文档库 最新最全的文档下载
当前位置:文档库 › 海洋遥感与信息技术-实验

海洋遥感与信息技术-实验

海洋遥感与信息技术-实验
海洋遥感与信息技术-实验

《海洋遥感与信息技术》

—实验指导

编写:李灿苹

信息学院

班级:

姓名:

学号:

实验一利用Matlab读取并显示遥感L3A数据实验目的

1.了解遥感L3A产品数据;

2.运用MATLAB读取遥感L3A数据,并显示。

实验原理及内容

1. 遥感L3A产品

表:遥感产品级别的定义

2. MATLAB读取遥感L3A数据,并显示

以读取数据“MOA_200406180542_3A_CHL.DA T”为例:

strFname = 'MOA_200406180542_3A_CHL.DA T';

if(isFile(strFname))

[flag,l3a] = ReadL3AHeader(strFname);

这里包含两个函数子程序,即isFile.m和ReadL3AHeader.m

isFile.m为文件名函数子程序;ReadL3AHeader.m为遥感数据头文件函数子程序。

读取遥感数据参考程序:

clear all;

close all;

clc;

% strFname = 'E:\RSDATA\L3A\MOA_201103140607_3A_CHL.DAT';

strFname = 'MOA_200406180542_3A_CHL.DA T';

if(isFile(strFname))

[flag,l3a] = ReadL3AHeader(strFname);

if flag==1

lat = linspace(https://www.wendangku.net/doc/d38284672.html,t_max,https://www.wendangku.net/doc/d38284672.html,t_min,l3a.Row);

lon = linspace(l3a.Lon_min,l3a.Lon_max,l3a.Col);

fid = fopen(strFname,'r');

fseek(fid,1028,'bof'); %从1028位置开始读数据

data = fread(fid,l3a.Row*l3a.Col,'uint16');

fclose(fid);

data(data==0) = NaN; %将零数据置成非数,否则后面运算将出错

data = data*l3a.Slope+l3a.Offset;

%判断是否是叶绿素,如果是则要进行对数运算

if (l3a.Product(1:3)') == 'CHL'

data = log10(data);

end

data = reshape(data,l3a.Col,l3a.Row); %将源数据变成二维数据

data = data';

% 显示图像

imagesc(lon, lat, data); colorbar;

axis xy; xlabel('经度'); ylabel('纬度');

end

end

实验分析

观察程序运行结果,掌握、分析读取和显示遥感L3A数据的方法。

实验总结

总结实验认识、过程、效果、问题、收获、体会、意见和建议。

实验二利用Matlab裁剪遥感L3A指定区域数据并显示实验目的

1.运用MATLAB读取遥感L3A数据;

2. 利用MATLAB剪裁遥感L3A指定区域数据,并显示。

实验原理及内容

1. MATLAB读取L3A数据

实验一中已有叙述,具体程序见实验一。

2. MATLAB剪裁遥感L3A指定区域数据,并显示

在实验一程序基础上,再增加以下程序:

if 循环外增加以下语句:

dz = [109 118 20 24 ]; %确定数据研究区域,即剪裁区域

if二重循环里添加以下程序:

%剪裁指定区域dz = [109 118 20 24 ];

idx = find( ( lon>=dz(1) ) & ( lon<=dz(2) ) );

idy = find( ( lat>=dz(3) ) & ( lat<=dz(4) ) );

lon = lon(idx);

lat = lat(idy);

data = data(idy,idx);

% 显示图像

figure(2);

imagesc(lon, lat, data); colorbar;

axis xy; xlabel('经度'); ylabel('纬度');

完整程序如下:

clear all;

close all;

clc;

% strFname = 'E:\RSDATA\L3A\MOA_201103140607_3A_CHL.DAT';

dz = [109 118 20 24 ]; %数据研究区域

strFname = 'MOA_200406180542_3A_CHL.DA T';

if(isFile(strFname))

[flag,l3a] = ReadL3AHeader(strFname);

if flag==1

lat = linspace(https://www.wendangku.net/doc/d38284672.html,t_max,https://www.wendangku.net/doc/d38284672.html,t_min,l3a.Row);

lon = linspace(l3a.Lon_min,l3a.Lon_max,l3a.Col);

fid = fopen(strFname,'r');

fseek(fid,1028,'bof'); %从1028位置开始读数据

data = fread(fid,l3a.Row*l3a.Col,'uint16');

fclose(fid);

data(data==0) = NaN; %将零数据置成非数,否则后面运算将出错

data = data*l3a.Slope+l3a.Offset;

%判断是否是叶绿素,如果是则要进行对数运算

if (l3a.Product(1:3)') == 'CHL'

data = log10(data);

end

data = reshape(data,l3a.Col,l3a.Row); %将源数据变成二维数据

data = data';

% 显示图像

figure(1);

imagesc(lon, lat, data); colorbar;

axis xy; xlabel('经度'); ylabel('纬度');

%剪裁指定区域dz = [109 118 20 24 ];

idx = find( ( lon>=dz(1) ) & ( lon<=dz(2) ) );

idy = find( ( lat>=dz(3) ) & ( lat<=dz(4) ) );

lon = lon(idx);

lat = lat(idy);

data = data(idy,idx);

% 显示图像

figure(2);

imagesc(lon, lat, data); colorbar;

axis xy; xlabel('经度'); ylabel('纬度');

end

end

实验分析

观察程序运行结果,掌握、分析读取和显示遥感L3A数据的方法。实验总结

总结实验认识、过程、效果、问题、收获、体会、意见和建议。

l3a =

Sat: [15x1 char] Product: [20x1 char]

Unit: [15x1 char]

Year: 2004

Day: 169

Hour: 5

Mini: 42

Lat_max: 42

Lat_min: 14

Lon_max: 130

Lon_min: 105

Project: [20x1 char]

R_lat: 0.0100

R_lon: 0.0100

Row: 2800

Col: 2500

Slope: 0.0010

Offset: 0

spare: [910x1 char]

遥感数据特征

常用遥感数据特征总结 按照遥感平台类型,遥感技术可以分为航宇遥感、航天遥感、航空遥感、地面遥感四类。其中航天遥感平台发展最快,应用最广。很据航天遥感平台的服务内容,可以将其分为气象卫星系列、陆地卫星系列和海洋卫星系列。不同的卫星系列所获得的遥感数据有着不同的特征,常常应用于不同的应用领域,在进行检测研究时,常常根据不同的卫星资料特点,选择不同的遥感数据。下文简单总结了几种常用的航天遥感数据特征。 1 气象卫星系列 气象卫星是最早发张起来的环境卫星。从1960年美国发射第一颗实验性气象卫星(TIROS)以来,已经有多种实验性或者业务性气象卫星进入不同轨道。气象卫星资料已经在气象预报、气象研究、资源调查海洋研究等方面显示出了强大的生命力。 气象卫星主要有以下几种系列:60年代——TIROS系列、ESSA系列、Nimus 系列;70年代——ITOS系列、NOAA系列、SMS系列、GOES系列、MeteopII、GMS、Meteosat;80年代后,主要以NOAA系列为代表。我国的气象卫星发展比较晚,FY-1是我国发射的第一颗1988年9月7日发射成功。气象卫星主要有以下特征。 (1)轨道。气象卫星轨道可以分为两种,低轨和高轨。低轨是近极低太阳同步轨道,简称极地轨道,轨道高度800~1600km,南北向绕地球运转。对东西宽约2800km的带状地域进行观测,由于与太阳同步,使卫星每天在固定的时间经过每个地方的上空,资料获得时具有相同的照明条件。高轨是指地球同步轨道,轨道高度36000km左右,相对于地球静止,能够观测地球1/4的面积,有3—4颗卫星形成观测网,对某一固定地区,每隔20~30min获取一次资料,由于它相对于地球静止,可以作为通讯中继站,用于传送各种天气资料。 (2)短周期重复观测。地球同步卫星观测周期为0.5小时一次,极轨卫星为约为0.5~1天/次,时间分辨率较高。有助于对地面快速变化的动态检测。 (3)成像面积大,有助于获得宏观同步信息,减少数据处理容量。 (4)资源来源连续、实时性强、成本低 NOAA系列。 NOAA-11卫星:发射日期1988年9月24日,正式运行日期1988年11月8日,轨道高度841公里,轨道倾角98.9度,轨道周期:101.8分。 NOAA-12卫星:发射日期1991年5月14日,正式运行日期1991年9月17日轨道高度804公里,轨道倾角98.6度,轨道周期101.1分。 NOAA-14卫星:发射日期1994年12月30日,正式运行日期1985年4月10日,轨道高度845公里,轨道倾角99.1度,轨道周期101.9分。 NOAA-15卫星:发射日期1998年5月13日,正式运行日期1998年12月15日轨道高度808公里,轨道倾角98.6度,轨道周期101.2分。 NOAA-16卫星:发射日期2000年9月12日,正式运行日期2001年3月20日,轨道高度850公里,轨道倾角98.9度,轨道周期102.1分。

遥感实验二

遥感实验二遥感影像的初步识别 一、实验目的 学会识别遥感影像及其标识、理解像元灰度值与图像亮度及颜色的关系、理解遥感图像的矩阵表示、理解像元大小、掌握遥感图像的各种打开方式,对比了解不同影像的色调、纹理及颜色特征。 二、实验原理 地物光谱特征及成因。 三、实验数据 某区域的遥感图像,包括:367-071-0000103564.zip、452-86-L10000004263.rar、11943E20010304.rar、12843_19731222.rar。 四、实验内容及主要步骤 1、识别遥感影像及其标识 在资源管理器中找到与遥感影像文件名相同扩展名不同的文本文件,用记事本或写字板打开该文件,阅读其中的图像信息; 阅读layer info中标明的图像信息; 查询像元灰度值(用光标定位显示和用影像信息表查看)。 2、遥感影像的打开方式 a、用缺省方式打开遥感影像 打开影像(数据格式、缺省显示方式)、重叠显示并对比两个影像;放大、缩小、漫游、全图显示。 b、遥感影像的多种打开方式 包括:图像按多波段RGB真彩色、某波段按假彩色、某波段按灰度、高程数据按地势显示。 3、不同遥感影像的对比识别 结合实验内容1和2,认识常用遥感数据的图像特征,识别不同传感器成像的异同点,该实验内容留作课后作业。 五、课后作业及要求 结合本次课的实验内容,对所提供的影像数据(包括MSS、ETM、CBERS、HJ)对比进行识别和分析,内容包括:

1、识别影像(包括卫星及传感器、太阳高度角及方位角、成像时间、空间 分辨率、覆盖范围、波段数及行列数、投影参数等相关信息),要求写出实际的操作过程及所得结果的依据所在; 2、对比分析同一地物在不同影像上的颜色、纹理、色调特征,对其成因进 行分析和探讨,可查找相关文献进行总结。

遥感实验心得体会

实习心得体会 遥感是一门理论性和实践性都很强大的专业课,需要我们在课堂上学习了理论知识后进行上机实验,以加深对所学知识的了解。 几何纠正这次试验本来是我们上周的自主完成试验,我用自己在网上下载的数据按照试验实验指导书上的要求做了一遍,在选点的时候选择了七个点,完成试验后也不知道怎样判断自己纠正的图像到底对不对,只是发现最终的生成结果中有一个4K大小的东西,结果是我做错了,这次,跟着老师做了一遍试验后,我对ERDAS这个软件有了一定的认识,并且顺利的完成了几何纠正,也意识到上次做实验时我的错误,首先,我打开来的两张图片并不都是img格式的,我没有将他们进行转换就进行的纠正,其次,我并没有完全理解课本上的纠正过程。我们选点的时候要选择六个以上的点,用来完成建模过程,然后其余的点可以用来对建立的模型进行检验以及纠正,我选则的七个点,纠正的结果应该是很差的。 然后,在这次试验课上,老师首先给我们介绍了ERDAS软件,然后,带着我们完成的做了一遍试验,试验由以下几部分组成: (1)显示图像文件(Display Image Files) (2)启动几何校正模块(Geometric Correction Tool) (3)启动控制点工具(Start GCP Tools) (4)采集地面控制点(Ground Control Point) (5)采集地面检查点(Ground Check Point) (6)计算转换模型(Compute Transformation) (7)图像重采样(Resample the Image) (8)保存几何校正模式(Save rectification Model) (9)检验校正结果(Verify rectification Result) 其中,最值得一说的是寻找控制点以及检查点,在寻找过程中,刚开始寻找是很慢的,图像看上去黑乎乎的,完全找不到自己想找的点,后来,顺着河流,道路的交叉点,很顺利的找到了自己想要找的点,在超过六个点以后找点时就方便了很多,在第一张图片上找点自己想要找的点,然后第二张图片上会自动匹配出点的位置,我们要寻找的范围缩小了很多,这时,我们要做的只剩下看看它匹配的准不准,如果不准,我们将点拖动到准确的点上即可。 第一次试验结束了,首先我对ERDAS这个软件有了一个认识,其次,我觉得要完成一个好的试验,我们对理论知识一定要有很深刻的认识,不然我们就像无头苍蝇,成为了一个工具,只是在做,却不知道自己在做什么,自己在哪边做错了也不知道,在自主完成试验之后,老师带领我们在做一遍,我们对试验的认识以及理论知识的了解会上升到另外一个高度,这样的实践教学对我们的学习应该会有很大的帮助。

遥感技术及其应用

遥感技术及其应用 第四从人地关系看资与环境 单元活动遥感技术及其应用 一、教材分析 《遥感技术及其应用》是鲁教版必修一第四单元单元活动的教学内容,主要教学内容包括:遥感的概念、遥感的基本原理、遥感影像的初步判读等内容。 二、教学目标 知识要求:了解遥感技术的特点,工作原理流程及其应用领域。 技能要求:能够运用遥感影像中的直接和间接解译标志对遥感影像进行简单的解译。 情感要求:关注现代化的科学技术在地理科学中的应用,思考和理解地理信息技术的应用对协调人地关系的重要影响,培养学生的热爱地理的兴趣。 三、教学重点难点 重点:遥感工作原理 难点:遥感影像的判读 四、学情分析 本节内容是高一学生所学内容,尚未分科的平行班内不少是学理的好手,所以并不担心学生物理知识的不足。对于

气氛不太活跃的班级一定要让学生活动起,投入到角色中去,才能很好的理解遥感的原理。 五、教学方法 1.问题探究教学法:设置若干问题让学生分组讨论,并合作得出答案。 2.学案导学:见后面的学案。 3.新授课教学基本环节:预习检查→情境导入→合作探究→总结检测→布置预习 六、课前准备 1.学生的学习准备:预习“遥感技术及其应用”,初步掌握遥感的基本概念、基本原理及其应用领域和应用前景。 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案,并把学生科学分成若干小组。 七、课时安排:1课时 八、教学过程 (一)预习检查、总结疑惑 检查学生预习的落实情况,并了解和归纳学生的疑惑,使课堂教学更有效率和更具有针对性。 (二)情景导入、展示目标 前面几节课我们学习了人地关系的一些相关知识,知道了人类的生存与发展离不开资与环境。随着科技的发展和时

浅谈农业遥感技术

摘要:信息技术和生物技术可以说是当今21世纪的两大前沿科学技术。遥感技 术作为现代信息技术的前沿技术,在农业生产中发挥着不可估量的作用,而且其在农业上的应用日益广泛、深入。该文介绍了我国遥感技术的基本内涵,阐述了遥感技术在我国农业生产上的应用概况,论述了遥感技术在农业资源调查、灾情监测与预报、农业环境保护以及农作物 估产等方面的应用, 提出了在农业生产上的应用实例,讨论了遥感技术的缺陷,并展望了遥感技术在农业上应用的美好前景。 Abstract: The information and biological technology are the two frontier science- technology in 21st century. As the frontier modern information technology,the remote sensing technology plays an invaluable role in agricultural production. And Its application in agriculture is increasingly extensive and in-depth. This paper introduces the basic connotation of remote sensing technology in China, describes the overview of the application of it in China's agricultural production, discusses the application of it in agricultural resources survey, disaster monitoring and forecasting, agricultural environmental protection and estimating crop yield and other aspect, proposes application examples in agricultural production, discuss defects of remote sensing technology,and finally looking good prospects for the application of remote sensing technology in agriculture 关键词: 遥感技术;农业;应用;缺陷;展望 Keyword:remote sensing technology; agriculture; application; defects;prospects. 一、遥感技术概述 1.基本概念 遥感技术是20世纪60年代蓬勃发展起来的一种探测技术,是根据电磁波的理论,应用各种传感仪器对远距离目标所辐射和反射的电磁波信息,进行收集、处理,并最后成像,从而对地面各种景物进行探测和识别的一种综合技术。 随着空间技术、信息技术、电子计算机技术和环境科学的发展,遥感技术逐步发展为一门新兴交叉学科技术。 遥感技术(Remote sensing,RS)与地理信息系统(Geography information systems,GIS)、全球定位系统(Global positioning systems,GPS)合称为3S技术,在现阶段各行业发展中拥有广泛的应用和广阔的发展前景。 现代遥感技术, 已构成地面、空中、太空三个立体层面。国外的遥感技术大多首先应用于农业, 美国利用陆地卫星和气象卫星等数据,预测全世界的小麦产量, 准确度大于90%; 英国利用遥感技术, 4个人工作9个月,就把全国的土地划分为5大类、31个亚类, 并测出了面积,绘制成地图。近30多年来,遥感技术在大面积作物长势监测与估产、农情宏观预报、农业资源调查等方面做出了重要贡献。 2.优越性 1)可获取大范围数据资料 遥感用航摄飞机飞行高度为10km左右,陆地卫星的卫星轨道高度达910km左右,从而, 可及时获取大范围的信息。

实验二 遥感图像的辐射定标

实验二遥感图像的辐射定标 1.实验目的与意义: (1)了解辐射定标原理 (2)使用ENVI软件自带的定标工具定标 (3)学习波段运算进行辐射定标 2.为什么要进行辐射定标,定标的原理是什么? 目的:消除传感器本身的误差,确定传感器入口处的准确辐射值。 原理:辐射定标是将传感器记录的电压或数字量化值(DN)转换为绝对辐射亮度值(辐射率)的过程,或者转换为与地表(表观)反射率、表面温度等物理量有关的相对值的处理过程。 3.辐射定标过程 一般有两种方式: 第一种:利用计算公式,在ENVI中利用band math计算福亮度和反射率。 第二种:利用ENVI自带的定标工具进行定标,获取福亮度或反射率。 第一种方法:用波段运算得到Radiance和Reflectance (1)表观辅亮度radiance的计算 radiance=((lmax-lmin)/(qcalmax-qcalmin)*(qcal-qcalmin)+lmin 其中:radiance –表观辐亮度 qcal-----DN(也就是影像数据本身); lmax 和lmin是从参数表中查询; qcalmax 是DN值的最大值,对于TM是8bit来说,qcalmax=255; Qcalmin 是DN值的最小值,一般为0 即 (2)表观反射率的计算 ρ=π*L*d2/(ESUN*cos(θ)) 其中ρ为表观反射率; L为上一步计算出来的表观辐亮度; d为日地距离,这个数据通过下面的表格中获取; ESUN为大气层外的太阳辐射,也可以说是传感器接收处的太阳辐射; θ为太阳天顶角。(这个可以通过影像的元数据获取)在本次实验的数据中radiance=(193+1.52)/255*b1-1.52 Reflectance=3.14*(b1)*1.0128^2/(1957*0.7381)步骤如下:打开文件L5120036_03620100819_MTL.txt ,点击Band Math,输入(193+1.52)/255*b1-1.52,之后即可计算出辐射度,文件保存为radiance1。

遥感在农业中的作用与发展

遥感在农业中的作用与发展 1农作物估产 遥感(RemoteSensing)即遥远的感知,指在一定距离上,应用探测仪器不直接接触目标物体,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。摄影照相便是一种最常见的遥感,照相机并不接触被摄目标,而是相隔一定的距离,通过镜头把被摄目标的影像记录在底片上,经过化学处理,相片便重现被摄目标的图像。从拍摄目标到再现目标所用的手段,便是一种遥感技术。遥感与其他技术结合,在农业应用中具有科学、快速、及时的特点。这对于充分利用农业资源、指导农业生产、农产品供需平衡等方面有着重要的意义。 2遥感估产的原理及农作物估产方法 遥感估产的基本原理[2] 任何物体都具有吸收和反射不同波长电磁波的特性,这是物体的基本特性。人眼正是利用这一特性,在可见光范围内识别各种物体的。遥感技术也是基于同样的原理,利用搭载在各种遥感平台(地面、气球、飞机、卫星等)上的传感器(照相机、扫描仪等)接收电磁波,根据地面上物体的波谱反射和辐射特性,识别地物的类型和状态。农作物估产则是指根据生物学原理,在收集分析各种农作物不同生育期不同光谱特征的基础上,通过平台上的传感器记录的地

表信息,辨别作物类型,监测作物长势,并在作物收获前,预测作物的产量的一系列方法。它包括作物识别和播种面积提取、长势监测和产量预报两项重要内容。 农作物估产的方法 农作物估产在方法上可分为传统的作物估产和遥感估产两类。传统的作物估产基本上是农学模式和气象模式,采用人工区域调查方法。它们把作物生长与主要制约和影响产量的农学因子或气候因子之间用统计分析的方式建立起关系。这类模式计算繁杂、速度慢、工作量大、成本高,某些因子种类往往难以定量化,不易推广应用。遥感估产则是建立作物光谱与产量之间联系的一种技术,它是通过光谱来获取作物的生长信息。在实际工作中,常常用绿度或植被指数(由多光谱数据,经线性或非线性组合构成的对植被有一定指示意义的各种数值)作为评价作物生长状况的标准。植被指数中包括了作物长势和面积两方面的信息,各种估产模式,尤其是光谱模式中植被指数是一个极为重要的参数。根据传感器从地物中获得的光谱特征进行估产具有宏观、快速、准确、动态的优点[3,4]。 农作物估产中所应用的遥感资料大致可分为3类:一是气象卫星资料,主要为美国第三代业务极轨气象卫星(NOAA系列)装载的甚高分辨率辐射仪(AVHRR)资料,其资料特点是周期短、覆盖面积大、资料易获取、实时性强、价格低廉,空间分辨率低但时间分辨率较高;二是陆地卫星(Landsat)资料,应用较多功能是专题制图仪(TM)资料,它重复周期长、价格高,但其空间分辨率高[5];三是航空遥感和地面遥感资料,主要用于光谱特征及估产农学机理的研究中,其中高光谱数据可提供连续光谱,可消除一些外部条件的影响而成为遥感数据处理、地面测量、光谱模型和应用的强有力的工具[6]。在遥感估产中农作物面积提取是最重要的内容。用遥

遥感实验二报告

遥感实验二实验报告 学院:资源与环境 专业:11 城规 姓名:李恒玺 学号:2011081018 指导老师:吴静

实验报告: 1、实验目的: 识别自己下载的地物特征 2、实验步骤: 1)我下载的是北京2010/11/4LANDSAT7 ETM+,条带号:123 行编号:32。2)此图像的基本信息为: 数据标识:LE71230322010308EDC00 快视图:[ 查看大图] 卫星:LANDSAT7 条带号:123 行编号:32 行象元数:1000 列象元数:1100 传感器:ETM+ 接收站标识:EDC 数据获取日期:20101104 白天/夜晚:DAY 开始时间:2010-11-04 02:45:51 结束时间:2010-11-04 02:46:18 平均云量:.01 左上云量:0 右上云量:0 左下云量:.01 右下云量:.04 太阳方位角:159.82481384 太阳高度角:31.99302864 中心纬度:40.32566 中心经度:116.73708 左上点纬度:41.28471 左上点经度:115.87321 右上点纬度:40.95814 右上点经度:118.11105 左下点纬度:39.68246 左下点经度:115.38956 右下点纬度:39.36360 右下点经度:117.57607 3)将下载的图像在ERDAS软件的Layer Stack中做多波段合成,合成后的图像为:

4)用灰阶方式以及各种不同的彩色合成方式显示组合的影像,观察不同波段影像的异同,及不同彩色合成方式对影像的表现力,并用文字说明。 ○1水体:将图像在Display as Ture color 中RGB分别为9,1,8可以很清楚显 示水体,显示的图像为: ○2白云:在RGB为3,7,2可以较好的显示云朵,也可以从外形和云朵的颜色的看出。

海洋遥感技术(2)实验教学大纲

海洋遥感技术(2)实验教学大纲 一、制定本大纲的依据 根据2006级海洋技术专业(遥感与信息处理)培养计划和海洋遥感技术(2)课程的教学大纲制订。 二、本实验课程的具体安排 实验项目的设置及学时分配

备注:实验要求:填必修、选修。实验类型:填演示、验证、综合、设计。实验类别:基础、专业等 三、本实验课在该课程体系中的地位与作用 海洋遥感技术课程是一门理论性和实践性都较强的课程。本实验课是课堂授课过程的一个重要环节,是对理论知识的进一步理解和深化,是培养学生实践能力不可或缺的一个环节。其作用是通过专业语言和专业软件的学习和编程,达到对本课程重要概念、遥感原理的掌握。目的是通过对学生应用能力的训练上,使学生能够结合所学知识解决实际问题。 四、学生应达到的实验能力与标准 1、对相应卫星传感器对应的软件如SeaDas、Beam、Bilko3等有一定程度的掌握,能 熟悉基本操作,并进一步了解其原理; 2、以卫星数据的读取为例,掌握专业软件对科学数据的简单读取,并能进一步对科学 数据进行简单的编辑; 3、熟悉SeaWiFs、以及Envisat/ASAR、Envisat/MEIRS、Envisat/AATSR等的不同卫星 传感器的作用,并进一步掌握卫星数据格式以及卫星数据的接收、传输、输入、输 出、反演等基本过程; 4、通过对卫星数据的读取,能对海洋要素比如SST(海表温度)、海面风场的方向与风 速、内波、海浪方向谱、赤潮、海色、浅海地形等海洋现象,做基本的显示与反演 以及应用等。 五、讲授实验的基本理论与实验技术知识 实验一利用SeaDAS读取SeaWiFS卫星数据 1、实验的基本内容 (1)对SeaWiFS卫星数据做进一步介绍以及卫星数据的接收原理; (2)学会SeaDAS的基本使用; (3)让学生利用SeaDAS软件反演SeaWiFS卫星数据; (4)SeaDAS的反演原理,与分析/半分析算法做简单比较。 2、实验的基本要求 达到的实验技术要求,通过实例以及PPT的演示,在前两节课里让学生对SeaDAS 软件能有初步了解;熟悉并掌握SeaDAS软件,并利用SeaDAS读取SeaWiFS卫星数据,能进行基本的叶绿素、悬浮物等海色要素的反演。

遥感技术的应用以及发展趋势

一前言 二遥感信息技术基础 三遥感信息技术的应用 3.1遥感信息技术在环境监测方面的应用 3.1.1利用红外扫描仪监视石油污染 3.1.2利用遥感技术监测水体富营养化 3.1.3通过遥感技术调查废水污染和泥沙污染 3.1.4应用红外扫描仪监测水体热污染 3.1.5通过遥感技术分析水域的分布变化和水体沼泽化 3.2.遥感技术在大气环境监测方面的应用 3.2.1臭氧层 3.2.2大气气溶胶 3.2.3有害气体 3.2.4气候变化 3.3遥感技术在城市环境监测与管理中的应用 3.4应用遥感技术监控生态环境 3.5 利用遥感技术监测自然灾害 四遥感信息技术的发展趋势 4.1遥感影像获取技术越来越先进 4.2遥感信息处理方法和模型越来越科学 4.3 3S一体化 4.4建立高速、高精度和大容量的遥感数据处理系统 4.5建立国家环境资源信息系统 4.6建立国家环境遥感应用系统 五总结 六参考文

一前言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界围得到广泛的应用。自20世纪80年代以来,随着遥感技术的发展,遥感技术在理论上、技术上和实际应用上发生了重大的变化。在遥感数据源向着更高光谱分辨率和更高空间分辨率发展的同时,处理信息技术也更加成熟;在应用方面,结合了地理信息系统(GIS)和全球定位系统(GPS),向着更系统化,更定量化的方向发展,是遥感技术的应用更加广泛和深入。 二遥感信息技术基础 遥感技术是指从飞机、飞船、卫星等飞行器上,利用各种波段的遥感器,通过摄影、扫描、信息感应,识别地面物质的性质和运动状态的技术,具有遥远的感知的意思。从上个世纪六十年代提出“遥感”这个词,到1972年美国陆地卫星计划发射了第一颗对地观测卫星,经过几十年的发展,遥感技术已经广泛地应用在军事、国防、农业、林业、国土、海洋、测绘、气象、生态环境、水利、航天、地质、矿产、考古、旅游等领域,影响了人类生活的方方面面,它为人类提供了从多维和宏观角度去认识世界的新方法与新手段,遥感技术能够全面、立体、快速有效地探明地上和地下资源的分布情况,其效率之高是以前各种技术无法企及的。 三遥感技术在环境科学中的应用 3.1.遥感技术在水污染监测方面的应用 3.1.1利用红外扫描仪监视石油污染 全球每年排入海洋的石油及其制品高达1000万吨,利用多光谱航片可对海面石油污染进行半定量分析,将彩色航片同步拍照与近红外片做的彩色密度分割图相比较,更精密地判断和解译信息,参照图片画出不同油膜厚度的大致分级图。通过彩色密度分割图像,特别是数字密度分割图,可以更准确地判断油量的分布情况。通过彩色密度分割可把相差零点零几厚度的海面油膜区分出层次来,这有利于用航空遥感对海面油的扩散分布和半定量研究。浓度大的地方是黄色,往外扩散的油膜变薄,呈黄紫混在一起的颜色,再往外扩散的油膜就更薄些呈紫色。通过对污染发生后各天的气象卫星图像的对比分析,确定油膜的漂移方向,计算出其扩散速度和扩散面积。 3.1.2利用遥感技术监测水体富营养化 浮游植物中的叶绿素对蓝紫光和红橙光有较强的吸收作用,当水体出现富营养化时,我们就可以利用遥感技术推算出水体中的叶绿素分布情况。赤潮区的海水光谱特征是藻类、泥沙和海水的复合光谱,另外有机或无机颗粒物也会吸收入射光,影响水体的透明度。 3.1.3通过遥感技术调查废水污染和泥沙污染 废水的颜色与悬浮物性状千差万别,特征曲线上的反射峰位置和强度也不大一样,可以用多光谱合成图像进行监测。水中悬浮泥沙的浓度和粒径增大,水体反射量也会相应增加,反射峰随之红移,定量判读悬浮泥沙浓度的最佳波段是0.65~0.85微米。 3.1.4应用红外扫描仪监测水体热污染 应用红外扫描仪记录水体的热辐射能量,真实反映其温度差异。在热红外图像上,热水温度高,辐射能量多,呈浅色调。冷水和冰辐射能量少,呈深色调。热排水口处通常呈白色羽流,利用光学技术和计算机对热图像作密度分割,根据少量的同步实测水温,画出水体等温线。

遥感实验

实验二:遥感图像的增强处理 1.实验目的和意义 (1)理解遥感图像的增强处理的方法和原理; (2)理解遥感图像彩色合成的原理,掌握遥感图像彩色合成的方法; (3)掌握遥感图像的增强处理,包括对比度变换(直方图)、空间滤波、HSL变换、多光谱变换(K-L变换,即主成分分析,PCA.;K-T变换,即缨帽变换)。 2、相关实验原理和步骤 (1)图像的彩色合成 A原理:色彩变换(RGB TO IHS)是将遥感图像从红(R)绿(G)蓝(B)三种颜色组成的色彩空间转换到以亮度(I),色度(H),饱和度(S)作为定位参数的色彩空间,以便使图像的颜色与人眼看到的更接近。其中,亮度表示整个图像的明亮程度,取值范围是0-1;色度代表像元的颜色,取值范围是0-360;饱和度代表颜色的纯度,取值范围是0-1. B:步骤:Transform-color transform-RGB to HLS,如图: 真彩色与假彩色的对比 真彩色假彩色

(2)主成分分析 A原理:主成分变换(Principal Component Analysis)是一种常用的数据压缩方法,它可以将具有相关性的多波段数据压缩到完全独立的较少的几个波段上,使图像数据更易于解释。ERDAS IMAGE提供的主成分变换功能最多能对256个波段的图像进行转换压缩。 B步骤:transform-principal component-Forward PC Rotation-compute New Statistics and Rotate;如图: 最后得到的分析结果图

(3)缨帽变换练习 A原理:采用缨帽变换可以将TM图像除热红外波段的6个波段压缩成3个分量,其中的土壤亮度指数分量是6个波段的加权和,反映了总体的反射值;绿色植被指数分量反映了绿色生物量的特征;土壤特征分量反映了可见光和近红外与较长的红外的差值,它对土壤湿度和植物湿度最为敏感。这样的三个分量就是TM数据进行缨帽变换后的新空间,它可以对植被、土壤等地面景物作更为细致、准确的分析,应用这种处理方法可增强影像上深色区域的信息。 B步骤:transform-tasseled cap-can_tmr.img。如图: (4)锐化处理; A原理:调整图像的锐化程度使地物在图像上的差别便于人眼识别,可达到信息增强的目的。对图像进行锐化增强实际上是利用变换函数把原图像进行灰度级转换,增大相邻像元的灰度值之差,从而达到突出图像细节的目的。B步骤:transform-image sharpening。 具体步骤及其效果图如下所示:

卫星海洋学复习题

简介 卫星海洋学(satellite oceanography)是利用卫星遥感技术观测和研究海洋的一门分支学科。卫星海洋学兴起于20世纪70年代,它是卫星技术、遥感技术、光电子技术、信息科学与海洋科学相结合的产物。笼统地讲,它包括两个方面的研究,即卫星遥感的海洋学解释和卫星遥感的海洋学应用。卫星遥感的海洋学解释涉及到对各种海洋环境参量的反演机制和信息提取方法的研究,卫星遥感的海洋学应用涉及到运用卫星遥感资料在海洋学各个领域的研究。 涉猎内容 (l)海洋遥感的原理和方法:包括遥感信息形成的机理、各种波段的电磁波(可见光、红外和微波)在大气和海洋介质中传输的规律、以及海洋的波谱特征。 (2)海洋信息的提取:包括与海洋参数相关的物理模型、从遥感数据到海洋参数的反算法、遥感图像处理和海洋学解释、卫星遥感数据与常规海洋数据在各类海洋模式中的同化和融合。 (3)满足海洋学研究和应用的传感器的最佳设计和工作模式:包括光谱波段和微波频率的选择、光谱分辨率和空间分辨率的要求、观测周期和扫描方式的研究、以及传感器噪音水平的要求。 (4)反演的海洋参数在海洋学各领域中的应用。卫星遥感所获得的海洋数据具有观测区域大、时空同步、连续的特点,可以从整体上研究海洋。这极大地深化了人们对各种海洋过程的认识,引起了海洋学研究的一次深刻变革。卫星遥感资料和卫星海洋学的研究成果在海洋天气和海况预报、海洋环境监测和保护、海洋资源的开发和利用、海岸带测绘、海洋工程建设、全球气候变化、以及厄尔尼诺现象监测等科学问题上有着广泛的应用。 原理 卫星在遥远距离通过放置在某一平台上的传感器对大气或者海洋以电磁波探测方 式获取大气或者海洋的有关信息,这个过程称为遥感。海面反射、散射或自发辐射的各个波段的电磁波携带着海表面温度、海平面高度、海表面粗糙度以及海水所含各种物质浓度的信息。传感器能够测量在各个不同波段的海面反射、散射或自发辐射的电磁波能量,通过对携带信息的电磁波能量的分析,人们可以反演某些海洋物理量。传感器的遥感精度随着卫星遥感技术的发展在不断地提高,目前正在接近、达到甚至超过现场观测数据的精度。 应用 海洋表面是一个非常重要的界面。海洋与大气的能量交换都是通过这个界面进行的;海洋内部的变化也会部分地透过这一表面表现出来。运用计算机三维数值模拟和卫星遥感数据同化技术,人们就可以通过获得的海洋表面遥感信息,了解海洋内部的海洋学特征和物理变化过程。遥感监测海面的空间分辨率与电磁波的波长有关,可见光与红外辐射计获得的遥感图像具有更好的空间分辨率。虽然云的覆盖阻挡了可见光波段电磁波的透过,但是能够穿透云层的微波遥感弥补了不足。总之,可见光和红外遥感满足了人们对较高的空间分辨率监

遥感实验报告

遥感原理与应用 实验报告 姓名:学号:学院:专业: 年月日 实验一: erdas视窗的认识实验 一、实验目的 初步了解目前主流的遥感图象处理软件erdas的主要功能模块,在此基础上,掌握几个视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。 二、实验步骤 打开imagine 视窗 启动数据预处理模块 启动图像解译模块 启动图像分类模块 imagine视窗 1.数据预处理(data dataprep) 2.图像解译(image interpreter) 主成份变换 色彩变换 3.图像分类(image classification) 非监督分类 4. 空间建模(spatial modeler) 模型制作工具 三、实验小结 通过本次试验初步了解遥感图象处理软件erdas的主要功能模块,在此基础上,基本掌握了几个视窗操作模块的功能和用途。为后续的实验奠定了基础。 实验二遥感图像的几何校正 掌握遥感图像的纠正过程 二、实验原理 校正遥感图像成像过程中所造成的各种几何畸变称为几何校正。几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 几何校正包括几何粗校正和几何精校正。地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了几何粗校正。利用地面控制点进行的几何校正称为几何精校正。一般地面站提供的遥感图像数据都经过几何粗校正,因此这里主要进行一种通用的精校正方法的实验。该方法包括两个步骤:第一步是构建一个模拟几何畸变的数学模型,以建立原始畸变图像空间与标准图像空间的某种对应关系,实现不同图像空间中像元位置的变换;第二步是利用这种对应关系把原始畸变图像空间中全部像素变换到标准图像空间中的对应位置上,完成标准图像空间中每一像元亮度值的计算。 三、实验内容 根据实验的数据,对两张图片进行几何纠正 四、实验流程

遥感技术的特性及应用

遥感技术的特性及应用 姓名:XX 单位:XXXXXXXXX 【摘要】:文章通过介绍遥感技术的基本理论和特性,着重介绍了遥感技术在国民经济各方面的应用,以及对人类生活的影响。 【关键词】:遥感技术;特性;应用 [abstract] : this article through the introduction of the remote sensing technology in the basic theory and characteristics are introduced, and the remote sensing technology in national economic aspects of application, and the influence of human life. [key words] : remote sensing technology, Character; application 前言 随着人类生存环境的变化和国际竞争的日益激烈,对自然资源、地理资源和太空资源的开发和争夺已经成为影响人类和民族发展进程的重要因素。遥感正是为了满足这样的需求所产生的一门综合性应用技术, 它是以航空摄影技术为基础,在本世纪60年代初发展起来的一门新兴技术。经过几十年的发展,遥感技术已经从航空时代进入航天时代。由于遥感技术能够全面、立体、快速有效地探明地上和地下资源的分布情况,其效率之高是以前各种技术无法企及的。因此,遥感技术已成为一门实用的,先进的空间探测技术。伴随遥感技术在国民经济中发挥着越来越重要的作用,由此带来了新一轮遥感应用的热潮。现在,卫星应用覆盖了减灾、健康、环境监测、能源调查等,影响了人类生活的方方面面。因此,在许多领域,遥感对地观测技术有着无限光明的应用前景。 1. 遥感技术的涵义 遥感是利用遥感器从空中来探测地面物体性质的,它根据不同物体对波谱产生不同响应的原理,识别地面上各类地物,具有遥远感知事物的意思。也就是利用地面上空的飞机、飞船、卫星等飞行物上的遥感器收集地面数据资料,并从中获取信息,经记录、传送、分析和判读来识别地物。 当前遥感形成了一个从地面到空中,乃至空间,从信息数据收集、处理到判读分析和应用,对全球进行探测和监测的多层次、多视角、多领域的观测体系,成为获取地球资源与环境信息的重要手段。 2. 遥感技术主要特点 2.1 可获取大范围数据资料。 遥感用航摄飞机飞行高度为10km左右,陆地卫星的卫星轨道高度达910km左右,从而,可及时获取大范围的信息。例如,一张陆地卫星图像,其覆盖面积可达3万多km2。这种展示宏观景象的图像,对地球资源和环境分析极为重要。 2.2 获取信息的速度快,周期短。 由于卫星围绕地球运转,从而能及时获取所经地区的各种自然现象的最新资料,以便更新原有资料,或根据新旧资料变化进行动态监测,这是人工实地测量和航空摄影测量无法比拟的。例如,陆地卫星4、5,每16天可覆盖地球一遍,NOAA气象卫星每天能收到两次图像。Meteosat每30分钟获得同一地区的图像。 2.3 获取信息受条件限制少。 在地球上有很多地方,自然条件极为恶劣,人类难以到达,如沙漠、沼泽、高山峻岭等。采用不受地面条件限制的遥感技术,特别是航天遥感可方便及时地获取各种宝贵资料。 2.4 获取信息的手段多,信息量大。 根据不同的任务,遥感技术可选用不同波段和遥感仪器来获取信息。例如可采用可见光探测物体,也可采用紫外线,红外线和微波探测物体。利用不同波段对物体不同的穿透性,还可获取地物内部信息。例如,地面深层、水的下层,冰层下的水体,沙漠下面的地物特性等,微波波段还可以全天候的工作。 3. 遥感技术的实际应用 3.1 遥感技术在地质灾害中的应用 遥感技术应用于大面积的地质灾害调查, 可达到及时、详细、准确且经济的目的。在不同地质地貌背景下能监测出地质灾害隐患区段, 还能对突发性地质灾害进行实时或准实时的灾情调查、动态监测和损失评估。为此,我国设立了专门的“地质灾害遥感综合调查”课题, 经过近20年的实践,已摸索

遥感实验报告

重庆交通大学 学生实验报告 实验课程名称遥感原理与应用 开课实验室测量与空间信息处理实验室 学院 2013 年级测绘工程专业 1班学生姓名刘文洋 学号 631301040126 开课时间 2015 至 2016 学年第 1 学期

目录 实验一 ENVI 视窗的基本操作 (2) 实验二遥感图像的几何校正 (4) 实验三遥感图像的增强处理 (8) 实验四遥感图像的变换 (12) 实验五遥感信息的融合 (15) 实验六遥感图像分类 --- 监督分类 (17) 实验七遥感图像分类 --- 非监督分类 (19) 实验八遥感图像分类后处理 (22)

实验一ENVI 视窗的基本操作 一、实验目的 初步了解目前主流的遥感图象处理软件 ENVI 的主要功能模块,在此基础上,掌握视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。 二、实验内容 视窗功能介绍;文件菜单操作;显示数据;裁剪数据;合并波段 三、实验步骤 1、首先打开ENVI4.7软件,看见的只有菜单栏,如图所示: 2、打开每个下拉菜单浏览其下拉栏中都有哪些功能,比如:我们如果需要打开遥感文件,则可以选择File下的打开功能open image file,打开遥感图像如下图:

裁剪数据打开basic tools的resize data功能,如果需要对图像进行一系列处理,可以利用Transform,Classification等功能进行操作,在后续实验中我们也会用到其中的一些功能进行图像的一系列操作,到时候在详细叙述。 3、再熟悉了ENVI4.7的一些基本知识后我们可以简单地操作下,比如对一组数据分别用Gray Scale和Load RGB导入,看看两幅图的区别以及各自的优缺点。 四、实验结果分析 在这次的实验中,我们简单的熟悉了下ENVI4.7的一些功能,发现它是可以对遥感图像进行图像几何纠正,直方图均衡,监督分类,非监督分类等一系列操作,为我们后续利用软件对遥感图像处理打下了基础。

农业部遥感应用中心简介

遥感技术(RS能够快速准确地收集农业资源和农业生 产的信息,结合地理信息系统(GIS)和卫星导航定位技术(GNSS)(三者及其技术集成简称“ 3S”技术),可以实现信息收集和分析的定时、定量、定位,客观性强,不受人为干扰,方便决策。20世纪70年代末,根据土壤普查和农业区划工作的需求,在国家计委、国家科委和农业部的支持下,在联合国粮农组织(FAO、计划开发署(UNDP的资助下,农业部门成立了专门的技术研究机构,开展了遥感应用的技术和设备引进以及人才培训工作。经过二十几年的技术攻关和试验,目前,农业遥感应用已经实现了面向农业生产宏观决策服务的业务化运行,走出了一条具有中国特色的自主创新道路,为农业和农村经济的发展做出了突出贡献。 农业部一直高度重视农业遥感工作。早在1989年,农 业部就确定有关司局归口管理农业遥感工作。1999年,成立 了农业部遥感应用中心,由全国农业资源区划办公室组织运 行,对全国农业遥感应用工作进行综合协调和指导。2008年,农业部党组审议通过发展计划司(全国农业资源区划办公室)三定方案,明确发展计划司负责管理农业遥感监测工作。农业部遥感应用中心成立以来,紧紧围绕农业部中心工作 有效调动系统内外各遥感应用单位的力量,建立了较为完善 的农业遥感监测体系。目前,初步形成了以农业部遥感应用中心、2个分部、11个分中心和200个国家级地面样方监测

网点县为基础的国家、区域、县三级监测网络,拥有数百名各级科研技术和工作人员的骨干队伍。其中,农业部遥感应用中心应用部挂靠农业部规划设计研究院,研究部挂靠中国农业科学院农业资源与农业区划研究所,分别负责体系运行和技术研发;11个分中心负责区域范围内各种农业遥感监测 任务;200个国家级地面监测网点县负责定期提供实测的土情、作物长势及其他农业参数,用于修正和验证遥感数 据。 附表:1 合作经营协议书 甲方: 乙方: 经甲乙双方友好协商,就中石油煤层气保德区块地面工程合作 经营事宜,自愿达成如下协议,以资信守: 、合伙宗旨:共同合作、合法经营、利益共享、风险共担。 二、合作经营项目:中石油煤层气保德区块地面建设工程。 三、合作经营地点:山西省保德县。 四、出资金额方式:期限垫付。 1、甲方以现金方式出资200万元;乙方以现金方式出资200万元 (主要用于补足前任合伙人撤资款项)。 2、合同签订之日乙方向甲方交付100万元投资款,剩余100万元

遥感地学分析实验报

实验一植被覆盖度反演 一、实验目的 植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。通常林冠称郁闭度,灌草等植被称覆盖度。它是衡量地表植被覆盖的一个最重要的指标,被覆盖度及其变化是区域生态系统环境变化的重要指示,对水文、生态、全球变化等都具有重要意义。目前已有许多利用遥感技术测量植被覆盖度的方法,其中应用最广泛的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI,本次实验完成植被覆盖度反演。 二、实验数据 实验选取两景覆盖北京市的Landsat8 OLI影像、土地覆盖类型图以及北京行政边界矢量数据为数据源。其中,土地覆盖类型图是作为掩膜文件使用,其目的是为了便于植被覆盖度的估算;北京行政边界矢量数据是裁剪出北京市行政区内的范围。Landsat8 OLI影像是从地理空间数据云网站上下载得到的,其成像时间为2013年10月份。与Landsat7的ETM+成像仪相比,OLI成像仪获取的遥感图像辐射分辨率达到12比特,图像的几何精度和数据的信噪比也更高。OLI成像仪包括9个短波谱段(波段1~波段9),幅宽185km,其中全色波段地面分辨率为15m,其他谱段地面分辨率为30m。 三、实验方法 本文反演植被覆盖度所采用的是像元二分模型方法,像元二分模型是一种简单实用的遥感估算模型,它假设一个像元的地表由有植被覆盖部分与无植被覆盖部分组成,而遥感传感器观测到的光谱信息(S)也由这2个组分因子线性加权合成,各因子的权重是各自的面积在像元中所占的比率,如其中植被覆盖度可以看作是植被的权重。因此,像元二分模型的原理如下:VFC = (S - Ssoil)/ ( Sveg - Ssoil) S为遥感信息,其中Ssoil 为纯土壤像元的信息, Sveg 为纯植被像元的信息。 改进的像元二分法——遥感信息选择为NDVI VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) 两个参数的求解公式 NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) 当区域内可以近似取VFCmax=100%,VFCmin=0% VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) 当区域内不可以近似取VFCmax=100%,VFCmin=0%,当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值;当没有实测数据的情况下,植被覆盖度的最大值和最小值根据经验估算。 其中, NDVIsoil 为裸土或无植被覆盖区域的NDVI值, 即无植被像元的NDVI 值;而NDVIveg 则代表完全被植被所覆盖的像元的NDVI 值, 即纯植被像元的NDVI 值。 四、实验处理步骤 1、实验处理流程如下图所示

相关文档