文档库 最新最全的文档下载
当前位置:文档库 › 齿轮箱故障诊断

齿轮箱故障诊断

齿轮箱故障诊断
齿轮箱故障诊断

风力发电机组齿轮箱故障诊断

摘要: 通过对不同齿轮箱振动频谱的检测结果的分析,论述了判断齿轮箱由于长期处于某些恶劣条件下,如交变载荷或润滑油失效,引起的齿轮和轴承损坏的检测方法。分析了齿轮箱出现故障的原因以及应采取的措施。

关键词:风电机齿轮箱轴承状态检测

一、风电机组齿轮箱的结构及运行特征

我国风电场中安装的风电机组多数为进口机组。近几年来,一批齿轮箱发生故障,有些由厂家更换,也有的由国内齿轮箱专业厂进行了修理。有的风场齿轮箱损坏率高达40~50%,极个别品牌机组齿轮箱更换率几乎接近100%。虽然齿轮箱发生损坏不仅仅在我国出现,全世界很多地方同样出现过问题,但在我国目前风电机组运行出现的故障中已占了很大比重,应认真分析研究。

1) 过去小容量风电机组齿轮箱多采用平行轴斜齿轮增速结构,后来为避免齿轮箱造价过高、重量体积过大,500kW以上的风电机组齿轮箱多为平行轴与行星轮的混合结构。由于风电机组容量不断增大,轮毂高度增加,齿轮箱受力变得复杂化,这样就造成有些齿轮箱可能在设计上就存在缺陷。

2) 由于我国有些地区地形地貌、气候特征与欧洲相比有特殊性,可能对标准设计的齿轮箱正常运行有一定影响。我国风电场多数处于山区或丘陵地带,尤其是东南沿海及岛屿,地形复杂造成气流受地形影响发生崎变,由此产生在风轮上除水平来流外还有径向气流分量。我国相当一部分地区气流的阵风因子影响较大,对于风电机组机械传动力系来说,经常出现超过其设计极限条件的情况。作为传递动力的装置-齿轮箱,由于气流的不稳定性,导致齿轮箱长期处于复杂的交变载荷下工作。由于设备安装在几十米高空,不可能容易地送到工厂检修,因此经常进行状态监视可以及时发现问题,及时处理,还可以分析从出现故障征兆到彻底失效的时间,以便及时安排检修。

3) 在我国北方地区,冬季气温很低,一些风场极端(短时)最低气温达到-40℃以下,而风力发电机组的设计最低运行气温在-20℃以上,个别低温型风力发电机组最低可达到-30℃。如果长时间在低温下运行,将损坏风力发电机组中的部件,如齿轮箱。因此必须对齿轮箱加温。齿轮箱加温是因为当风速较长时间较低或停风时,齿轮油会因气温太低而变得很稠,尤其是采取飞溅润滑部位,无法得到充分的润滑,导致齿轮或轴承短时缺乏润滑而损坏。如果机舱温度也很低,那么管路中润滑油也会发生流动不畅的问题,这样当齿轮箱油不能通过管路到达散热器,齿轮油温会不断上升直至停机。

归纳起来,我们可以分析在我国风电场经常发生齿轮箱故障可能主要有以下原因:

1、齿轮箱润滑不良造成齿面、轴承过早磨损

-大气温度过低,润滑剂凝固,造成润滑剂无法到达需润滑部位而造成磨损

-润滑剂散热不好,经常过热,造成润滑剂提前失效而损坏机械啮合表面

-滤芯堵塞、油位传感器污染,润滑剂“中毒”而失效

2、设计上存在缺陷

齿轮的承载能力计算一般按照ISO6336(德国标准DIN3990)进行。当无法从实际运行得到经验数据时,厂家可能选用的应用系数KA为1.3,但实际上由于风载荷的不稳定性,使得设计与实际具有偏差,造成齿轮表面咬伤甚至表面载荷过大而疲劳破坏。说明当选择应用系数KA

为1.3时,齿轮传动链中载荷远超出按假设设计值。如果轴承选择不合适,由于轴向载荷相当大,而造成轴承损坏。

3、失速调节型风电机组安装角如果设置过大时,冬季就会出现过功率现象,过高载荷影响齿轮箱的寿命。

二、风电机组齿轮箱故障诊断

通过对风电机组旋转部件的运行特征进行状态监测,比如实时监测齿轮箱、主轴、发电机等部件的振动频谱、齿轮油污染情况或定期对上述部件的状态进行监测、记录,及时发现隐患,找出导致问题出现的原因,相应采取措施加以解决。从风力发电机组齿轮箱目前发生的故障来看,齿轮、轴承部件的损坏主要有几种情况的磨损:粘附磨损、腐蚀磨损、表面疲劳磨损、微动磨损和气蚀。这些磨损出现之后,轻则金属微粒会污染润滑剂,影响功率传递,产生噪

音,造成齿面严重磨损或断裂,轴承内外圈或滚珠损坏,严重的使机组无法转动而彻底停机。当机械部件发生初期磨损时,其振动频谱上会产生响应特征频率,通过测试仪器可以进行设备的状态监测。

1.应用SKF公司CMV A6.0状态监测系统对风电机组齿轮箱故障进行诊断

我们采用SKF的CMV A6.0状态监测仪,对张北风场2台NTK300/31(其中:1号机齿轮箱在齿轮箱厂才修过且运行不满1年,2号机为出现问题齿轮箱)齿轮箱进行了对比,通过齿轮箱内轴承和齿轮间啮合的频率和振动分析,准确地找出了2号机齿轮箱的故障点,既NJ234和NJ320二个轴承损坏,为齿轮箱修复发现问题及解决问题提供了判定依据,减少了修理周期,相应提高了设备可用率。

机组情况描述:机型NTK300/31(NEG/MICON早期产品) 额定功率:300kW

齿轮箱类型: JA/KE CS520

安装风场:张北风电场

已运行时间:30,505h

已发电量:2,923,913kWh

齿轮箱损坏情况:首先,轴承NJ234 (IM1)内圈挡环粉碎,IMl轴轴向串动16mm,进而引起,轴承22318 (HS)和NJ320 (IM2)损坏。

监测方式:分别对张北风场两台JA/KE CS520 (NTK300/31)齿轮箱进行状态监测

监测对象:1号齿轮箱为在齿轮箱厂才修过且运行不满1年;2号为有问题齿轮箱

监测状态:风电机组投运,并网发电

监测时间:2h

取样/分析程序:

1) 所有轴承端盖的水平和垂直方向各取1个点

2) 风电机组并网,依次在各取样点提取振幅和频率数据

3) 在计算机中进行频谱分析,得知轴承、齿轮啮合状况。若发现问题,根据频谱特征,结合齿轮箱的运行参数,推断引起问题的因素。

4) 建立状态分析档案,跟踪质量检查。

监测结果:

1号齿轮箱:齿轮间啮合及轴承运行工况良好。

2号齿轮箱:

1) 输入轴:出现齿轮箱的啮合频率及其高倍的谐波分量,说明轴承状态良好,齿轮运行存在缺陷。

2) IM1轴:

输入端:出现了缺陷频率和谐波分量,说明轴承状态及齿轮运行不良。

输出端:出现大量的缺陷频率和谐波分量并加杂大量边频,说明轴承己明显损坏,齿轮的啮合不良。

图1 振动加速度包络线频谱分析:轴承外环明显损坏

3) IM2轴:出现不少轴承缺陷特征,说明轴承有问题,如图1。

4) 高速轴:输出端的振动频谱说明无明显的轴承损坏特征。

图2 振动加速度包络线频谱分析:无明显损坏

以上监测结果与实际检查完全吻合。通过对齿轮箱的状态监测,我们准确的找到了故障的位置和故障点,缩短了齿轮箱修理而造成的风电机组停机时间。

2.应用SKF公司Marlin状态监测系统对风电机组齿轮箱故障进行测试

采用SKF公司Marlin状态监测系统对NOEDEX N43/600kW风电机组齿轮箱高速端的速度、加速度、温度进行检测,发现数据异常,经开箱后发现齿轮油已严重污染,齿轮齿面已有磨损。

Marlin系统由三部分组成:状态探测器(MCD)、数据管理器(MDM)及PRISM4 Surveyor 应用软件。Marlin可通过状态探测器(MCD)读出机器状态,即两个振动测量值(速度和包络加速度)和一个温度测量值。探测器自动把这些读数与预设参数作比较,当发现超出正常值限时立即向操作人员发出警报。从探测器上发出的读数可立即显示和存储在数据管理器(MDM)上,数据管理器主要作用是输入、存储和对机器状态进行检查。PRISM4 Surveyor 软件可简化数据的收集、存储和分析,绘制出历史趋势曲线。

风力发电机组由风轮、齿轮箱及发电机等组成。为了捕获风资源的需要,整个旋转轴系安装在几十米高的塔架上,这就给机组各部位的测量带来不便。而Marlin系统的数据采集部分状态探测器(MCD)和数据管理器(MDM)便于随身携带,因而十分适合对风电机组的重点部位进行状态测量。

1) Marlin系统的优势

①状态探测器(MCD)既可单独使用,又可与数据管理器(MDM)联合使用。当单独使用

MCD时,根据报警信号可对机组测量点的实时状态马上作出判断,十分方便。当需要了解机组运行当中的某个过程时,将采集到的数据传到MDM中进行保存,然后再进行详细分析。

②由于Marlin系统的测量数据既包括振动速度,又包括包络加速度,因此我们不但可以发现低频到中频的故障如不平衡、不对中、转子弯曲、松动等,又可检测到轴承及齿轮的缺陷,这一点对风电机组尤为重要。此外,对温度的测量,可以帮助分析轴承温度,对故障的判断起到一定的帮助作用。

2) Marlin系统的不足

Marlin系统作为SKF公司的一种较为简易的状态监测产品,其分析和诊断功能较为薄弱。通过对测量数据进行趋势分析,我们仅能看到其在一段时间内的总体水平;如果发现了某些测量点的数值超出报警限值,也仅能做出一个早期故障的判断,而对于故障的具体来源及原因便无从得知,这时就需要借助更为先进的工具如Microlog系统,来做进一步的分析,如FFT 频谱分析、频谱趋势分析、时间波形分析等,以便对故障做出准确判断。

3) 采用Marlin系统对风电机组进行状态监测需要作大量的工作

由于现阶段对风力发电机组的状态监测所作的工作还非常有限,因此我们在设定测量值的报警限值时还有一定的困难。设定准确的报警水平既需要有机组振动监测的经验,又需要有被监测机组正常振动水平的经验,只有当我们了解了正常的振动水平,才会发现机组的异常振动。这就需要我们对机组的每个测量点作长时间的监测,收集其振动发展趋势信息。当测量点的振动趋势表明机组处于一个持久的良好工作条件时,就可把报警值设定在这个趋势水平之上。此外,当对机组进行修理后,如果必要的话,也需要对报警水平进行调整。

3.现场测量点的选择

根据目前风电机组的实际运行情况,通常齿轮箱齿轮及其轴承、发电机及其轴承是较容易发生故障的部件,因此在常规的监测中,可将齿轮箱前后轴承、发电机前后轴承分别作为测量点。这样做是基于如下的考虑:

1) 当机组的主要轴承失效时,机组就得停机。监测轴承的振动可以较早发现轴承故障,这就为及早安排必要的维修提供了宝贵的时间。

2) 由于轴承承载着机器的负荷,许多典型的机械问题如不平衡、不对中、松动等都会将振动

信号传给轴承。因此通过监视轴承的振动,就会同时发现上述典型机械故障及轴承缺陷。

4.存在问题

1) 缺乏足够数据

由于缺乏任何可供比较的历史运行数据,因而分析引发缺陷的原因有一定难度。如,是不对中、不平衡、机件松动还是轴弯曲等引起的损坏。

2) 缺乏经验

针对位于齿轮箱内部的轴承及齿轮啮合的诊断,状态监测还存在一定的难度,这是由于数据采集探头距离监测点较远,该诊断须排除其他干扰因素,以达到准确判断,需要进一步探索。

三、结论

综上所述,我们认为:对于齿轮箱齿轮、轴承的故障诊断尚处于摸索时期,还需要有一定的时间和更多的实践,由于我们对为数不多的几台风电机组的齿轮箱进行了分析,难免存在有一定的片面性,但其效果经证实是有效的。

我们采用状态监视系统对风力发电机组齿轮箱进行检测,对于我们发现和正确判断出现的故障以及判断故障位置和可能的原因有很大的帮助,从风力发电机组运行管理的角度来看,我们必须了解齿轮箱的状态,以及当出现问题时能得到正确的判断和相应的处理。我们感到只有借助仪器的测试数据才能真正了解故障的原因以及应采取的措施,避免故障的进一步扩大,并指导日后的修理。

某些振动频率幅值超过设计极限,也是造成设备损坏的一个原因,因此国外一些厂家在齿轮箱上安装一些阻尼器,抑制某些频率而达到减少设备破坏的目的。

我们无论是国产化制造齿轮箱还是齿轮箱的用户,在今后运行维护中应注意以下几点:

1) 必须深入了解齿轮箱输入的载荷谱,以及齿轮箱的振动频谱,通过测试分析找出故障原因,并在设计制造中进行改进,如设计参数、加工工艺改变。

2) 对于不同用户应采取不同措施,如阵风大,交变应力较大的地方,应对齿轮箱及轴承进行

加强设计。

3) 低温时,应考虑妥善的加热方法,以及良好的散热系统。

4) 应充分监视振动频谱,对齿轮箱故障进行预测,如果齿轮箱轴承或齿轮出现故障特征频率时,及时分析处理,并不断进行测试最终建立数据库。

5) 应不断检查润滑部位是否充分得到润滑,以及润滑剂是否有杂质,是否已经失效。

6) 必须对重点部位的温度进行监视,对超温进行保护并及时发现问题。

总之,齿轮箱损坏需引起我们的重视。正确分析原因,采取相应措施,国产齿轮箱代替进口是完全可行的。(end)

风力发电机组故障排除

来源:作者:时间:2009-11-24 点击数:26

伴随着风机种类和数量的增加,新机组的不断投运,旧机组的不断老化,风机的日常运行维护也

是越来越重要。现在就风机的运行维护作一下探讨。

一.运行风力发电机组的控制系统是采用工业微处理器进行控制,一般都由多个CPU并列运行,其自身的抗干扰能力强,并且通过通信线路与计算机相连,可进行远程控制,这大大降低了运行的工

作量。所以风机的运行工作就是进行远程故障排除和运行数据统计分析及故障原因分析。

1.远程故障排除风机的大部分故障都可以进行远程复位控制和自动复位控制。风机的运行和电

网质量好坏是息息相关的,为了进行双向保护,风机设置了多重保护故障,如电网电压高、低,电网

频率高、低等,这些故障是可自动复位的。由于风能的不可控制性,所以过风速的极限值也可自动复位。还有温度的限定值也可自动复位,如发电机温度高,齿轮箱温度高、低,环境温度低等。风机的

过负荷故障也是可自动复位的。除了自动复位的故障以外,其它可远程复位控制故障引起的原因有以

下几种:

(1)风机控制器误报故障;

(2)各检测传感器误动作;

(3)控制器认为风机运行不可靠。

2.运行数据统计分析对风电场设备在运行中发生的情况进行详细的统计分析是风电场管理的一

项重要内容。通过运行数据的统计分析,可对运行维护工作进行考核量化,也可对风电场的设计,风

资源的评估,设备选型提供有效的理论依据。每个月的发电量统计报表,是运行工作的重要内容之一,其真实可靠性直接和经济效益挂钩。其主要内容有:风机的月发电量,场用电量,风机的设备正常工

作时间,故障时间,标准利用小时,电网停电,故障时间等。风机的功率曲线数据统计与分析,可对

风机在提高出力和提高风能利用率上提供实践依据。例如,在对国产化风机的功率曲线分析后,我们对后三台风机的安装角进行了调节,降低了高风速区的出力,提高了低风速区的利用率,减少了过发故障和发电机温度过高故障,提高了设备的可利用率。通过对风况数据的统计和分析,我们掌握了各型风机随季节变化的出力规律,并以此可制定合理的定期维护工作时间表,以减少风资源的浪费。

3.故障原因分析我们通过对风机各种故障深入的分析,可以减少排除故障的时间或防止多发性故障的发生次数,减少停机时间,提高设备完好率和可利用率。如对150kW风机偏航电机过负荷这一故障的分析,我们得知有以下多种原因导致该故障的发生,首先机械上有电机输出轴及键块磨损导致过负荷,偏航滑靴间隙的变化引起过负荷,偏航大齿盘断齿发生偏航电机过负荷,在电气上引起过负荷的原因有软偏模块损坏,软偏触发板损坏,偏航接触器损坏,偏航电磁刹车工作不正常等。又如,在对Jacobs系列风机控制电压消失故障分析中,我们采用排除实验法,将安全链当中有可能引起该故障的测量信号元件用信号继电器和短接线进行电路改造,最终将故障原因定位在过速压力开关的整定上,将该故障的发生次数减少,提高了设备使用率,减少了闸垫的更换次数,降低了运行成本。

二.维护风力发电机是集电气、机械、空气动力学等各学科于一体的综合产品,各部分紧密联系,息息相关。风力机维护的好坏直接影响到发电量的多少和经济效益的高低;风力机本身性能的好坏,也要通过维护检修来保持,维护工作及时有效可以发现故障隐患,减少故障的发生,提高风机效率。风机维护可分为定期检修和日常排故维护两种方式。

1.风机的定期检修维护定期的维护保养可以让设备保持最佳期的状态,并延长风机的使用寿命。定期检修维护工作的主要内容有:风机联接件之间的螺栓力矩检查(包括电气连接),各传动部件之间的润滑和各项功能测试。风机在正常运行中时,各联接部件的螺栓长期运行在各种振动的合力当中,极易使其松动,为了不使其在松动后导致局部螺栓受力不均被剪切,我们必须定期对其进行螺栓力矩的检查。在环境温度低于-5℃时,应使其力矩下降到额定力矩的80进行紧固,并在温度高于-5℃后进行复查。我们一般对螺栓的紧固检查都安排在无风或风小的夏季,以避开风机的高出力季节。风机的润滑系统主要有稀油润滑(或称矿物油润滑)和干油润滑(或称润滑脂润滑)两种方式。风机的齿轮箱和偏航减速齿轮箱采用的是稀油润滑方式,其维护方法是补加和采样化验,若化验结果表明该润滑油已无法再使用,则进行更换。干油润滑部件有发电机轴承,偏航轴承,偏航齿等。这些部件由于运行温度较高,极易变质,导致轴承磨损,定期维护时,必须每次都对其进行补加。另外,发电机轴承的补加剂量一定要按要求数量加入,不可过多,防止太多后挤入电机绕组,使电机烧坏。定期维护的功能测试主要有过速测试,紧急停机测试,液压系统各元件定值测试,振动开关测试,扭缆开关测试。还可以对控制器的极限定值进行一些常规测试。定期维护除以上三大项以外,还要检查液压油位,各传感器有无损坏,传感器的电源是否可靠工作,闸片及闸盘的磨损情况等方面。

2.日常排故维护风机在运行当中,也会出现一些故障必须到现场去处理,这样我们就可顺便进行一下常规维护。首先要仔细观察风机内的安全平台和梯子是否牢固,有无连接螺栓松动,控制柜内有无糊味,电缆线有无位移,夹板是否松动,扭缆传感器拉环是否磨损破裂,偏航齿的润滑是否干枯变质,偏航齿轮箱、液压油及齿轮箱油位是否正常,液压站的表计压力是否正常,转动部件与旋转部件之间有无磨损,看各油管接头有无渗漏,齿轮油及液压油的滤清器的指示是否在正常位置等。第二

是听,听一下控制柜里是否有放电的声音,有声音就可能是有接线端子松动,或接触不良,须仔细检查,听偏航时的声音是否正常,有无干磨的声响,听发电机轴承有无异响,听齿轮箱有无异响,听闸盘与闸垫之间有无异响,听叶片的切风声音是否正常。第三,清理干净自己的工作现场,并将液压站各元件及管接头擦净,以便于今后观察有无泄漏。要想运行维护好风力发电机组,在平时还要对风机相关理论知识进行深入地研究和学习,认真做好各种维护记录并存档,对库存的备件进行定时清点,对各类风机的多发性故障进行深入细致分析,并力求对其做出有效预防。只有防患于未然,才是我们运行维护的最高境界。

500kV输电线路故障诊断方法综述_魏智娟

2012年第2期 1 500kV 输电线路故障诊断方法综述 魏智娟1 李春明2 付学文1 (1.内蒙古工业大学电力学院,呼和浩特 010080;2.内蒙古工业大学信息学院,呼和浩特 010080) 摘要 对近几年国内外具有代表的中外文献进行了学习研究,重点论述了输电线路故障诊断的四种方法:阻抗法,神经网络和模糊理论等智能算法,小波理论,行波法。综合输电线路的四种故障诊断方法,建议采用小波熵原理对输电线路故障模型进行故障类型识别,运用基于小波熵的单端行波测距方法实现故障定位。 关键词:故障诊断;阻抗法;智能算法;小波理论;行波法 The Survey on Fault Diagnosis in the 500kV Power Transmission Lines Wei Zhijuan 1 Li Chunming 2 Fu Xuewen 1 (1.The Power College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080; 2.The Information College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080) Abstract Based on the overview of typical literatures at home and abroad, this research focused on the four methods of failure diagnosis of transmission lines, namely, Impedance method, Intelligent method such as Neural Network Theory and Fuzzy Theory, Wavelet Theory and Traveling Wave method. And based on the synthesis of the four methods, this research suggested that simulation should be conducted to the failure models of transmission line by applying Wavelet Entropy Principle and the results of the simulation should be analyzed in order to identify the failure types; and the failure simulation should be conducted by the single traveling wave distance-testing method of wavelet entropy, and the results of the simulation should be analyzed in order to realize failure location. Key words :failure diagnosis ;impedance method ;intelligent algorithm ;the Wavelet Theory ;the traveling wave method 超高压输电线路是电力系统的命脉,它担负着传送电能的重任,其安全可靠运行是电网安全的根本保证。输电线路在实际运行中经常发生各种故障,如输电线路的鸟害故障[1]、输电线路的风偏故障等[2],及时准确地对输电线路进行故障诊断就显得非常重 要。国家电网公司架空送电线路运行规程明确规定 “220kV 及以上架空送电线路必须装设线路故障测 距装置”[3-4]。由于我国幅员辽阔,地形地貌的多样 性致使输电线路工作环境极为恶劣,输电线路发生 故障导致线路跳闸、电网停电,对电力系统安全运 行造成了很大威胁,所以,在线路发生故障后迅速 准确地进行故障诊断,减少因故障引起的停电损失, 降低寻找故障点的劳动强度,尽最大可能降低对整 个电力系统的扰动程度,确保电力系统的安全可靠稳定运行具有十分重要的意义。本文在总结前人的基础上,重点论述了超高压输电线路的4种故障诊断方法,建议采用小波熵原理对输电线路故障类型 进行故障识别,利用基于小波熵的单端行波测距方法实现故障定位。 1 输电线路故障诊断 当输电线路发生故障时,早先的故障定位通常是由经验丰富的运行人员在阅读故障录波图的基础上,综合电力用户提供的信息,进行预测、判断可能出现的故障位置,然后派巡线人员通过查线确认故障位置并及时排除故障。在电力市场竞争日渐激

故障诊断理论方法综述

故障诊断理论方法综述 故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法 基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。 二、基于信号处理的方法 当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。 三、基于知识的方法 在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。如图1.1

齿轮箱故障诊断

风力发电机组齿轮箱故障诊断 摘要: 通过对不同齿轮箱振动频谱的检测结果的分析,论述了判断齿轮箱由于长期处于某些恶劣条件下,如交变载荷或润滑油失效,引起的齿轮和轴承损坏的检测方法。分析了齿轮箱出现故障的原因以及应采取的措施。 关键词:风电机齿轮箱轴承状态检测 一、风电机组齿轮箱的结构及运行特征 我国风电场中安装的风电机组多数为进口机组。近几年来,一批齿轮箱发生故障,有些由厂家更换,也有的由国内齿轮箱专业厂进行了修理。有的风场齿轮箱损坏率高达40~50%,极个别品牌机组齿轮箱更换率几乎接近100%。虽然齿轮箱发生损坏不仅仅在我国出现,全世界很多地方同样出现过问题,但在我国目前风电机组运行出现的故障中已占了很大比重,应认真分析研究。 1) 过去小容量风电机组齿轮箱多采用平行轴斜齿轮增速结构,后来为避免齿轮箱造价过高、重量体积过大,500kW以上的风电机组齿轮箱多为平行轴与行星轮的混合结构。由于风电机组容量不断增大,轮毂高度增加,齿轮箱受力变得复杂化,这样就造成有些齿轮箱可能在设计上就存在缺陷。 2) 由于我国有些地区地形地貌、气候特征与欧洲相比有特殊性,可能对标准设计的齿轮箱正常运行有一定影响。我国风电场多数处于山区或丘陵地带,尤其是东南沿海及岛屿,地形复杂造成气流受地形影响发生崎变,由此产生在风轮上除水平来流外还有径向气流分量。我国相当一部分地区气流的阵风因子影响较大,对于风电机组机械传动力系来说,经常出现超过其设计极限条件的情况。作为传递动力的装置-齿轮箱,由于气流的不稳定性,导致齿轮箱长期处于复杂的交变载荷下工作。由于设备安装在几十米高空,不可能容易地送到工厂检修,因此经常进行状态监视可以及时发现问题,及时处理,还可以分析从出现故障征兆到彻底失效的时间,以便及时安排检修。

工程机械故障诊断方法综述

工程机械故障诊断方法综述 谢祺 机0801-1 20080534 【摘要】:机械设备的检测诊断技术在现代工业生产中的作用不可忽视,从设备诊断的基本方法、内容和技术手段等多方面对我国机械设备诊断技术的现状进行了综述,并在此基础上分析并提出了该技术在今后的发展趋势。 【关键字】:机械设备诊断技术发展趋势 引言 随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。开展机械设备故障检测与诊断技术的研究具有重要的现实意义。本文试图对机械设备故障监测诊断的内容、方法的现状及发展趋势进行探讨。 1机械故障诊断技术的历史 早在60年代末,美国国家宇航局(NASA)就创立美国机械故障预防MFPG(Machinery Fault Prevention Group),英国成立了机械保健中心(UK,Machineral Health Monitoring Center)。由于诊断技术所产生的巨大的经济效益,从而得到迅速发展。但各个工程领域对故障诊断的敏感程度和需求迫切性并不相同。例如一台机械设备因故障停机检修并不导致全厂生产过程停顿,或对产品质量产生严重的影响,它对故障诊断的需求性就不那么迫切。反之,就非要有故障诊断技术不可。目前监视诊断技术主要用于连续生产系统或与产品质量有直接关系的关键设备。 机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如 Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用[2]。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障

风力发电机齿轮箱振动测试方法

风力发电机组齿轮箱振动测试与分析 唐新安谢志明王哲吴金强 摘要对齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。 关键词风力发电机组齿轮箱振动分析故障诊断 中图分类号 TH113. 21 文献标识码 A 我国风电场中安装的风力发电机组多为进口机组。因为在恶劣环境下工作,其损坏率高达40%~50%。随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。本文就齿轮箱的故障诊断作一些探索性研究。 一、齿轮箱振动测试 采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。齿轮箱特征频率见表1。 表1 齿轮箱特征频率表 Hz

二、信号分析 1.统计分析 由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。 表2 4#机组幅域统计表 m/s2 表2 5#机组幅域统计表 m/s2 5#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在古障。

2.时域分析 通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且 有明显的周期性,其频率约大20Hz 。

3.频坷分析 由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率 的幅值不对称)。

机械故障诊断综述

中国自动化学会中南六省(区)2010年第28届年会?论文集 机械故障诊断综述 Survey on Faults Diagnosis of Machine 赵宏伟1,2,张清华1,夏路易2,邵龙秋1(1广东石油化工学院 计算机与电子信息学院,广东 茂名525000;2太原理工大学 信息工程学院,山西 太原030024)摘要:本文较系统的介绍了故障诊断的基本过程、原理,在此基础上对故障诊断方法做了详细、系统的论述,并进一步对故障诊断技术的发展做了展望。 关键词:故障诊断;诊断原理;维修制度 Abstract: In this paper, the basic process and principle of fault diagnosis are introduced. On that basis, the main method of fault diagnosis isintroduced in detail. Finally, the development on technique of faults diagnosis is looked forward. Key Words: Faults Diagnosis; Diagnosis Principle; maintenance 1 引言 七十年代以来,计算机和电子技术飞跃发展,促使工业生产向现代化、机器设备向大型化、连续化、高速化、自动化发展。与此同时,现代化机械设备的应用一方面大大促进了生产的发展;另一方面也潜伏着一个很大的危机,即一旦发生故障所造成的直接和间接的损失将是十分严重。为解决这一问题,机械故障诊断技术孕育而出。这门新技术也是一门以高等数学、物理、化学、电子技术、机电设备失效学为基础的新兴学科。它的宗旨就是运用当代一切科技的新成就发现设备的隐患,以期对设备事故防患于未然。如今它已是现代化设备维修技术的重要组成部分,并且成了设备维修管理工作现代化的一个重要标志。 2 设备维修制度 目前,与故障诊断技术紧密相关的设备维修制度共有三种: (1)事后维修制度(POM):这是一种早期的维修制度。主要特点是“不坏不修,坏了再修。”这种维修制度对发生事故难以预料,并往往会造成设备的严重损坏,既不安全且又延长了检修时间。 (2)预防维修制度(PM):又称以时间为基础的设备维修制度(TBM)或计划维修制度。这是一种静态维修制度,主要特点是当设备运行达到计划规定的时间或吨公里时便进行强制维修。它比前一种维修制度大大前进了一步,对于保障设备和人身安全,起到了积极作用。同时,这种维修制度也存在明显的缺陷,即过剩维修和失修的问题。以滚动轴承为例,同一型号的滚动轴承,其实际的使用寿命有时相差达数十倍。在预防维修制度行监测与诊断故障的方法,具体包括声音监听法、频谱分析法和声强法。 温度信号监测诊断技术包括物体温度的直接测量和热红外分析技术。实际工业中不恰当的温度变化往往意味着热故障的发生。从被测设备的某一部分的温 130

风力发电机组齿轮箱的故障及其分析

毕业设计(论文)2010 级风能与动力技术专业 题目:风力发电机组齿轮箱的故障及其分析 毕业时间: 学生姓名:X X X 指导教师:X X X 班级:10风电(1)班

目录 一、绪论 (1) (一)风力发电机组齿轮箱故障诊断的意义 (1) 二、风力发电机组齿轮箱的故障诊断 (2) (一)风力发电机组齿轮箱的常见故障模式及机理分析 (2) (二)齿轮箱典型故障振动特征与诊断策略 (6) (三)针对齿轮箱不同故障的改进措施 (9) 三、结论 (12) 参考文献: (12) 致谢 (13)

风力发电机组齿轮箱的故障及其分析 摘要:随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词:风力发电机;故障模式;齿轮箱;故障诊断 一、绪论 (一)风力发电机组齿轮箱故障诊断的意义 风电对缓解能源供应,改善能源结构、保护环境和电力工业的持续发展意义重大。这些年来,风电机组在我国得到了广泛的安装使用。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,风力发电机的故障也成为一个不容忽视的问题。 随着风电机组运行时间的加长,目前这些机组陆续出现了故障(包括风轮叶片、变流器、齿轮箱、变桨轴承,发电机、以及偏航系统等都有),导致机组停止运行。当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故。风电机组的部分部件一旦损坏,在风电场无法修复,必须运到专业厂家进行修理。因其维修费用高、周期长、难度大,势必给风电场造成巨大的经济损失,严重影响了风电的经济效益。 风电机组的输出功率是波动的,可能影响电网的电能质量,如电压的偏差、电压的波动和闪变、谐波以及周期电压脉动等。当风电机组发生故障时,输往电网的

机械故障诊断的发展现状与前景

《机械故障诊断技术》读书报告 MAO pei-gang 南阳理工机械与汽车工程学院 473004 动平衡诊断案例分析综述 Diagnosis of dynamic balance Case Analysis were Review 摘要 简要阐述组动平衡故障诊断中所使用的现代测试与分析技术。通过五个动不平衡故障的诊断与处理实例,指出了波德图、频谱图等现代分析技术对于组动平衡故障诊断的价值和意义;总结了基于现代测试与分析技术的动平衡故障的主要特征。;验证了影响系数法对于动平衡故障处理的准确性及实用性。对于提高动平衡故障诊断的准确性及其精度具有推广和借鉴意义。 关键词:动平衡故障诊断振动分析 Abstract The modern measuring and analyzing technologies applied in the dynamic balance fault diagnoses are described briefly。In view of five dynamic unbalance fault diagnoses and treatments。the significance and purpose of the modern analyzing technologies such as Bode Plot,Spectrum Plot for the dynamic balance fault diagnoses are put forward,and its characteristics based on testing and analyzing technologies are summarized.The accuracy and practicability of the influence coefficient method for its treatment are proved.The instructions and experiences of improving the

风力发电机齿轮箱结构及其主要故障类型的处理方法

风力发电机齿轮箱结构及其主要故障类型的处理方法摘要 第一章绪论 1.1论文的目的和意义 1.2风力发电的现状 1.3风力发电齿轮箱的研究现状 第二章齿轮箱结构 2.1风力发电机的整体结构 2.2齿轮箱的结构及其传动方案 第三章风力发电机组齿轮箱故障类型 3.1齿轮箱的主要故障类型 3.2风力发电机组齿轮箱振动故障分析 3.3风力发电机组传动齿轮油温故障分析 第四章风力发电的发展存在问题和主要趋势 4.1我国风电齿轮箱设计生产存在问题 4.2风电发展的主要趋势 致谢 参考文献

中文摘要 摘要:风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。 本文以兆瓦级风力发电机齿轮箱为对象,通过方案选取,齿轮参数确定等对其配套的齿轮箱进行阐述。 首先,介绍全球风力发电产业高速发展和国内外风电设备制造业概况,阐述我国风力发电齿轮箱的现状及齿轮箱的研究。 其次,确定齿轮箱的机械结构。选取两级行星派生型传动方案,通过计算,确定各级传动的齿轮参数。对行星齿轮传动进行受力分析,得出各级齿轮受力结果。依据标准进行静强度校核,结果符合安全要求。 然后,论述了风力发电机组齿轮箱故障诊断的主要类型,深入探究风电机组齿轮箱振动故障机理,研究了油温高的故障机理,分析了传动齿轮温度场和热变形的情况。 最后,阐述我国风力发电存在的主要问题和发展前景。 关键词:风电齿轮箱;结构;故障类型;存在问题

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

风电齿轮箱润滑状态监测与故障诊断系统开发

? 149 ? ELECTRONICS WORLD ?技术交流 我国的风力发电机组主要布置在偏远山区,环境较为恶劣,而且还有部分风力发电机组布置在高原、海上等,受到高强度风的冲击,可极易引发故障。本文主要针对风电齿轮箱润滑系统进行研究,提出当前风电齿轮箱润滑状态运行中存在的问题,针对问题提出装填监测与故障诊断系统设计方案,给出硬件和软件设计,并分析其功能。1.风电齿轮箱 风电齿轮箱作为风力发电机组中的重要组成部件,能够实现动力传递,将风能转化为机械能并将动力传递给发电机获得相应转速。在风力的作用下,发电机组能够获得一定的动力,但是风轮的转速往往很低,不能满足发电机发电要求,因此需要在风力发电机组中配备相应的齿轮箱来实现增速,提高风能利用率。根据风力发电机组运行的实际要求进行不同设置,对于传动轴(大轴)和齿轮箱既可以合为一体也可以分开进行布置,在两者之间还往往通过联轴节进行连接。在风力发电机组中还往往在齿轮箱的输入/出端配备相应的刹车装置来实现风力发电机组的制动能力。配合叶尖制动(定浆距风轮)或变浆距制动装置共同对机组传动系统进行联合制动。 2.风电齿轮箱润滑常见故障及原因分析2.1 润滑油黏度变化 对于风力发电机组而言,基本上每天都在运行进行发电工作。由于工作时间较长、负载较大,会导致油温升高出现氧化情况,而氧化会产生油泥沉积物等物质,这些物质会使得润滑油的粘度先下降后上升,润滑肉的承载能力下降明显,对于齿轮箱中的各个部件而言,没有很好的润滑会产生较大磨损,引发故障。而且润滑油的粘度增大,使用中油温和油压均会出现明显升高现象,出现齿面胶合等现象,甚至严重情况下会引发轴承受热变形。2.2 齿轮油水分影响 对于风力发电机组而言往往在海岛等地区进行工作,另外还在荒漠等地区这些地区的温度往往较低,如果不能及时的更换齿轮箱中的空气呼吸机,长期下来就会导致水分的沉积。而水分是影响齿轮箱润滑油质量的一个关键因素之一,如果水分含量过大会导致齿轮箱的油发生乳化,齿轮件极易出现锈蚀问题。2.3 氧化因素 由于风力发电机组长时间工作,润滑油也会长时间使用。而长时间的运行必然导致油温升高,油会出现氧化问题,而且在运行中还会由于各种不可控因素导致污染产生,最终导致润滑油的氧化程度升高,性能会随之下降,在齿轮箱当中产生酸性物质,对于齿轮箱中的各个部件而言会产生严重腐蚀,对于滤芯以及各个配件而言会产生不同程度的损耗。2.4 磨损检测 对于齿轮运行而言,通过渐开线接触的方式进行啮合,这种运行方式下齿轮不会发生相对滑动。在齿轮箱中引入润滑油主要是润滑齿轮,保证齿轮发生比较小的磨损。在风力发电机组的运行中必须关注异常磨损问题,卡阻异常会导致异常磨损更加严重。润滑油快速发黑并且在齿轮箱中有铁屑的时候应该考虑异常卡阻问题,异常磨损往往与油膜无法有效建立相关;磨屑增多及滑油粘度异常也有关联关系,另外是滑油变性,或水分等腐蚀齿轮的成分增大时,也会出现齿轮磨损增大。 3.风电齿轮箱润滑状态监测与故障诊断系统设计3.1 硬件系统设计及构成 对于风力发电机组的润滑状态监测系统而言,必须要有相应的系统硬件进行支持。整个监测系统由数据传感器来进行信息的采集,并由变送器来进行信息传递,另外还有数采模块以及工控机通信线路协调配合实现最终功能。 3.1.1 传感器 在风力发电机的齿轮箱中,往往涉及到多个参数以及变量的监控,针对不同的参数以及变量需要采用不同的传感器俩进行采集,传感器型号的选择如表1所示。 表1 传感器及其选型 测量对象型号参数 振动YD010量程:0-20mm/s 温度PT100量程:-60-200℃压力HDA4400 量程:6000-100000kPa 图1 软件系统程序设计图 3.1.2 温度变送器 前面提出油温是影响并反映齿轮箱润滑状态的重要参数,因此必须要对油温进行监控。在本设计中采用Pt100温度传感器来进行油温采集,这一温度传感器主要通过内部电阻值变化来反映温度变化值。另外还在系统中引入SBWZ-2280变送器,提供整个系统的变送电路支持。 3.1.3 数采模块 在该系统当中引入了COMWAYWRC-616来提供测控,这控制系统集成模拟和数字信号采集、过程IO控制和无线数据通道等功能。采用压力传感器与变送器的继承模块HAD4XX4-A来进行系统控制。对于系统中的油压以及温度模块而言,还往往采用两线制电流输出的接线方式;对于整个系统中的振动模块而言,往往采用三线制的连接方式。数采模块通过RS485串口输出接入到整个系统当中,另外还通过RS485-To-RS232转换串口接入到工控机串口当中。为实现其功能还在系统中引入远程通讯模块,能够通过智能手机实现监控系统和外部的通讯。 风电齿轮箱润滑状态监测与故障诊断系统开发 中广核新能源控股公司吉林分公司 杨 鹏 DOI:10.19353/https://www.wendangku.net/doc/d48203715.html,ki.dzsj.2019.04.088

大数据处理技术在风电机组齿轮箱故障诊断与预警中的应用

大数据处理技术在风电机组齿轮箱故障诊断与预警中的应用 摘要风能有着很多的优点,在改善我国能源结构方面有着非常大的作用。本文包括五部分,第一部分进行概述,第二部分论述风电机组故障诊断和预警模型设计,第三部分论述基于大数据技术的齿轮箱故障诊断和预警方法实现,第四部分论述实验结果研究,第五部分进行总结。 关键词风电机组;故障诊断;故障预警 以主流大数据技术的风电机组故障诊断和预警模型为基础,利用storm实时处理状态监测流信息,提取故障诊断以及预警特点。 1 概论 随着大规模风电机组的投入运行,因为风电场选址的特殊性和负荷的不稳定性,很多机组都出现了故障,使得风电场的安全性受到了影响,所以对风电机组进行状态监测以及故诊断是相当关键的。不同厂家生产的风电机组会使采集的数据类型等出现差异。怎样通过风电机组状态监测大数据进行快速、有效的故障诊断和预警是新的课题。 大数据技术在电力体系监测领域还处于起步阶段,本文给出基于大数据技术的风电机组故障诊断和预警的模型结构,这个模型有着下面几个特点:第一,全体,收集和研究风电机组运行数据而不是样本数据。第二,混杂:由于是全样本,不可避免地要处理不同风电机组、不同种类的异构数据。第三,注重相关关系和效率,在故障诊断和预警环节中,使用数据挖掘方法找出故障,并在科学精确性的条件下利用并行计算技术实现快速的预警[1]。 2 风电机组故障诊断和预警模型设计 2.1 模型框架 基于大数据存储和处理的需要,本文基于X86集群,运用分布式技术,提出了融合各种相关异构状态检测数据的风电机组故障诊断和预警模型,模型架构见图1,主要由数据采集整合、数据存儲等模块组成。 数据来源有数据采集和监控系统、地理信息系统、项目管理信息系统,以及各种特殊传感器等业务系统的生产运行管理数据,除此之外,还有针对本文具体应用的各种故障知识库。这些数据来源不一,模态各异,形成了海量异构电力大数据。 2.2 齿轮箱故障诊断和预警运行流程 作为风机传动系统的关键组成部分,齿轮箱是风电机组中故障率较高的部

齿轮故障诊断方法综述

齿轮故障诊断方法综述 摘要齿轮是机械设备中常用的部件,而齿轮传动也是机械传动中最常见的方式之一。在许多情况下,齿轮故障又是导致设备失效的主要原因。因此对齿轮进行故障诊断具有非常重要的意义。介绍了故障的特点和几种诊断方法,并比较了基于粒子群优化的小波神经网络,基于相关分析与小波变换,基于小波包和BP神经网络和基于小波分析等故障诊断方法的优缺点,并提出了齿轮故障诊断的难点和发展方向。 关键字齿轮故障诊断诊断方法分析比较发展

目录 第一章齿轮故障诊断发展及故障特点..................... 错误!未定义书签。齿轮故障诊断的发展................................... 错误!未定义书签。 1. 2齿轮故障形式与震动特征 ........................... 错误!未定义书签。第二章齿轮传动故障诊断的方法......................... 错误!未定义书签。 2. 1高阶谱分析........................................ 错误!未定义书签。 参数化双谱估计的原理 .............................. 错误!未定义书签。 试验装置与信号获取 ................................ 错误!未定义书签。 故障诊断 ......................................... 错误!未定义书签。 应用双谱分析识别齿轮故障 ........................ 错误!未定义书签。基于边频分析的齿轮故障诊断............................ 错误!未定义书签。 分析原理 .......................................... 错误!未定义书签。 铣床振动测试 ...................................... 错误!未定义书签。 边频带分析 ...................................... 错误!未定义书签。 故障诊断 ........................................ 错误!未定义书签。 2. 3时域分析.......................................... 错误!未定义书签。

故障诊断技术综述

故障诊断技术综述 一引言 故障诊断技术是一门紧密结合生产实际的工程科学,是现代化生产发展的产物。随着现代科学技术在设备上的应用,设备的结构越来越复杂,功能也越来越完善,自动化程度越来越高,由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的乃至灾难性的事故。不言而喻,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践证明,研究故障诊断技术具有重要的现实意义。 二故障诊断技术的定义 故障诊断技术就是在设备运行中或基本不拆卸设备的情况下,掌握设备的运行状况,根据对被诊断对象测试所取得的有用信息进行分析处理,判断被诊断对象的状态是否处于异常状态或故障状态,判断劣化状态发生的部位或零部件,并判定产生故障的原因,以及预测状态劣化的发展趋势等。其目的是提高设备效率和运行可靠性,防患于未然,避免故障的发生。 三故障诊断技术的构成环节 从故障诊断的流程看,通常诊断系统由信号采集、信号处理、状态识别和诊断决策四大部分构成。其中,信号采集是基础,信号分析和处理是关键,状态识别(包括判断和预报)是核心,决策与管理是最终目标。前3个环节是基本环节。 1.信号采集 信息采集的基本任务是获取有用的信息。这是故障诊断的基础和前提,监测获取到的有用信息越多,监测数据越真实,越容易判断出故障原因。在运行过程中,必然会有力、热、振动及能量等各种量的变化,由此会产生各种不同的信息,根据不同的诊断需要,选择能表征设备工作状态的不同信息,如振动、压力及温度等,是十分必要的。这些信号一般是用不同的传感器来拾取的。只有采集到反映设备实际状态的信号,诊断的后续工作才有意义,因而信号采集是故障诊断技术中不可缺少的重要环节。 (1) 常用的设备状态监测技术分类 1) 振动信号监测技术 对设备的振动信号测试和分析,能获得机体、转子或其他零部件的振动幅值、频率和相位3个基本要素,经过对信号的分析、处理与识别,可了解到设备的振动特点、结构强弱、振动来源、故障部位和故障原因,为诊断决策提供依据。故利用振动信号诊断故障的技术较为普遍。 2) 声信号监测诊断技术 声信号监测诊断技术包括:噪声诊断、超声波诊断和声发射诊断技术。其中噪声的分析与诊断通常有两个目的:一是寻找机器发出噪声的主要声源,以便采取相应措施降低噪声;二是利用噪声信号判别故障。从噪声信号中提取特征信号,可以检测出故障的原因和发生故

风电齿轮箱故障诊断实例分析.pdf

制造业信息化 MANUFACTURING INFORMATIZATION 仿真/建模/CAD/CAM/CAE/CAPP 风电齿轮箱故障诊断实例分析 肖洪波,刘松松 (沈阳鼓风机集团风电有限公司,沈阳110869) 摘要:介绍了以齿轮箱振动分析为主要手段的风电齿轮箱故障诊断方法,并通过齿面接触磨损分析和齿轮箱润滑油液分析等辅助手段,对风电齿轮箱的故障点进行分析诊断。并以某风电厂某台风力发电机组的齿轮箱故障诊断为例,对风电齿轮箱故障诊断方法进行实例分析。关 键词:风电齿轮箱;振动分析;故障诊断 中图分类号:T H 132.41文献标志码:A 0引言 风力发电机组多安装在环境恶劣的高山、荒野、海滩等风资源较优地区,常年经受无规律的变负荷变向风力作用、阵风的冲击,以及严寒酷暑、盐雾等的影响,致使风力发电机组经常出现故障。 风电机组的常见故障类型包括电气系统故障、传感器和叶片/变桨装置故障、齿轮箱故障等。据统计,我国风场齿轮箱损坏率高达40%~50%,是机组中故障率最高的部件,也是引起风电机组停机的最主要原因[1],因此,在齿轮箱故障早期进行齿轮箱状态检测,并以此进行故障诊断和分析,可以在早期对故障进行有效诊断,有利于减少维修时间和降低由于齿轮箱故障引起的经济损失,对提高风电场的经济效益和安全性具有重大意义。 1 齿轮箱故障诊断的一般方法 以机械故障诊断的测试手段来分类,主要的故障诊 断方法有直接观察法、振动和噪声检测法、无损检测法、磨损残余物检测法、机械性能参数检测法等。其中最常用的是振动检测法[2]。我们在实例分析齿轮箱故障时使用的 齿轮箱故障诊断方法是以振动检测为主,辅助以直接观察法和磨损残余物检测法。 1.1 齿轮箱故障分析内容 一般情况下,对齿轮箱故障分析主要从以下几个方面开展:1)振动分析;2)齿面接触磨损分析;3)齿轮箱润滑油液分析。 1.2 齿轮箱振动检测点布置 在风电场现场对齿轮箱进行故障诊断时,通常按图 1 一级齿圈高速轴轴高速轴径 径向测点向测点向测点 发电机驱动端径向测点 扭矩臂轴向测点 图1振动传感器布置图文章编号:1002-2333(2014)04-0152-04 位置布置高速采集振动传感器。 2实例分析 以某风电场某台风电机组的齿轮箱故障诊断为例,介绍风电齿轮箱的故障诊断方法。 2.1 振动分析 2.1.1 振动测点分布与安装依据齿轮箱结构,现场安装高 速采集测点的传感器。 具体安装位置见图2。 图 2 齿轮箱高速采集测点 2.1.2 振动数据分析 表 1 为现场高速采集的各测点振动数据的加速度有效值和峭度指标。黑色字体数据为正常指标,灰色字体数 表1振动检测数据 测点项目 100 r/min 500 r/min 1 000 r/min 1 200r /min 空转空转空转加载200 kW 扭矩臂轴向 有效值(/m·s-2)0.143 9 2.702 3 10.814 5 12.417 1 峭度 3.171 9 7.719 1 3.365 9 3.528 1 一级齿圈径向 有效值(/m·s-2)0.236 1 0.237 4 0.245 6 0.250 4 峭度 2.560 5 2.552 0 2.490 5 2.458 7 高速轴径向 有效值(/m·s-2)0.026 8 0.315 8 5.942 7 11.081 3 峭度 4.052 3 3.394 5 6.319 7 33.895 8 高速轴轴向 有效值(/m·s-2)0.236 1 7.343 4 28.135 6 30.132 8 峭度 2.560 5 3.801 5 3.007 4 2.885 1 发电机驱动端径向 有效值(/m·s-2)0.129 2 2.135 9 3.679 1 4.600 0 峭度 3.751 8 3.896 4 3.009 4 37.405 4

相关文档