文档库 最新最全的文档下载
当前位置:文档库 › 高一数学函数解析式的七种求法

高一数学函数解析式的七种求法

高一数学函数解析式的七种求法
高一数学函数解析式的七种求法

函 数 解 析 式 的 七 种 求 法

一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f

解:设b ax x f +=)( )0(≠a ,则

b ab x a b b ax a b x af x f f ++=++=+=2)()()]([

∴???=+=342b ab a ∴?

?????=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或

二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221)1(x

x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+x

x 2)(2-=∴x x f )2(≥x

三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f

解:令1+=x t ,则1≥t ,2)1(-=t x

x x x f 2)1(+=+

∴,1)1(2)1()(22-=-+-=t t t t f

1)(2-=∴x x f )1(≥x

x x x x f 21)1()1(22+=-+=+∴ )0(≥x

四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2

x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点

则?????=+'-=+'32

22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上

x x y '+'='∴2

把???-='--='y

y x x 64代入得: )4()4(62--+--=-x x y

整理得672

---=x x y ∴67)(2---=x x x g

五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设,)1

(2)()(x x

f x f x f =-满足求)(x f 解 x x

f x f =-)1

(2)( ① 显然,0≠x 将x 换成x

1,得: x

x f x f 1)(2)1(=- ② 解① ②联立的方程组,得:

x

x x f 323)(--= 例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=

+x x g x f 试求)()(x g x f 和的解析式 解 )(x f 为偶函数,)(x g 为奇函数,

)()(),()(x g x g x f x f -=-=-∴

又1

1)()(-=+x x g x f ① ,

用x -替换x 得:1

1)()(+-=-+-x x g x f 即1

1)()(+-=-x x g x f ② 解① ②联立的方程组,得

11)(2-=x x f , x

x x g -=21)( 利用判别式求值域时应注意的问题

用判别式法求值域是求函数值域的常用方法,但在教学过程中,很多学生对用判别式求值域掌握不好。一是不理解为什么可以这样做,二是学生对哪些函数求值域可以用判别式法,哪些函数不能也比较模糊。本人结合自己的教学实践谈谈对本内容的一点体会。

一、判别式法求值域的理论依据

例1、 求函数1

22+--=x x x x y 的值域 象这种分子、分母的最高次为2次的分式函数可以考虑用判别式法求值域。 解:由1

22+--=x x x x y 得: (y-1)x 2+(1-y)x+y=0 ①

上式中显然y ≠1,故①式是关于x 的一元二次方程

??

????-+--=∴≠≤≤-≥?---=?13111,13

10)

1(4)1(222,x x x x y y y ,y y y 的值域为又解得令 用判别式法求函数的值域是求值域的一种重要的方法,但在用判别式法求值域时经常出错,因此在用判别式求值域时应注意以下几个问题:

一、要注意判别式存在的前提条件,同时对区间端点是否符合要求要进行检验 例:求函数3

22122+-+-=x x x x y 的值域。 错解:原式变形为0)13()12()12(2=-+-+-y x y x y (*)

∵R x ∈,∴0)13)(12(4)12(2≥----=?y y y ,解得2

1103≤≤y 。

故所求函数的值域是]2

1,103[ 错因:把21=y 代入方程(*)显然无解,因此21=y 不在函数的值域内。事实上,2

1=y 时,方程(*)的二次项系数为0,显然不能用“?”来判定其根的存在情况。

正解:原式变形为0)13()12()12(2=-+-+-y x y x y (*)

(1)当2

1=y 时,方程(*)无解; (2)当21≠y 时,∵R x ∈,∴0)13)(12(4)12(2≥----=?y y y ,解得2

1103<≤y 。 综合(1)、(2)知此函数的值域为)21,103[

二、注意函数式变形中自变量的取值范围的变化

例2:求函数6

3422-+++=x x x x y 的值域。 错解:将函数式化为0)36()4()1(2

=+--+-y x y x y

(1)当1=y 时,代入上式得093=--x ,∴3-=x ,故1=y 属于值域;

(2)当1≠y 时, 0)25(2≥-=?y , 综合(1)、(2)可得函数的值域为R y ∈。

错因:解中函数式化为方程时产生了增根(3-=x 与2=x 虽不在定义域内,但是方程的根),因此最后应该去掉3-=x 与2=x 时方程中相应的y 值。所以正确答案为1|{≠y y ,且}52≠

y 。 三、注意变形后函数值域的变化

例3:求函数21x x y -+=的值域。 错解:由已知得21x x y -=- ①,两边平方得221)(x x y -=- ②

整理得012222=-+-y yx x ,由0)1(8)2(22≥---=?y y ,解得22≤

≤-y 。 故函数得值域为]2,2[-。

错因:从①式变形为②式是不可逆的,扩大了y 的取值范围。由函数得定义域为]1,1[-易知1-≥≥x y ,因此函数得最小值不可能为2-。∵1-=x 时,1-=y ,∴1m i n -=y ,故函数的值域应为]2,1[-。

四、注意变量代换中新、旧变量取值范围的一致性

例4:求函数5

422++=x x y 的值域。 错解:令42+=x t ,则1

2+=t t y ,∴02=+-y t yt ,由0412≥-=?y 及0>y 得值域为]2

1,0(∈y 。 错因:解法中忽视了新变元t 满足条件2≥t 。∴设y t yt t f +-=2)(,0>y ,),2[+∞∈t , ????

?????>≤>>≥?2210)2(0)2(0,0y f f y 或520≤

高一数学必修一 函数知识点总结

3. 函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型 如: ),(,n m x d cx b ax y ∈++= ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; 常针对根号,举例: 令 ,原式转化为: ,再利用配方法。 ⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: )0(>+ =k x k x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1?<∈对任意的 注:① 函数上的区间I 且x 1,x 2∈I.若2 121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函数; 若2121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。 ② 用定义证明单调性的步骤: <1>设x1,x2∈M ,且21x x <;则 <2> )()(21x f x f -作差整理; <3>判断差的符号; <4>下结论; ③ 增+增=增 减+减=减 ④ 复合函数y=f[g(x)]单调性:同增异减 [](内层) (外层)) (,则)(,)((x f y x u u f y ??===

高一数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f(x)定义域内的任意x 都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x) 定义域内的任意x 都有f(-x)=f(x),则称f (x)为偶函数。 如果函数f(x)不具有上述性质,则 f (x)不具有奇偶性.如果函数同时具有上述两条性质,则 f(x)既是奇函数, 又是偶函数。 注意: ○ 1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○ 2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也 一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1首先确定函数的定义域,并判断其定义域是否关于原点对称;○ 2确定f(-x)与f(x)的关系;○ 3作出相应结论:若f(-x) = f(x) 或f(-x)-f (x) = 0,则f (x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f (x)是奇函数。(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称; 一个函数是偶函数的充要条 件是它的图象关于 y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇 奇=偶,偶+偶=偶,偶 偶=偶 2.单调性 (1)定义:一般地,设函数 y=f(x)的定义域为I ,如果对于定义域 I 内的某个区间 D 内的任意两个自变量 x 1,x 2,当x 1f(x 2)),那么就说f(x)在区间D 上是增函数(减函数); 注意: ○ 1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○ 2必须是对于区间D 内的任意两个自变量 x 1,x 2;当x 1

高一数学函数练习题及答案

数学高一函数练习题(高一升高二衔接) 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x = +-+ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

人教版高一数学函数及其性质知识点归纳与习题

O O O O (1) (2) (3) (4) 时间 时间 时间 时间 离开家的距离 离开家的距离 离开家的距离 离开家的距离 人教版高一数学函数及其性质知识点归纳与习题 第一部分 函数及其表示 知识点一:函数的基本概念 1、函数的概念: 一般地,设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A→B 为从集合A 到集合B 的一个函数。记作: A x x f y ∈=,)(。 x 叫自变量,x 的取值范围A 叫做函数的定义域,y 叫函数值,y 的取值范围叫函数的值域。 说明:①函数首先是两个非空数集之间建立的对应关系 ②对于x 的每一个值,按照某种确定的对应关系f ,都有唯一的y 值与它对应,这种对应应为数与数之间的“一对一”或“多对一”。 ③认真理解)(x f y =的含义:)(x f y =是一个整体,)(x f 并不表示f 与x 的乘积,它是一种符号,可以是解析式,也可以是图象,还可以是表格; 2、函数的三要素:定义域,值域和对应法则 3、区间的概念:三种区间:闭区间、开区间、半开半闭区间 4、两个函数相等:同时满足(1)定义域相同;(2)对应法则相同的两个函数才相等 5、分段函数: 说明:①在求分段函数的函数值时,首先要确定自变量在定义域中所在的范围,然后按相应的对应关系求值。 ②分段函数是一种重要的函数,它不是几个函数,而是同一个函数在不同范围内的表示方法不同。 6、函数图像 练习 1.下列图象中表示函数图象的是 ( ) (A ) (B) (C ) (D) 2.下列各组函数中,表示同一函数的是( ) A .x x y y ==,1 B .1,112 -=+?-=x y x x y C .3 3 ,x y x y = = D . 2 )(|,|x y x y == 3.下列所给4个图象中,与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。 A 、(1)(2)(4) B 、(4)(2)(3) C 、(4)(1)(3) D 、(4)(1)(2) 4.下列对应关系:( ) ①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根 ②,,A R B R ==f :x x →的倒数 ③,,A R B R ==f :2 2x x →- ④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方 其中是A 到B 的映射的是 A .①③ B .②④ C .③④ D .②③ 5.在国内投寄平信,每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重()040x x <≤克的函数,其表达式为()f x =____ ____ 6.设函数? ??<+≥-=10110 2)(2x x x x x f ,则)9(f = ,)15(f = 7.设函数?? ?<-≥-=5 35 2)(2 x x x x x f ,若)(x f =13,则x= 。 8.函数()1,3,x f x x +?=?-+? 1, 1,x x ≤>则()()4f f = . 9.下列各组函数是同一函数的有 ①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =; ③0 ()f x x =与0 1()g x x = ;④2()21f x x x =--与2 ()21g t t t =--。 10.作出函数(]6,3,762 ∈+-=x x x y 的图象 x y 0 x y 0 x y 0 x y 0

高一数学(人教版必修一)教案:《函数的最大(小)值》

§1.3.1函数的最大(小)值 一.教学目标 1.知识与技能: 理解函数的最大(小)值及其几何意义. 学会运用函数图象理解和研究函数的性质. 2.过程与方法: 通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识. 3.情态与价值 利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性. 二.教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 三.学法与教学用具 1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤. 2.教学用具:多媒体手段 四.教学思路 (一)创设情景,揭示课题. 画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2 ()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈- (二)研探新知 1.函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意:

①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有 ()(())f x M f x m ≤≥. 2.利用函数单调性来判断函数最大(小)值的方法. ①配方法 ②换元法 ③数形结合法 (三)质疑答辩,排难解惑. 例1.(教材P 30例3)利用二次函数的性质确定函数的最大(小)值. 解(略) 例2.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少? 解:设利润为y 元,每个售价为x 元,则每个涨(x -50)元,从而销售量减少 10(50),x -个共售出500-10(x-50)=100-10x(个) ∴y=(x-40)(1000-10x) 9000(50x +≤2=-10(x-70)<100) ∴max 709000x y ==时 答:为了赚取最大利润,售价应定为70元. 例3.求函数2 1 y x = -在区间 上的最大值和最小值. 解:(略) 例4.求函数y x =+ 解:令201t x t =≥=-+有则 2215 1()024 y t t t t =-++=--+ ≥Q 21()02t ∴--≤ 2155 ()244 t ∴--+≤ .∴5 原函数的最大值为4

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

初升高:高一数学必修一函数知识点总结

初升高:高一数学必修一函数知识点总结 函数知识点总结篇一 1. 函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x) ; (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2. 复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于 直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则 y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为 2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱ a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数; 5.方程 (1)方程k=f(x)有解k∈D(D为f(x)的值域); (2)a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;

高一数学函数的概念及表示方法

全方位教学辅导教案姓名性别年级高一 教学 内容 函数与映射的概念及其函数的表示法 重点难点教学重点:理解函数的概念;区间”、“无穷大”的概念,定义域的求法,映射的概念教学难点:函数的概念,无穷大”的概念,定义域的求法,映射的概念 教学目标1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法 3.了解映射的概念及表示方法 4.了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象. 5.会结合简单的图示,了解一一映射的概念 教学过程课前检 查与交 流 作业完成情况: 交流与沟通 针 对 性 授 课 一、函数的概念 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的 值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做 函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数 的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:()是函数吗? 问题2:与是同一函数吗? 观察对应: 30 45 60 90 2 1 2 2 2 3 9 4 1 1 -1 2 -2 3 -3 3 -3 2 -2 1 -1 1 4 9 1 2 3 1 2 3 4 5 6 (1)(2) (3)(4) 开平方求正弦 求平方乘以2 A A A A B B B B 1 二、讲解新课:

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

【知识学习】高一数学《函数及其表示》知识点总结

高一数学《函数及其表示》知识点总结考点一映射的概念 1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多 2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在唯一的一个元素y与之对应,那么,就称对应f:A→B 为集合A到集合B的一个映射.映射是特殊的对应,简称“对一”的对应。包括:一对一多对一 考点二函数的概念 1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B 中都存在唯一确定的数y与之对应,那么,就称对应f:A →B为集合A到集合B的一个函数。记作y=f,xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。 2.函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。 3.区间的概念:设a,bR,且a<b.我们规定: ①={xa<x<b}②[a,b]={xa≤x≤b}③[a,b)={xa ≤x<b}④={xx>a}⑥[a,+∞)={xx≥a}⑦={xx<b}

⑧=R 考点三函数的表示方法 1.函数的三种表示方法列表法图象法解析法 2.分段函数:定义域的不同部分,有不同的对应法则的函数。注意两点:①分段函数是一个函数,不要误认为是几个函数。②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。 能力知识清单 考点一求定义域的几种情况 ①若f是整式,则函数的定义域是实数集R; ②若f是分式,则函数的定义域是使分母不等于0的实数集; ③若f是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f是对数函数,真数应大于零。 ⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。 ⑥若f是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑦若f是由实际问题抽象出来的函数,则函数的定义域应符合实际问题

高一数学函数的性质练习题

4.下列函数中,在区间 (0,1)上是增函数的是( ) A .x y = B .x y -3= C .x y 1= D .4+-=2x y 6.若一次函数y=kx +b 在集合R上单调递减,则点(k ,b )在直角坐标系中的 ( ) A.第一或二象限 B.第二或三象限 C.第一或四象限 D.第三或四象限 7. 函数y ==x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增 D .选递增再递 减.

(1)f(x)=x 3+2x; (2) f(x)=2x 4+3x 2; (3) f(x)=x 2+2x+5; (4) f(x)=x 2,x ()∞+,0∈; (5) f(x)=x 1; (6) f(x)=x+x 1; 6.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3-,7-上是( ) A .增函数且最小值是5- B .增函数且最大值是5- C .减函数且最大值是5- D .减函数且最小值是5- 7 . 已知函数()f x 对一切R y x ∈,,都有)(+)(=)+(y f x f y x f , 求证:(1)()f x 是奇函数;(2)若a f =-3)(,用a 表示(12)f .

答案:1.C 2.C 3.B 4.A 5.+∞,0[) 6.B 7.C 8.(0,2 1) 答案: 1.C 2.C 3.C 4.B 5.(1)(5)(6) 6.A 7.(1)证明:令x=y=0,)0(f = )0(f +)0(f =2)0(f ,∴)0(f =0. 令y= -x, =)+(y x f )0(f =(+)(f x f -)x , 即(+)(f x f -)x =0, ∴(f -)x =)(x f , ∴)(x f 为奇函数. (2) -4a

高一数学函数的基本性质知识点梳理

高一数学函数的基本性质知识点梳理 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=fx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{fx| x∈A }叫做函数的值域. 注意:如果只给出解析式y=fx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是: 1 分式的分母不等于零; 2 偶次方根的被开方数不小于零; 3 对数式的真数必须大于零; 4 指数、对数式的底必须大于零且不等于 1. 5 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的集合 . 6指数为零底不可以等于零 2.构成函数的三要素:定义域、对应关系和值域 再注意: 1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等或为同一函数 2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备 值域补充 1 、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 . 2 . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的

高一数学函数知识点归纳_高一数学函数的性质

高一数学函数知识点归纳_高一数学函数的性质 同学们升入高中,有没有感觉到高中的数学不再像初中数学那样简单易懂了?高中的数学知识点非常多,同学们要学会对知识点进行总结归纳,下面小编给大家准备了高一数学函数知识点归纳,希望能帮助到大家。 高一数学函数知识点归纳 1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合 B={f(x)∣x∈A }叫做函数的值域。 2、函数定义域的解题思路: ⑴若x处于分母位置,则分母x不能为0。 ⑵偶次方根的被开方数不小于0。 ⑶对数式的真数必须大于0。 ⑷指数对数式的底,不得为1,且必须大于0。 ⑸指数为0时,底数不得为0。 ⑹如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。 ⑺实际问题中的函数的定义域还要保证实际问题有意义。 3、相同函数

⑴表达式相同:与表示自变量和函数值的字母无关。 ⑵定义域一致,对应法则一致。 4、函数值域的求法 ⑴观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。 ⑵图像法:适用于易于画出函数图像的函数已经分段函数。 ⑶配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。 ⑷代换法:主要用于由已知值域的函数推测未知函数的值域。 5、函数图像的变换 ⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。 ⑵伸缩变换:在x前加上系数。 ⑶对称变换:高中阶段不作要求。 6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A 中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f: A→B为从集合A到集合B的映射。 ⑴集合A中的每一个元素,在集合B中都有象,并且象是唯一的。 ⑵集合A中的不同元素,在集合B中对应的象可以是同一个。 ⑶不要求集合B中的每一个元素在集合A中都有原象。 7、分段函数 ⑴在定义域的不同部分上有不同的解析式表达式。 ⑵各部分自变量和函数值的取值范围不同。 ⑶分段函数的定义域是各段定义域的交集,值域是各段值域的并集。 8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g 的复合函数。 高一数学函数的性质 1、函数的局部性质——单调性 设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量 x1、x2,当x1< x2时,都有f(x1)f(x2),那么那么y=f(x)在区间D上是减函数,D是 函数y=f(x)的单调递减区间。 ⑴函数区间单调性的判断思路 ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。

高一数学函数的表示法测试题及答案

高一数学函数的表示法测试题及答案 1.下列关于分段函数的叙述正确的有() ①定义域是各段定义域的并集,值域是各段值域的并集;②尽管在定义域不同的部分有不同的对应法则,但它们是一个函数;③若D1、D2分别是分段函数的两个不同对应法则的值域,则D1∩D2=?. A.1个B.2个 C.3个D.0个 【解析】①②正确,③不正确,故选B. 【答案】 B 2.设函数f(x)=x2+2(x≤2),2x(x>2),则f(-4)=________,若f(x0)=8,则x0=________. 【解析】f(-4)=(-4)2+2=18. 若x0≤2,则f(x0)=x02+2=8,x=±6. ∵x0≤2,∴x0=-6. 若x0>2,则f(x0)=2x0=8,∴x0=4. 【答案】18-6或4 3.已知:集合A={x|-2≤x≤2},B={x|-x≤x≤1}.对应关系f:x→y=ax.若在f的作用下能够建立从A到B的映射f:A→B,求实数a的取值范围. 【解析】①当a≥0时,集合A中元素的象满足-2a≤ax≤2a. 若能够建立从A到B的映射, 则[-2a,2a]?[-1,1], 即-2a≥-12a≤1,∴0≤a≤12. ②当a<0时,集合A中元素的象满足2a≤ax≤-2a, 若能建立从A到B的映射, 则[2a,-2a]?[-1,1], 即2a≥-1-2a≤1,∴0>a≥-12. 综合①②可知-12≤a≤12. 一、选择题(每小题5分,共20分) 1.函数y=x+|x|x的图象,下列图象中,正确的是() 高?考¥资%源~网 【答案】 C 2.设集合P={x|0≤x≤4},Q={y|0≤y≤2},下列的对应不表示从P到Q的映射的是() A.f:x→y=12x B.f:x→y=13x C.f:x→y=23x D.f:x→y=x 【解析】根据映射的概念,对于集合P中的每一个元素在对应法则f的作用下,集合Q 中有唯一的元素和它对应.选项A、B、D均满足这些特点,所以可构成映射.选项C中f:x→y=23x,P中的元素4按照对应法则有23×4=83>2,即83?Q,所以P中元素4在Q中无对应元素.故选C. 【答案】 C 3.设函数f(x)=1-x2(x≤1)x2+x-2 (x>1),则f1f(2)的值为() A.1516 B.-2716 C.89 D.18

高一数学函数的最值

第八课时 函数的最值 【学习导航】 知识网络 学习要求 1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域. 自学评价 1.函数最值的定义: 一般地,设函数()y f x =的定义域为A . 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =; 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =; 2.单调性与最值: 设函数()y f x =的定义域为[],a b , 若()y f x =是增函数,则max y = ()f a ,min y = ()f b ; 若()y f x =是减函数,则max y = ()f b ,min y = ()f a . 【精典范例】 一.根据函数图像写单调区间和最值: 例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.

【解】 由图可以知道: 当 1.5x =-时,该函数取得最小值2-; 当3x =时,函数取得最大值为3; 函数的单调递增区间有2个:( 1.5,3)-和(5,6); 该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7) 二.求函数最值: 例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x = ,[]1,3x ∈. 【解】 (1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; []1,3x ∈上是单调减函数,所以当3x =时函数1()f x x =取得1. 函数()4(0)f x x mx m =-+>在(,0]-∞上的最小值(A ) ()A 4 ()B 4- ()C 与m 的取值有关 ()D 不存在 2. 函数()f x =的最小值是 0 ,最大值是 32 . 3. 求下列函数的最值:

高一数学函数经典习题及答案

函 数 练 习 题 班级 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,数m 的取值围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y =⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =-

6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y =⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;

相关文档
相关文档 最新文档