙>甲>丙

C 、丙>乙>甲

D 、丙>甲>乙

9.三种振动νc=o ,νc=N 及νc=C 的频率大小次序为( )。(电负性:C 为2.6,N 为3.0,O 为3.5)

A 、νc=o >νc=N >νc=C

B 、νc=

C >νc=N >νc=o

C 、νc=N >νc=C >νc=o

D 、νc=N >νc=o >νc=C

10.同一分子中的某基团,其各振动形式的频率大小顺序为( )。

A 、γ>β>ν

B 、 ν>β>γ

C、β>ν >γ

D、β>γ >ν

11.用于鉴别官能团存在的峰称为()

A、特征峰

B、相关峰

C、基频峰

D、泛频峰

12.已知某化合物不含氮,它的红外光谱中2240~2100cm-1有吸收峰,则该化合物可能是()

A、CH3CH2CH2CH3

B、CH3CH2C≡CH

C、CH3CH2CH=CH2

D、CH3CH2C≡CCH2CH3

13.某化合物在紫外光区204nm处有一弱吸收带,在红外特征区有如下吸收峰:3400-2400cm-1宽而强的吸收,1710cm-1。则该化合物可能是:()

A、醛

B、酮

C、羧酸

D、酯

14.某化合物在紫外光区270nm处有一弱吸收带,在红外光区有2820,2720,1725cm-1吸收峰。则该化合物可能是()

A、醛

B、酮

C、羧酸

D、酯

15.红外分光光度计使用的检测器是( )。

A、光电管

B、光电倍增管

C、真空热电偶

D、光电池

16.下列四组数据中,( )组数据所涉及的红外光谱区能包括CH3CH2CHO的吸收带。

A、3000~2700cm -1

,2400~2100cm

-1

,1000~650cm

-1

B、3300~3010cm -1

,1675~1500cm

-1

,1475~1300cm

-1

C、3300~3010cm -1

,1900~1650cm

-1

,1000~650cm

-1

D、3000~2700cm -1

,1900~1650cm

-1

,1475~1300cm

-1

二、填空

1.红外光谱中吸收峰数常少于基本振动数目的原因是---------和----------。

2.红外非活性振动是指-----------------。

3.红外光谱图常用----------为纵坐标,------------为横坐标。

4.分子吸收红外光,振动能级由基态跃迁至第一激发态所产生的吸收峰称做--------------。5.基本振动产生红外吸收的条件--------和-----------。

6.红外光谱中,--------的低频区称为指纹区。

7.------------、-----------及--------统称为泛频峰。

8.红外光谱吸收强度主要由两个因素--------------和-----------------决定。

9.振动形式不同但振动频率相同而合并的现象称为--------。

10.红外分光光度计的光源为--------或----------。

三、简答题

1.红外吸收光谱法与紫外吸收光谱法有何区别?

2.CO2有几种振动形式?在红外吸收光谱上能看到几个吸收峰?为什么?

3.为什么共轭效应能使一些基团的振动频率降低,而诱导效应相反,举例说明。

4.特征区和指纹区各有何特点?它们在图谱解析中主要解决哪些问题?

5.试用红外吸收光谱区别胺、酰胺及芳香硝基化合物。

四、光谱解析

1.一化合物分子式为C14H12,试根据IR光谱(图12—1)推断其结构式。

图12一l C14H12的红外吸收光谱图

2.一化合物的分子式为C8H18,图12-2是它的红外光谱,试推断可能的结构。

图13—2 C8H18的红外吸收光谱图

3.一化合物的分子式是C8H l0O,其红外光谱见图12—3,试推断其结构式。

图13—3 C8H l0O的红外吸收光谱图

4.一化合物的分子式为C11H12O2,图12—4是其红外光谱,试推断该化合物的结构式。

图12—4 C11H1202的红外吸收光谱图

5.一化合物的分子式为C9H ll NO,图12—5是它的红外及紫外光谱,试推测其结构式。

图12—5 C9H ll NO的红外及紫外吸收光谱图

参考答案

一.选择题

1.B 2.A3.B 4.D 5.A6.B 7.A8.D 9.A10.B

11.A 12.B 13.C 14.A 15.C 16.D

二.填空题

1.红外非活性振动,简并

2.不能吸收红外线发生能级跃迁的振动

3.百分透光率,波数或波长

4.基频峰

5.△μ≠0,νl =ν△V 。

6.1250--200cm -1

7.倍频峰、合频峰、差频峰

8.振动过程中键的偶极矩变化,振动能级的跃迁几率

9.简并

10.硅碳棒,特殊线圈灯

三.简答题

(略)

四.光谱解析

1.解 U=212

1422-?+=9,可能有苯环。

由3060、3025νφH 和νC=C 1600,1580、1500、1455 可推测有共轭苯环

由768,695 γφH 推测单取代苯由γ=C-H 965可推测烯烃反式二取代 由分子式扣除部分,即C 14H 12一C 6H 5=C 8H 7,由于不饱和度为4,C 8H 7不饱和度为5,

说明分子中可能还有一个苯环存在。由C 8H 7再扣除

,即C 8H 7-- C 6H 5=C 2H 2,即一CH==CH--,而谱图中无νC=C 峰,说明分子完全对称,据此可推断化合物结构式为

2.解 U=218

822-?+=0,为饱和脂肪化合物。

图谱中1380cm -1附近可以观察到三个吸收带:1395cm -1、1375cm -1、1365cm -1。,表明分子中可能存在叔丁基或异丙基,但1260~1200cm -1的叔丁基骨架振动区无吸收,而在

1155cm -1处却有吸收,所以应判断有异丙基,775cm -1可认

据此可推断此化合物的可能结构为

3.解 U=210

822-?+=4,可能有苯环。

光谱图中一个中心在3355cm -1宽而强的吸收带,可能为醇或酚类。1050cm -1有一强的吸收带,证明为伯醇。3100~3000cm -1三个尖锐的吸收带(即3080cm -1、3060cm -1、3030cm -1

),

1615cm -1、1500cm -1又有两个吸收带,表明分子中存在苯环,因而扣除苯环的4个不饱和度外分子中不可能再含有其他不饱和基团。750cm -1、700cm -1两个吸收带证明为一元取代苯。2935cm -1、2855cm -1两带及1460cm -1带是一CH 2一的吸收带,无1380cm -1带,分子中不存在甲基。

由此可推测此化合物的结构为

4.解 U=212

1122-?+=6,可能有苯环。

谱图中1735cm -1有中等宽度的强吸收带,表明有 C=O 存在,1225cm -1、1020cm -1的

强带和3450cm -1有一弱带,这都说明该化合物是酯类,并且可能为乙酸酯。1600cm -1、

1580cm -1、1490cm -1、1450cm -1处有吸收,并且在3100~3000cm -1区也可以观察到吸收带,表明存在苯环。因为出现1580cm -1带,表示有基团和芳环共轭。1650cm -1

带为C=C 振动吸收,这个烯键可能就是与芳环共轭的基团,则分子中应存在结构单元。

745cm -1、685cm -1两个带表明苯环是一元取代。960cm -1强带是反式二取代乙烯的特征带。1350cm -1有较强的吸收,可能分子中存在,这也进一步证明是乙酸酯类。如果从分子式中去掉上述两个结构单元(即C 6H 5CH=CH-、CH 3C=O),还余CH 20,该化合物的结构应为

5.解U=

2

11 1

9

2

2-

+

?

+

=5,可能有苯环。

IR:在1645cm-l有一中等宽度、极强的吸收带,说明分子中存在,νC=O在1645cm-l仅

含一个氧和一个氮的官能团是一CONH2、一CONH--及,1570cm-1与1645cm-1分开较清楚,可以判断应为仲酰胺。3250cm-1处有一个单吸收带,进一步说明是仲酰胺类。3080cm-1、3020cm-1、1600cm-1、1500cm-1处的四个吸收带表示有苯环存在。760cm-1和690cm-1两带是一元取代苯的特征吸收。由以上分析可初步判断是一个带有苯环的仲酰胺。

UV:饱和脂肪族酰胺在紫外区无明显吸收,苯甲酰胺和N一苯基酰胺的紫外吸收(λmax)分别在225nm和242nm。从图13—5可以看出:在稀溶液(0.0lg/L)中,UV区仅可以观察到末端吸收,当溶液浓度增大时(0.6g/L),在λmax = 257nm附近有吸收带,从λmax 和带形上来分析,显然是B带,所以这是一个脂肪族酰胺。

从分子式扣除C6H5一及一CONH一两个结构单元,还余C2H5,若要满足脂肪族仲酰胺的结构,只可能为

红外光谱法习题[1]

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物的结构,了解红外 吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符 6.判断正误。 (1)对(2)错(3)错(4)对(5)错(6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH3 CO2H CO2CH3 (2)C2H3COCH3CH3CH2CH2CHO (3) 解:(1)CH3——COH 在3300~2500cm-1处有v O—H, 其v C=O位于1746~1700cm-1 COCH3无v OH吸收,其v C=O位于1750~1735cm-1(2)C2H5CCH3其v C=O位于1720~1715cm-1 CH3CH2CH2CH 其2820cm-1及2720cm-1有醛基费米共振双峰。 O O O

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 33,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν ,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。 νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γ νν ,,,其中H C -≡ν 峰位在3333-3267cm -1。C C ≡ν 峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ 分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及γOH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的γOH 峰位在955~915 cm -1范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c 峰的强度大而宽是其特征。 酸酐的特征吸收峰为v as C=O 、v s C=O 双峰。具体峰位值是:v as C=O 1850~1800 cm -1(s)、v s C=O 1780~1740 cm -1 (s),两峰之间相距约60 cm -1,这是酸酐区别其它含羰基化合物主要标志。 7.某物质分子式为C 10H 10O 。测得红外吸收光谱如图。试确定其结构。

第四章 振动光谱

第四章振动光谱 一、教学目的 理解掌握震动光谱分析的基本理论,掌握红外光谱图的分析处理,了解红外光谱实验技术。 二、重点、难点 重点:震动光谱分析的基本理论,红外光谱图的分析处理。 难点:震动光谱分析的基本理论。 三、教学手段 多媒体教学 四、学时分配 4学时 引言: ●1900~1910年间,科布伦茨(W.W.C。blentz)首先用红外光测量了一些有 机物液体的吸收光谱而建立起一种新的分析方法——红外光谱法。他发现分子中的一定原子群可以吸收特定的频率,这些特定的频率犹如人类的指纹,可以用来辨认分子中特定原子群的存在。 ●它主要可以用作分子结构的基础研究和物质化学组成(物相)的分析(包括定性和 定量)。红外光谱法作分子结构的研究可以测定分子的键长、键角大小,并推断分子的立体构型,或根据所得的力常数,间接得知化学键的强弱,也可以从正则振动频率来计算热力学函数等。 ●不过红外光谱法更多的用途是根据谱的吸收频率的位置和形状来判定本知物,并按 其吸收的强度来测定它们的含量。因此红外光谱法在目前已成为十分方便而有效的分析方法之一。 ●红外光谱法应用得较多的是在有机化学领域,对无机化合物和矿物的红外鉴定开始 较晚。红外光谱法对测定矿物的结构或组分虽不如X射线衍射分析那么成熟,却也有其独特长处。 所谓振动光谱是指物质因受光的作用,引起分子或原子基团的振动,从而产生对光的吸收。如果将透过物质的光辐射用单色器加以色散,使波长授长短依次排列,同时测量在不同波长处的辐射强度,得到的是吸收光谱。如果用的光源是红外光波,即0.78~1000μm,就是红外吸收光谱。如果用的是强单色光,例如激光,产生的是激光拉曼光谱。本章主要介绍红外光谱的原理及其在无机非金属材料中的应用,对拉曼光谱只作简单的介绍。

仪器分析课后习题答案

第一章绪论 第二章光学分析法导论 第三章紫外-可见吸收光谱法 第四章红外吸收光谱法 第五章分子发光分析法 第六章原子发射光谱法 第七章原子吸收与原子荧光光谱法第八章电化学分析导论 第九章电位分析法 第十章极谱分析法 第十一章电解及库仑分析法

第十二章色谱分析法 第一章绪论 1.解释下列名词: (1)仪器分析和化学分析;(2)标准曲线与线性范围;(3)灵敏度、精密度、准确度和检出限。 答:(1)仪器分析和化学分析:以物质的物理性质和物理

化学性质(光、电、热、磁等)为基础的分析方法,这类方法一般需要特殊的仪器,又称为仪器分析法;化学分析是以物质化学反应为基础的分析方法。 (2)标准曲线与线性范围:标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线;标准曲线的直线部分所对应的被测物质浓度(或含量)的范围称为该方法的线性范围。 (3)灵敏度、精密度、准确度和检出限:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为方法的灵敏度;精密度是指使用同一方法,对同一试样进行多次测定所得测定结果的一致程度;试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度;某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。

2. 对试样中某一成分进行5次测定,所得测定结果(单位μg ?mL -1)分别为 0.36,0.38,0.35,0.37,0.39。 (1) 计算测定结果的相对标准偏差; (2) 如果试样中该成分的真实含量是0.38 μg ?mL -1, 试计算测定结果的相对误差。 解:(1)测定结果的平均值 37.0539.037.035.038.036.0=++++=x μg ? mL -1 标准偏差 1 2 222212 0158.01 5)37.039.0()37.037.0()37.035.0()37.038.0()37.036.0(1 )(-=?=--+-+-+-+-=--=∑mL g n x x s n i i μ 相对标准偏差 %27.4%10037.00158.0%100=?=?=x s s r (2)相对误差 %63.2%10038.038.037.0%100-=?-=?-=μ μ x E r 。

(完整版)12红外吸收光谱法习题参考答案

红外吸收光谱法 思考题和习题 红外光谱仪与紫外-可见分光光度计在主要部件上的不同。 3.简述红外吸收光谱产生的条件。 (1)辐射应具有使物质产生振动跃迁所需的能量,即必须服从νL= △V·ν (2)辐射与物质间有相互偶合作用,偶极矩必须发生变化,即振动过程△μ≠0; 4.何为红外非活性振动? 有对称结构分子中,有些振动过程中分子的偶极矩变化等于零,不显示红外吸收,称为红外非活性振动。 5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度? 振动自由度是分子基本振动的数目,即分子的独立振动数。对于非直线型分子,分子基本振动数为3n-6。而对于直线型分子,分子基本振动数为3n-5。 振动吸收峰数有时会少于振动自由度其原因可能为: 分子对称,振动过程无偶极矩变化的红外非活性活性。 两个或多个振动的能量相同时,产生简并。 吸收强度很低时无法检测。 振动能对应的吸收波长不在中红外区。

6.基频峰的分布规律有哪些? (1)折合质量越小,伸缩振动频率越高 (2)折合质量相同的基团,伸缩力常数越大,伸缩振动基频峰的频率越高。 (3)同一基团,一般ν> β > γ 7、举例说明为何共轭效应的存在常使一些基团的振动频率降低。 共轭效应的存在,常使吸收峰向低频方向移动。由于羰基与苯环共轭,其π电子的离域增大,使羰基的双键性减弱,伸缩力常数减小,故羰基伸缩振动频率降低,其吸收峰向低波数方向移动。 以脂肪酮与芳香酮比较便可说明。 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1。C C ≡ν峰位在2260-2100cm -1 , 是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别位于 1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左 右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 11.简述傅立叶变换红外光谱仪的工作原理及傅立叶变换红外光谱法的主要特点。 傅里叶变换红外光谱仪是通过测量干涉图和对干涉图进行快速Fourier 变换的方法得到红外光谱。它主要由光源、干涉仪、检测器、计算机和记录系统组成。同色散型红外光谱仪比较,在单色器和检测器部件上有很大的不同。由光源发射出红外光经准直系统变为一束平行光束后进人干涉仪系统,经干涉仪调制得到一束干涉光,干涉光通过样品后成为带有样品信息的干涉光到达检测器,检测器将干涉光讯号变为电讯号,但这种带有光谱信息的干涉信号难以进行光谱解析。将它通过模/数转换器(A/D)送入计算机,由计

第七章原子发射光谱分析习题

第七章原子发射光谱分析(网上习题) 一、选择题 1.原子发射光谱是由下列哪种跃迁产生的( ) (1) 辐射能使气态原子外层电子激发 (2) 辐射能使气态原子内层电子激发 (3) 电热能使气态原子内层电子激发 (4) 电热能使气态原子外层电子激发答案:(4) 2.发射光谱定量分析选用的“分析线对”应是这样的一对线() (1) 波长不一定接近,但激发电位要相近 (2) 波长要接近,激发电位可以不接近 (3) 波长和激发电位都应接近 (4) 波长和激发电位都不一定接近答案:(3) 3.发射光谱分析中, 具有低干扰、高精度、高灵敏度和宽线性范围的激发光源是( ) 答案:(4) (1) 直流电弧(2) 低压交流电弧 (3) 电火花(4) 高频电感耦合等离子体 4.电子能级差愈小, 跃迁时发射光子的() (1) 能量越大(2) 波长越长(3) 波数越大(4) 频率越高 答案:(2) 5.下面哪种光源, 不但能激发产生原子光谱和离子光谱, 而且许多元素的离子线强度大于原子线强度()

(1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(4) 6.下面几种常用激发光源中, 分析灵敏度最高的是() (1)直流电弧(2)交流电弧(3)电火花(4)高频电感耦合等离子体 答案:(4) 7.下面几种常用的激发光源中, 最稳定的是() (1)直流电弧(2)交流电弧 (3)电火花(4)高频电感耦合等离子体 答案:(4) 8.下面几种常用的激发光源中, 背景最小的是( ) (1)直流电弧(2)交流电弧 (3)电火花(4)高频电感耦合等离子体 答案:(1) 9.下面几种常用的激发光源中, 激发温度最高的是( ) (1)直流电弧(2)交流电弧 (3)电火花(4)高频电感耦合等离子体 答案:(3)

仪器分析各章习题与答案重点讲义资料

第一章绪论 问答题 1. 简述仪器分析法的特点。 第二章色谱分析法 1.塔板理论的要点与不足是什么? 2.速率理论的要点是什么? 3.利用保留值定性的依据是什么? 4.利用相对保留值定性有什么优点? 5.色谱图上的色谱流出曲线可说明什么问题? 6.什么叫死时间?用什么样的样品测定? . 7.在色谱流出曲线上,两峰间距离决定于相应两组分在两相间的分配系数还是扩散速率?为什么? 8.某一色谱柱从理论上计算得到的理论塔板数n很大,塔板高度H很小,但实际上柱效并不高,试分析原因。 9.某人制备了一根填充柱,用组分A和B为测试样品,测得该柱理论塔板数为4500,因而推断A和B在该柱上一定能得到很好的分离,该人推断正确吗?简要说明理由。 10.色谱分析中常用的定量分析方法有哪几种?当样品中各组分不能全部出峰或在组分中只需要定量其中几个组分时可选用哪种方法? 11.气相色谱仪一般由哪几部分组成?各部件的主要作用是什么? 12.气相色谱仪的气路结构分为几种?双柱双气路有何作用? 13.为什么载气需要净化?如何净化? 14.简述热导检测器的基本原理。 15.简述氢火焰离子化检测器的基本结构和工作原理。 16.影响热导检测器灵敏度的主要因素有哪些?分别是如何影响的? 17.为什么常用气固色谱分离永久性气体? 18.对气相色谱的载体有哪些要求? 19.试比较红色载体和白色载体的特点。 20.对气相色谱的固定液有哪些要求? 21.固定液按极性大小如何分类?

22.如何选择固定液? 23.什么叫聚合物固定相?有何优点? 24.柱温对分离有何影响?柱温的选择原则是什么? 25.根据样品的沸点如何选择柱温、固定液用量和载体的种类? 26.毛细管色谱柱与填充柱相比有何特点? 27.为什么毛细管色谱系统要采用分流进样和尾吹装置? 28.在下列情况下色谱峰形将会怎样变化?(1)进样速度慢;(2)由于汽化室温度低,样品不能瞬间汽化;(3)增加柱温;(4)增大载气流速;(5)增加柱长;(6)固定相颗粒变粗。 29.二氯甲烷、三氯甲烷和四氯甲烷的沸点分别为40℃,62℃,77℃,试推测它们的混合物在阿皮松L柱上和在邻苯二甲酸二壬酯柱上的出峰顺序。 30.流动相为什么要预先脱气?常用的脱气方法有哪些? 31.高压输液泵应具备什么性能? 32.在HPLC中,对流动相的要求是什么? 33.何谓梯度洗脱?适用于哪些样品的分析?与程序升温有什么不同? 33.什么是化学键合固定相?化学键合相的特点有哪些? 34.反相键合相色谱法具有哪些优点? 35.为何高效液相色谱法一般采用全多孔微粒型固定相? 36.指出下列物质在正相色谱和在反相色谱中的洗脱顺序: 37.在硅胶柱上,用甲苯为流动相时,某物质的保留时间为28 min,若改用CCl4或CHCl3。为流动相,指出哪一种溶剂能减少该物质的保留时间? 第三章光学分析法导论 一、选择题 1.在光学分析法中, 采用钨灯作光源的是 ( ) (1)原子光谱 (2)分子光谱 (3)可见分子光谱 (4)红外光谱 2.可见光的能量应为 ( ) (1) 1.24×104~ 1.24×106eV (2) 1.43×102~ 71 eV (3) 6.2 ~ 3.1 eV (4) 3.1 ~ 1.65 eV 3.已知:h=6.63×10-34 J s则波长为0.01nm的光子能量为 ( ) (1) 12.4 eV (2) 124 eV (3) 12.4×105eV (4) 0.124 eV 4..频率可用下列哪种方式表示(c------光速,λ---波长,б---波数() (1). б/c (2). cб(3).1/λ(4)、c/б 5.光量子的能量正比于辐射的() (1). 频率(2).波长(3).波数(4).传播速度 6. 下列四个电磁波谱区中,请指出能量最小(),频率最小(),波数最大者(),波长最短者()

十二章 红外吸收光谱法△

1、红外光区是如何划分的?写出相应的能级跃迁类型。 红外线(或红外辐射)是波长长于可见光而短于微波的电磁波(0.76~1000μm)。习惯上按红外线波长的不同,将红外线划分为三个区域,0.76~2.5μm称为近红外区(低于1000nm 为分子价电子,1000~2500nm为分子基团振动),2.5~25μm为中红外区(振动能级跃迁),25μm以上为远红外区(转动能级跃迁)。 2、红外吸收光谱法与紫外-可见吸收光谱法有何不同? 红外吸收光谱法,即根据样品(中)红外吸收光谱进行定性、定量及测定分子结构的方法。因为红外线的照射能量较低,只能引起分子振动能级的跃迁。而紫外-可见吸收光谱法紫外-可见光区为200~800nm,属于电子光谱,作用于具有共轭结构有机分子外层电子和有色无机物价电子,是由电子跃迁引起的光谱。 3、简述红外吸收光谱产生的条件。 满足两个条件: ①红外辐射的能量必须与分子的振动能级差相等,即E L=△V·hν或νL=△V·ν 即分子(或基团)的振动频率与振动量子数之差△V之积等于红外辐射的照射频率。 ②分子振动过程中其偶极矩必须发生变化,即△μ≠0,只有红外活性振动才能产生吸收峰。 4、何为红外非活性振动? 红外非活性振动是不能引起偶极矩变化,不吸收红外线的振动。(补充:红外活性振动就是能引起偶极矩变化而吸收红外线的振动,简并是振动形式不同但是振动频率相同而合并的现象。) 5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度? 振动自由度是分子基本振动的数目,即分子的独立振动数。 原因:①首要原因:简并。②只有在真的过程中偶极矩发生变化的振动才能吸收能量相当的红外辐射,而在红外吸收光谱上才能观测到吸收峰。即红外非活性振动是又一原因。 6、基频峰的分布规律有哪些? ①折合相对原子质量越小,基团的伸缩振动频率越高。所有含氢基团折合相对原子质量较小,因此其伸缩振动的基频峰,一般都会出现在中红外吸收光谱高波数区(左端)。 ②折合相对原子质量相同的基团,其化学键力常数越大,伸缩振动基频峰的频率越高。 ③折合相对原子质量相同的基团,一般ν(伸缩振动)>β(面内弯曲振动)>γ(面外弯曲振动)。 7、举例说明为何共轭效应的存在常使一些基团的振动频率降低。 比如脂肪酮和芳香酮。前者频率1715㎝-1,后者频率1685㎝-1。由于羰基与苯环共轭,其π电子的离域增大,使羰基的双键性减弱,伸缩力常数减小,故羰基伸缩振动频率降低,其吸收峰向低波数方向移动。 8、如何利用红外吸收光谱区别烷烃、烯烃及炔烃? P242,脂肪烃类。 9、如何在谱图上区别异丙基及叔丁基? 当2个或3个甲基连接在同一碳原子上时,则δs CH3吸收峰分裂为双峰。如果是异丙基,双峰分别位于1385㎝-1和1375cm-1左右,其峰强基本相等;如果是叔丁基,双峰分别位于1365㎝-1和1395㎝-1附近,且1365㎝-1峰的强度约为1395㎝-1的两倍。 10、如何利用红外吸收光谱确定芳香烃类化合物? P244 11、简述傅里叶变换红外光谱仪的工作原理及傅里叶变换红外光谱法的主要特点? 工作原理:它主要由光源、干涉仪、检测器、计算机和记录系统组成。由光源发射出红

第四章 红外分光光光度法(书后习题参考答案)

第四章 红外分光光光度法(书后习题参考答案) 1.CO 的红外光谱在2 170cm -1处有一振动吸收峰.问 (1)CO 键的力常数是多少? (2)14CO 的对应峰应在多少波数处发生吸收? 解:碳原子的质量2323100.210022.612--?=?= C m g 氧原子的质量2323106.210022.616--?=?=O m g (1) σ =2071cm -1 O C O C m m m m k c ?+= )(21πσ 2346 210210)6.22(106.22)217010314.32()2(--?+???????=+=O C O C m m m m c k σπ =18.6×105 dyn·cm -1=18.6N·cm -1(厘米克秒制) (2)14CO 2323103.210022.614-?=?=C m g 2071106.23.210)6.23.2(106.1810314.3214623 510≈???+??????=--σcm -1 或O C O C O C O C m m m m m m m m +???+=1212141412σσ σ =2080cm -1 2.已知C―H 键的力常数为5N/cm ,试计算C―H 键伸展振动的吸收峰在何波数?若将氘(D )置换H ,C―D 键的振动吸收峰为多少波数. 解:C-H 键:k =5N·cm -1=5.0×105dyn·cm -1 碳原子的质量:m C =2.0×10-23g, 氢原子的质量:23 231017.010022.61--?=?= H m g 氘原子的质量: 23231034.010022.62--?=?=D m g 依2121)(21m m m m k c ?+= πσ得 29961017.00.210)17.00.2(10510314.3214623 510≈???+??????=--σcm -1 21991034.00.210)34.00.2(10510314.3214623 510≈???+??????=--σcm -1 3.指出以下振动在红外光谱中是活性的还是非活性的 分 子 振 动 (1)CH 3一CH 3 C―C 伸缩振动 (2)CH 3一CC13 C―C 伸缩振动 (3)SO 2 对称伸缩振动 (4)CH 2=CH 2 C―H 伸缩振动 C C H H

第十二章-红外吸收光谱法

第十二章 红外吸收光谱法 一、选择题 1.中红外区的特征区是指( )cm -1范围内的波数。 A 、4000~200 B 、4000~1250 C 、1250~200 D 、10 000~10 2.已知CO 2的结构式为O=C=O ,请推测其红外光谱中,基本振动数为( )。 A 、4个 B 、3个 C 、2个 D 、1个 3.红外光谱中,不是分子的所有振动形式的相应红外谱带都能被观察到,这是因为( ) A 、分子中既有振动运动,又有转动运动 B 、分子中有些振动能量是简并的 C 、因为分子中有C 、H 、O 以外的原子存在 D 、分子中有些振动能量相互抵消 4.关于红外光谱的吸收峰,下列叙述不正确的是( ) A 、共轭效应使红外吸收峰向低波数方向移动 B 、诱导效应使红外吸收峰向高波数方向移动 C 、氢键使红外吸收峰向低波数方向移动 D 、氢键使红外吸收峰向高波数方向移动 5.若 O —H 键的键力常数 K = 7.12N /cm ,则它的振动波数( cm -1)为( ) A 、3584 B 、3370 C 、3474 D 、3500 6.欲获得红外活性振动,吸收红外线发生能级跃迁,必须满足( )条件。 A 、△μ>0或△μ<0 B 、△μ≠0并服从νL=v△V C 、△μ=0及vL=△Vv D 、△μ≠0 7.CO 2的下列振动中,属于红外非活性振动的是( )。 8.下列三种物质:甲R-CO-CH 2CH 3、乙R-CO-CH=C (CH 3)2、、丙R-COCl ,问其V C=O 波数大小次序为( )。 A 、甲>乙>丙 B 、乙>甲>丙 C 、丙>乙>甲 D 、丙>甲>乙 9.三种振动νc=o ,νc=N 及νc=C 的频率大小次序为( )。(电负性:C 为2.6,N 为3.0,O 为3.5) A 、νc=o >νc=N >νc=C B 、νc= C >νc=N >νc=o C 、νc=N >νc=C >νc=o D 、νc=N >νc=o >νc=C 10.同一分子中的某基团,其各振动形式的频率大小顺序为( )。 A 、γ>β>ν B 、 ν>β>γ

第四章 红外吸收光谱法.

第四章 红外吸收光谱法 3、CO 的红外吸收光谱在2170cm -1处有一振动吸收峰。试求CO 键的力常数。 解:根据μπγK c 21= 则 μγπ2)2(c K = 其中2321211002.0)1612(1612)(??+?=?+= L m m m m μ=1.14×10-23g=1.14×10-26Kg 则μγπ2)2(c K ==(2×3.14×3×108×2.17×105)2×1.14×10-26 =1905N/m =19.05N/cm 答:CO 键的力常数19.05 N /cm 。 5、指出下列各种振动形式中,哪些是红外活性振动,哪些是非红外活性振动。 分子结构 振动形式 (1) CH 3-CH 3 γ(C -C ) (2) CH 3—CCl 3 γ(C -C ) (3) SO 2 γs ,γas (4) H 2C CH 2 (a) υ(CH)C H C (b) υ C H C (c) W(CH) H H C H H ++++ (d)τ(CH) C H H C H H -++- 解:只有发生使偶极矩有变化的振动才能吸收红外辐射,即才是红外活性的,否 则为红外非活性的。也即只有不对称的振动形式才是红外活性的,对称的振动则为红外非活性的。因此,上述结构中: 红外活性振动有:(2)CH 3—CCl 3 γ(C -C ) (3)SO 2 γas (4)H 2C CH 2 中的(a) υ(CH)、(d)τ(CH),(3)SO 2 γs (伸缩振动) (c) W(CH) 红外非活性的有:(a) CH 3-CH 3 υ(CH) 4)H 2C CH 2 中的(b) υ(CH) 6、OH 和 O 是同分异构体,试分析两者红外光谱的差异。

红外光谱分析法习题含答案

红外光谱分析法试题 一、简答题 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 2.以亚甲基为例说明分子的基本振动模式. 3.何谓基团频率?它有什么重要用途? 4.红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程. 5.影响基团频率的因素有哪些? 6.何谓指纹区?它有什么特点和用途? 二、选择题 1.在红外光谱分析中,用 KBr制作为试样池,这是因为 ( ) A KBr晶体在 4000~ 400cm -1 范围内不会散射红外光 B KBr在 4000~ 400 cm -1 范围内有良好的红外光吸收特性 C KBr在 4000~ 400 cm -1 范围内无红外光吸收 D 在 4000~ 400 cm -1 范围内,KBr 对红外无反射 2.一种能作为色散型红外光谱仪色散元件的材料为 ( ) A 玻璃 B 石英 C 卤化物晶体 D 有机玻璃 3.并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) A 分子既有振动运动,又有转动运动,太复杂 B 分子中有些振动能量是简并的 C 因为分子中有 C、H、O以外的原子存在 D 分子某些振动能量相互抵消了 4.下列四种化合物中,羰基化合物频率出现最低者为 ( ) A I B II C III D IV 5.在下列不同溶剂中,测定羧酸的红外光谱时,C=O伸缩振动频率出现最高者为 ( ) A 气体 B 正构烷烃 C 乙醚 D 乙醇 6.水分子有几个红外谱带,波数最高的谱带对应于何种振动? ( )

A 2个,不对称伸缩 B 4个,弯曲 C 3个,不对称伸缩 D 2个,对称伸缩 7.苯分子的振动自由度为( ) A 18 B 12 C 30 D 31 8.在以下三种分子式中C=C双键的红外吸收哪一种最强? (1) CH3-CH = CH2(2) CH3-CH = CH-CH3(顺式)(3) CH3-CH = CH-CH3(反式)( ) A(1)最强 B (2)最强 C (3)最强 D 强度相同 9.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带( ) A 向高波数方向移动 B 向低波数方向移动 C 不移动 D 稍有振动 10.以下四种气体不吸收红外光的是( ) A H2O B CO 2 C HCl D N2 11.某化合物的相对分子质量Mr=72,红外光谱指出,该化合物含羰基,则该化合物可能的分子式为( ) A C4H8O B C3H4O 2 C C3H6NO D (1) 或(2) 12.红外吸收光谱的产生是由于( ) A 分子外层电子、振动、转动能级的跃迁 B 原子外层电子、振动、转动能级的跃迁 C 分子振动-转动能级的跃迁 D 分子外层电子的能级跃迁 13. Cl2分子在红外光谱图上基频吸收峰的数目为( ) A 0 B 1 C 2 D 3 14.红外光谱法试样可以是( ) A 水溶液 B 含游离水 C 含结晶水 D 不含水 15.能与气相色谱仪联用的红外光谱仪为( ) A 色散型红外分光光度计 B 双光束红外分光光度计 C 傅里叶变换红外分光光度计 D 快扫描红外分光光度计 16.试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰,频率最小的是( ) A C-H B N-H C O-H D F-H 17.已知下列单键伸缩振动中C-C C-N C-O键力常数k/(N?cm-1) 4.5 5.8 5.0吸收峰波长λ/μm 6 6.46 6.85问C-C, C-N, C-O键振动能级之差⊿E顺序为( ) A C-C > C-N > C-O B C-N > C-O > C-C C C-C > C-O > C-N D C-O > C-N > C-C 18.一个含氧化合物的红外光谱图在3600~3200cm -1有吸收峰,下列化合物最可能的是( )

(第12章) 红外吸收光谱习题

!!)思考题与练习题(见笔记上记的! 1., 试述分子产生红外吸收的条件。 2., 影响吸收峰位置的因素是什么? 3., 红外吸收峰的吸收强度如何划分? 4., 何谓特征频率? 5., 大多数化合物在红外光谱上出现的吸收峰的数目都少于化合物理论上计算的简正振动数目,这是为什么? 6., 红外吸收光谱的区域和波段如何划分? 7.,影响吸收强度的主要因素是什么?(瞬间偶极矩的变化和跃迁几率大小) 8., 何谓红外吸收峰的相关峰?相关峰在分析上的意义为何? 9., 指出下列振动是否具有红外活性? (1), 中的C-C伸缩振动, (2), 中的C-C伸缩振动 (3), , (4), (5), , (6), (7), , (8), 答案:, (2)、(4)、(7)为红外活性,其余为非红外活性。 10., 试画出CS2基本振动类型,并指出哪些振动是红外活性的。 11., 从以下红外特征数据鉴别特定的苯取代衍生物C8H10: ①化合物A:吸收带在约790和695cm-1处。

②化合物B:吸收带在约795cm-1处。 ③化合物C:吸收带在约740和690cm-1处。 ④化合物D:吸收带在约750cm-1处。 答案:,。 12., 仅考虑C=O所受到的电子效应,请按高低排出下列物质中(伸缩振动)的次序: ,,,,。 答案:, > > > > 。 13.,某化合物的化学式为C9H10O,红外光谱如下图所示,试推断其结构式。 答案:,。 14., 某化合物的化学式为C4H5N,红外光谱如下图所示,根据不饱和度的计算,试推断其可能含有的基团。

答案:, 。 1., 红外吸收光谱的产生,主要是由于下列哪种能级的跃迁? , A.分子中电子、振动、转动能级的跃迁; B.分子中振动、转动能级的跃迁; C.分子中转动、平动能级的跃迁; D.分子中电子能级的跃迁。 , 2., 以下四种物质中,不吸收红外光的是哪一种? , A.SO2;, B.CO2;, C.CH4;, D.Cl2。(为红外非活性振动,偶极矩变化=0,书P212) , 3., 下列的那一种是分子产生红外吸收的必要条件之一? , A.分子振动时必须发生偶极矩的变化; B.分子振动时各原子的振动必须同步; C.分子振动时各原子的振动必须同相; D.分子振动时必须保持对称关系。 , 4., H2S分子的振动可以产生几个基频吸收带?哪一种振动的吸收带波数最高? , A. 4个,对称伸缩振动;, B. 4个,非对称伸缩振动;

第十二章 红外吸收光谱法_7

第十二章红外吸收光谱法 思考题和习题 1.化合物的结构式如下,试写出各基团的特征峰、相关峰、并估计峰位。 烯烃:ν=C-H : 3100-3000cm-1, νC=C:( ~1650cm-1) 因为连接苯环峰位置向低频移动. 芳香烃(苯环): ν=C-H:(3100-3000cm-1), 苯环νC=C(1650-1430cm-1,共轭作用向低频移动.) 羰基:ν=C-O: 1700cm-1. 含氮化合物: νNH(仲胺):3500-3300cm-1, δNH(仲胺):1650-1510cm-1, νC-N(仲胺): 1360-1020cm-1. 2.某化合物分子式为C5H6O,其紫外光谱的最大吸收在227 nm(ε=104),其红外光谱有吸收带:3015,2905,1687和1620cm-1.试判断该化合物的结构。 3.如合用红外吸收光谱区别一下化合物? νNH: 伯胺在3500cm-1和3400cm-1出现双峰,游离仲胺在3500~3300cm-1有一个峰,叔胺无此峰. 4.下列基团的C-H伸缩振动(νC-H)出现在什么区域? (1) –CH3(2) =CH2(3) ≡CH (4) -CHO νCH3:~2962cm-1(as), ~2872cm-1(s). ν=CH2:~3100cm-1. ν≡CH:~ 3330cm-1. νCHO:~2820cm-1(as), ~2720cm-1(s). 5.化合物(A)、(B)、(C)在红外区域有何吸收? (A)HC≡C-CH2OH (B)缺少化合物的结构图 (C)缺少化合物的结构图 6.如何用红外光谱法区别下列化合物?分别化合物各基团的红外吸收波数。 1) -CH3中的νas C-H 在2962cm-1,δas CH在1450cm-1,δs CH在1380cm-1处有一个峰. -CH(CH3)2的δs CH在1385cm-1和1375cm-1处出现两个峰,且峰强度相等. -C (CH3)3的δs CH在1365cm-1和1395cm-1处出现两个峰,且前者峰强度约是后者的两倍. 2)苯甲胺:νNH(伯胺):在约3500和3400cm-1,出现双峰. 苯甲醇:νOH(醇羟基):在约3600~3200 cm-1,出现单峰,且峰稍宽. 苯乙酸:νOH: 在约3400~25 00 cm-1,出现峰,且峰宽而钝. νCO: 在1700cm-1左右出现峰. 7.某化合物分子式为C10H10O,测得的红外光谱如图12-25.试通过光谱解析推断其分子结构式。 U=(2+2*10-10)/2=6 νC=C : 1600-1460cm-1, 芳香环的特征峰,说明化合物具有苯环 νCH3: 2985 cm-1, δCH3:1450 cm-1, 甲基

4第四章红外吸收光谱法 副本

作业题 第四章 红外分光光度法 第一节 概述 填空题 1、红外光区位于 光区和 光区之间,波长范围为 ,习惯上又可将其细分为 、 和 三个光区,应用较多的是 光区。 2、红外谱图纵坐标一般为 ,横坐标一般为 。 简答题: 红外分光光度法的特点。 第二节 基本原理 1、分子内部的运动方式有三种, 即: 、 和 ,相应于这三种不同的运动形式,分子具有 能级、 能级和 能级。 2、一般多原子分子的振动类型分为 振动和 振动。 3、乙烷的振动自由度是 。 4、甲酸的振动自由度是 。 判断题: 1、对称结构分子,如H 2O 分子,没有红外活性。 ( ) 2、水分子的H -O -H 对称伸缩振动不产生吸收峰。 ( ) 选择题: 1、试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰, 频率最小的是 ( ) A C-H B N-H C O-H D F-H 2、已知下列单键伸缩振动中 C-C C-N C-O 键力常数k/(N ?cm -1 ) 4.5 5.8 5.0 λ/μm 6 6.46 6.85 问C-C, C-N, C-O 键振动能级之差⊿E 顺序为 ( ) A C-C > C-N > C-O B C-N > C-O > C- C C C-C > C-O > C-N D C-O > C-N > C-C 3、判断下列各分子的碳碳对称伸缩振动在红外光谱中哪个是非活性的() A. CH 3CH 3 B. CH 3CCl 3 C. C C H Cl H Cl D. C C H Cl Cl H 4、在有机化合物的红外吸收光谱中,出现在4000~1250cm -1 频率范围的可用于鉴定官能团,这一段频率范围称为( ) A. 指纹区 B.倍频区 C.特征区 D.合频区 5、 以上①、②、③、④四种烯的υ C=C 值为: A.①为1650cm -1 ;②为1678cm -1 ;③为1657cm -1 ;④为1781cm -1 B.①为1781cm -1 ;②为1657cm -1 ;③为1650cm -1 ;④为1678cm -1 C.①为1650cm -1 ;②为1657cm -1 ;③为1678cm -1 ;④为1781cm -1 D.①为1781cm -1 ;②为1678cm -1 ;③为1657cm -1 ;④为1650cm -1 6、乙烯分子的振动自由度为: A.20 B.13 C.12 D.6 E.15 7、下列环烯化合物中,υC=C 出现最低波数者为: A. B. C. D. E. 8、下列合物中υC=C 吸收强度最大的化合物为: A.R -CH =CH 2 B.R -CH =CH -R (顺) C.R -CH =CH -R (反) D.R 1-CH =CH -R 2(顺) E.R 1-CH =CH -COR 2(反) 9、孤立甲基的弯曲振动一般为1380cm -1 ,异丙基中的甲基裂分为1385cm -1 和1375cm -1 ,叔丁基中的甲基裂分为1395cm -1 和1370cm -1 ,造成裂分的原因是: A.分子的对称性 B.振动偶合 C. 费米共振 D.诱导效应

第十二章 红外吸收光谱法教学提纲

第十二章红外吸收光 谱法

第十二章红外吸收光谱法一、选择题 1.中红外区的特征区是指( )cm -1 范围内的波数。 A、4000~200 B、4000~1250 C、1250~200 D、10 000~10 2.已知CO2的结构式为O=C=O,请推测其红外光谱中,基本振动数为( )。 A、4个 B、3个 C、2个 D、1个 3.红外光谱中,不是分子的所有振动形式的相应红外谱带都能被观察到,这是因为() A、分子中既有振动运动,又有转动运动 B、分子中有些振动能量是简并的 C、因为分子中有C、H、O以外的原子存在 D、分子中有些振动能量相互抵消 4.关于红外光谱的吸收峰,下列叙述不正确的是() A、共轭效应使红外吸收峰向低波数方向移动 B、诱导效应使红外吸收峰向高波数方向移动 C、氢键使红外吸收峰向低波数方向移动 D、氢键使红外吸收峰向高波数方向移动 5.若 O—H键的键力常数 K= 7.12N/cm,则它的振动波数( cm-1)为() A、3584 B、3370 C、3474 D、3500 6.欲获得红外活性振动,吸收红外线发生能级跃迁,必须满足( )条件。

A、△μ>0或△μ<0 B、△μ≠0并服从νL=v△V C、△μ=0及vL=△Vv D、△μ≠0 7.CO2的下列振动中,属于红外非活性振动的是( )。 8.下列三种物质:甲R-CO-CH2CH3、乙R-CO-CH=C(CH3)2、、丙R-COCl,问其V C=O波数大小次序为( )。 A、甲>乙>丙 B、乙>甲>丙 C、丙>乙>甲 D、丙>甲>乙 9.三种振动νc=o,νc=N及νc=C的频率大小次序为( )。(电负性:C为2.6,N 为3.0,O为3.5) A、νc=o>νc=N>νc=C B、νc=C>νc=N>νc=o C、νc=N>νc=C>νc=o D、νc=N>νc=o>νc=C 10.同一分子中的某基团,其各振动形式的频率大小顺序为( )。 A、γ>β>ν B、ν>β>γ C、β>ν >γ D、β>γ >ν 11.用于鉴别官能团存在的峰称为() A、特征峰 B、相关峰 C、基频峰 D、泛频峰 12.已知某化合物不含氮,它的红外光谱中 2240~2100cm-1有吸收峰,则该化合物可能是() A、CH3CH2CH2CH3 B、CH3CH2C≡CH

相关文档
相关文档 最新文档