文档库 最新最全的文档下载
当前位置:文档库 › TI公司MS系列微控制器芯片

TI公司MS系列微控制器芯片

TI公司MS系列微控制器芯片
TI公司MS系列微控制器芯片

第1章TI公司MSP430系列微控制器芯片目标

通过本章的学习,应掌握以下知识

●按照所处理的信号,对电子线路的分类

●数字电路的特点

●常用数字集成电路器件的种类和特点

●微控制器(Microcontroller,MCU)的结构

●德州仪器(TI)公司MSP430系列微控制器(MCU)的特点

●MSP430微控制器的最小系统电路

●MSP430微控制器的内部资源

●不同型号MSP430微控制器芯片的区别

引言

电子线路的功用是完成信号的产生、传输和处理。按照信号的特点,电子线路可以被划分为处理连续信号的模拟电路和处理离散信号的数字电路。相对于模拟电路,数字电路具有许多优点。首先,在数字系统中信号电压的准确值并不很重要,只要电压的变化不至于影响到对高、低电平的判定,这个变化就可以忽略不计,因此数字电路具有较好的抗干扰能力;其次,整个系统的准确度和精度容易保持一致,这是因为数字信号在处理过程中不会降低精度,而模拟信号在处理过程中会受到电路元器件参数的改变以及环境变化的影响;再者,数字信号存储方便、对它的处理过程容易通过编程来实现;最后,在许多情况下,完成同样功能的数字系统比相应的模拟系统便宜。

虽然数字电路相对于模拟电路具有上述的优点,但是自然界中信号的大多数是模拟信号,例如语音信号和图像信号,这就需要模拟电路对其进行处理。另外,在需要对带宽相当宽的信号,或者变化很快的信号,进行实时处理的场合,模拟电路则可能是唯一的解决方案。然而,对于数字电路具有足够速率执行信号处理任务的情况下,我们通常都会优先考虑采用数字电路来完成任务。

当前,常用的数字电路器件类型包括标准逻辑器件(例如74系列器件)、可编程逻辑器件(Programmable Logic Device,PLD)和微控制器(Microcontroller,MCU)。标准逻辑器件在集成度方面属于中小规模集成电路,它的种类包括各种逻辑门、触发器、译码器、多路选择器和计数器等芯片。这些器件的集成度较低,采用它们设计的数字系统需要较多的器件,这就使得电路连线复杂,系统的可靠性降低。标准逻辑器件芯片的功能确定,修改系统设计必须通过对电路重新设计和组装来实现,这就使得设计灵活性低。标准逻辑

器件目前在数字电路设计中已不再广泛使用,但是它们对于研究数字系统基本构成模块的工作原理方面具有重要的意义,例如大学里的《数字电路逻辑设计》课程中目前仍然主要使用这些器件进行讲授。

使用与门、或门和非门能够实现任意组合电路,再添加上触发器就能够实现任意时序电路。可编程逻辑器件(PLD)可以认为是对标准逻辑器件的直接升级。一块可编程逻辑器件芯片内部集成了非常多的逻辑门和触发器,使得单一芯片具有实现一个应用系统所需要的逻辑资源,从而减少了应用系统中使用器件的数量,提高了系统的可靠性。可编程逻辑器件芯片内部逻辑资源的连接不需要手工进行,用户只需要使用计算机编写设计文件,然后完成设计文件到目标芯片的传输。可编程逻辑器件在下载设计文件以后,在它的内部将形成对应的硬件电路。需要更改设计要求时,只需重新编写设计文件,再次向芯片下载设计文件。不需要更改,或者较少需要更改电路连线,从而使得设计灵活性得到提高。

微控制器(MCU),也被称为单片机,可以被认为在其内部集成了许多完成算术运算和逻辑运算等功能的逻辑电路模块。微控制器的每一条汇编指令对应一个逻辑电路模块。微控制器依靠所运行的程序来完成工作。这个程序是设计者对微控制器的一组完整的指令,指令告诉微控制器其操作的每一步应该去调用什么逻辑电路模块,以及如何调用这个逻辑电路模块。这些指令以二进制代码的形式存储在存储器中,微控制器从存储器中一次读取一条指令代码,并完成由指令代码指定的操作。

通过编写设计文件,或者程序,可以在可编程逻辑器件内部产生希望的硬件电路,或者控制微控制器完成不同的工作,这个特点使得设计灵活性得到提高。当需要修改系统设计时,设计者只需要改写设计文件,或者程序,不需要或者较少需要修改电路连线。

微控制器一次只能执行一条指令,因此它的主要局限性是工作速度。采用硬件方案设计的数字系统总是比软件方案设计的数字系统的工作速度快。可编程逻辑器件在下载设计文件以后,在它的内部将形成对应的硬件电路,这些电路是可以同时工作的。例如向2个数码管传送显示代码,这时可以同时进行。在微控制器中,向2个数码管传送显示代码的工作只能是逐个传送。可编程逻辑器件内部电路模块中信号处理的时间只来源于硬件电路产生的时间延迟,不存在指令读取和执行产生的时间延迟。上述工作特点使得可编程逻辑器件的工作速度比微控制器芯片快。

可编程逻辑器件的开发设计语言有许多种,其中VHDL和Verilog HDL这两种硬件描述语言已经获得广泛的应用,并且成为国际电气与电子工程师协会(The Institute of Electrical and Electronics Engineers,IEEE)的标准。不过这两种硬件描述语言现在并没有得到可编程逻辑器件开发软件的全面支持,例如Altera公司的QuartusⅡ可编程逻辑器件开发软件不支持浮点类型数据、不支持乘法和除法算术运算等。这些不足限制了可编程逻辑器件的应用。不支持浮点类型数据减小了所处理信号的动态范围,不支持乘除法算术运算使得一些信号处理功能不容易实现。在这些方面,微控制器开发中大量使用的C 语言具有明显的优势。

1.1MSP430系列微控制器

德州仪器(TEXAS INSTRUMENTS,TI)公司生产的MSP430TM系列微控制器(MCU)是一种基于精简指令集处理器(Reduced Instruction Set Computing,RISC)的16位混合信号处理器。芯片内部集成有模拟/数字转换器(Analog-to-Digital Converter,ADC)和数字/模拟信号转换器(Digital-to-Analog Converter,DAC),这就使得它不仅能够接收和输

出数字信号,而且也能够接收和输出模拟信号,因此称作为混合信号处理器。MSP430系列微控制器的组成框图如图1.1所示。

图1.1 MSP430系列微控制器的组成框图

MSP430系列微控制器中的CPU模块,图1.1中的“RISC CPU 16-Bit”模块,通过存储器地址总线(Memory Address Bus,MAB)和存储器数据总线(Memory Data Bus,MDB)与程序存储模块、数据存储模块以及各种外部设备模块连接起来,并采用统一的CPU指令和寻址模式。

如果采用汇编语言编程,开发者需要了解CPU内部的寄存器、各种寻址模式以及汇编指令等内容;如果采用C语言编程,这些内容不需要过多地关注,寄存器的使用和寻址模式的选择将由编译系统处理。本书采用C语言实现应用系统的开发。

图1.1中的“Flash/FRAM”模块用作程序存储器、“RAM”模块用作数据存储器、“Port”模块表示芯片的输入/输出管脚。MSP430系列微控制器具有多种芯片型号、同一型号芯片还具有多种封装类型,共计400多款。在所有这些型号的芯片中,芯片内部程序存储器的存储容量从最小的0.5KB,到最大的256KB;数据存储器的存储容量从最小的128B,到最

大的18KB;输入/输出管脚数量从14个到113个。不同的芯片内部资源配置用来满足不同的用户在功能和成本等方面的不同应用需求。

数字外围模块包括LCD驱动器、定时/计数器、并行数字输入/输出端口和串行数字输入/输出端口等。模拟外围模块包括模拟/数字转换器、数字/模拟转换器、比较器、运算放大器等。注意,并不是每一种MSP430微控制器芯片都能提供所有这些外围模块的功能,使用者需要根据应用系统的需求来选择合适的芯片型号。

监视定时器,俗称看门狗“Watchdog”,用来监视微控制器的工作状态。当出现程序运行异常的情况,它将强制系统复位。

模块“JTAG/Debug”用来支持用户程序的下载和调试。JTAG接口建立开发使用的计算机与MSP430微控制器芯片的联系。MSP430系列微控制器的所有型号芯片都支持通过JTAG 接口对程序存储器编程。在MSP430系列微控制器的内部包含在片调试逻辑,该电路既支持高精度的模拟调试,也支持全速工作调试。也有一些型号的芯片还支持被称作“Spy-Bi-Wire”的2线接口,这种接口同样支持用户程序的下载和调试。

MSP430系列微控制器的最大特点为低功耗。为降低功耗,专门为芯片设计了灵活的时钟系统、多种低功耗工作模式,即时唤醒以及智能化外部设备模块。

时钟模块“Clock System”用来产生MSP430系列微控制器工作所需要的各种时钟信号。该模块可以在多个时钟源的支持下工作,既有需要添加外部晶体获得高频率稳定性的时钟源,也有不需要添加任何外部器件的内部时钟源。时钟模块的工作状态和工作频率能够由

用户程序控制,这样使得微控制器在等待状态时可以采用低频率的时钟信号,甚至关闭时钟电路来降低系统的能耗;在工作状态时则采用高频率的时钟信号,加快信号的处理速度。用户程序能够选择时钟源,并且控制时钟电路的工作状态以及时钟频率,这是MSP430系列微控制器的特色之一。

当前,德州仪器(TI)公司生产的MSP430系列微控制器包括以下子系列。指令执行速度达8MIPS的MSP430x1xx子系列、指令执行速度达16MIPS的MSP430x2xx子系列、能够直接驱动LCD显示器的MSP430x4xx子系列、指令执行速度达25MIPS的MSP430x5xx子系列以及指令执行速度达25MIPS且能够直接驱动LCD显示器的MSP430x6xx子系列。上述这些子系列共包括了数百种具有不同逻辑资源和封装类型的芯片,读者可以在德州仪器(TI)公司的网站,https://www.wendangku.net/doc/d815407071.html,,找到相关的信息。

本书专门介绍MSP430x2xx子系列微控制器的使用。MSP430x2xx子系列微控制器还可以再划分为MSP430G2xx、MSP430F2xx和MSP430AFE2xx分系列。本章的下面部分分别对MSP430G2231和MSP430F2619这2种型号的芯片进行介绍。硬件是软件开发的基础,硬件也是软件的控制对象,只有了解硬件情况才能为应用系统选择合适型号的芯片,并顺利地完成软件开发。

芯片MSP430G2231是德州仪器(TI)公司提供给高校的LaunchPad(MSP-ESP430G2)开发套件中支持的多种芯片之一,该开发套件售价仅$4.30。另外,MSP430G2231芯片具有双列直插类型封装,便于在面包板上组装应用电路。组装自己的应用电路对于初学者非常重要,即使微控制器是利用编写程序实现电路功能,但是硬件是软件的基础,也是软件的控制对象。只有对硬件电路具有深入的了解,才能编写出好的程序。组装电路是了解硬件电

路的一个有效方法。MSP430G2xx系列芯片的一个缺陷是不支持外部高谐振频率晶体的时钟源,它仅支持32.768kHz的时钟晶振。芯片MSP430F2619支持最高达16MHz频率的外部晶体时钟源,当然也支持不需要添加任何外部器件的内部时钟源。另外,芯片MSP430F2619内部具有比芯片MSP430G2231种类更多的外围模块和数量更多的逻辑资源。本书后面对于MSP430系列微控制器各个模块的使用介绍将主要基于芯片MSP430G2231进行,在介绍芯片MSP430G2231不具备的模块时,即芯片MSP430F2619内部具有的外围模块时将特别指出。

1.2MSP430G2231芯片

14管脚双列直插类型封装的MSP430G2231芯片管脚排列图如图1.2所示。

图1.2 MSP430G2231芯片管脚排列图

MSP430G2231芯片具有双列直插类型封装,这点对于初学者非常方便,因为双列直插类型封装便于在面包板上组装应用电路。能够观察到自己完成设计、组装电路的工作情况,将使设计者立刻就能体会到成功的喜悦,增强学习的兴趣。对所从事的工作具有兴趣是做好工作的一个重要条件。同时,理论联系实践也是一种非常重要的工作和学习方法。

基于MSP430G2231芯片的最小系统电路图如图1.3所示。

1.8~3.6V 1.8~3.6V

U1

图1.3 MSP430G2231芯片的最小系统电路图

MSP430G2231芯片具有14个管脚。管脚DVCC(管脚1)为电源管脚,管脚DVSS(管脚14)为接地管脚。电源电压范围为 1.8~3.6V。使用面包板组装应用电路时,可以很方便地就近连接电源和接地,因此在电路图中出现多个电源接线端和接地接线端,这些端点读者可以自己完成与电源和接地的连接。MSP430G2231芯片电源管脚(管脚1)旁边放置的2个电容,C2和C3,用于电源的滤波。

MSP430G2231芯片的管脚10为复位管脚(RST)。复位的目的是使得微控制器从一种约定的工作状态下开始工作。MSP430系列芯片在接电时,只要复位管脚为逻辑低电平,则系统将进入复位状态。图1.3给出了一种非常简单的复位电路,仅由1个电阻和1个电容组成,R1和C1。当系统加电时,由于电容C1上的电压不能突变,复位管脚呈现低电平,使得微控制器进入复位状态。随着电容C1充电,复位管脚的电位逐渐上升,当达到逻辑高对应的电位值,微控制器将退出复位状态,进入正常工作状态。

MSP430G2231芯片的时钟模块“Clock System”能够在以下3种时钟源的驱动下工作,采用频率为32768Hz外部晶体谐振器的振荡器、频率约为12kHz的内部低功耗振荡器和内

部数字控制振荡器(Digitally Controlled Oscillator,DCO)。使用晶体振荡器需要在管脚XIN(管脚13)和管脚XOUT(管脚12)之间放置谐振频率为32768Hz的晶体谐振器,并且2个管脚再分别通过12pF的电容接地。使用内部低功耗振荡器和内部数字控制振荡器(DCO)则不需要添加任何外部器件,而且数字控制振荡器(DCO)的工作频率还可以通过用户程序进行调整。使用芯片内部时钟源的缺点是时钟频率的稳定度和精确度不如使用外部晶体谐振器的振荡器。图1.3所示电路使用芯片内部时钟源以简化电路组成。

MSP430系列芯片复位以后,时钟模块自动选择数字控制振荡器(DCO)作为时钟源,默认的时钟频率约为1MHz。推荐初学者使用芯片内部的数字控制振荡器(DCO),这样即减少了连线的数量,也避免了程序设计中对时钟模块的设置。

MSP430G2231芯片的功能方框图如图1.4所示。

图1.4 MSP430G2231芯片的功能方框图

图1.4不仅给出了MSP430G2231芯片包含的功能模块、功能模块之间的联系,而且给出了芯片的逻辑资源。系统时钟模块“Clock System”输出3种时钟信号,供CPU使用的MCLK、供芯片内部其它功能模块使用的SMCLK和ACLK。时钟信号SMCLK和ACLK可以通过软件设置为与芯片的管脚相连接,这样就可以通过测试获得使用芯片内部的数字控制振荡器(DCO)作为时钟源时,这些时钟信号的实际频率。

MSP430G2231芯片具有2kB的Flash程序存储器,128B的RAM数据存储器。前者用来存储用户程序,后者用来存储信号处理过程的中间结果。用户编写的程序必须在这些逻辑资源之内工作。

在模拟信号接口方面,MSP430G2231芯片只具有模拟/数字转换能力,不具有数字/模拟转换能力。芯片内部的模拟/数字转换器具有10位分辨率,具有8个独立的输入通道,每1个输入通道可以通过软件设置为与芯片的管脚相连接。

在数字信号接口方面,MSP430G2231芯片提供了并行和串行数字输入/输出端口。并行数字输入/输出端口包括具有8位的P1端口和具有2位的P2端口。串行数据接口能够工作在SPI,或者I2C工作模式。每种类型端口可以通过用户软件设置为与芯片的管脚相连接。

该芯片内部还包含1个具有捕获/比较功能的16位定时器、看门狗“Watchdog”等电路。MSP430G2231芯片的编程/调试电路即支持JTAG接口,也支持“Spy-Bi-Wire”2线接口。LaunchPad(MSP-ESP430G2)开发套件采用“Spy-Bi-Wire”2线接口。

图1.2所示的MSP430G2231芯片管脚排列图中每个管脚的功用如表1.1所示。除过电

源和接地管脚外,其它芯片管脚都是多用途管脚。例如管脚2,它能够用做并行数字输入/输出端口P1的管脚P1.0、定时器的外部计数信号输入管脚TA0CLK、MSP430G2231芯片时钟模块时钟信号ACLK输出管脚、模拟/数字转换器的0通道模拟电压输入管脚A0。芯片管脚具体用作为哪一种功用,需要在程序中进行相应的设置。

表1.1中列出的管脚功用需要结合后面的学习内容来逐渐掌握,但是需要有一些了解,因为硬件是软件开发的基础,硬件也是软件的控制对象,只有了解硬件情况才能顺利地完成软件开发。

表1.1 MSP430G2231芯片管脚功用表

13XIN:晶体谐振器连接管脚;

P2.6:并行输入/输出端口2的位6管脚;

TA0.1:定时器Timer_A的比较信号OUT1输出管脚。

14DVSS:芯片接地管脚。

1.3MSP430F2619芯片

德州仪器(TI)公司生产的64管脚PM包装形式的MSP430F2619芯片管脚排列图和功能方框图分别如图1.5和图1.6所示。

图1.5 MSP430F2619芯片管脚排列图

图1.6 MSP430F2619芯片功能方框图

MSP430G2231芯片具有双列直插式的封装形式、价格便宜,适合初学者使用,但是芯片内部的逻辑资源较少。MSP430F2619芯片只有表贴式的封装形式,必须为它专门设计印制电路板,连同芯片本身的价钱,使得使用成本较高,但是芯片内部具有丰富的逻辑资源。

MSP430F2619芯片采用2组供电管脚。第1组,DV

CC 和DV

SS

,为数字电路部分的供电管

脚。第2组,AV

CC 和AV

SS

,为模拟电路部分的供电管脚。分为两部分的目的为避免数字电路

的工作对模拟电路供电稳定性的影响。

系统时钟模块“Clock System”能够连接2种谐振晶体,一种可以采用具有较低的谐振频率,另一种采用具有较高的谐振频率。晶体的最高谐振频率达16MHz。高的时钟频率能够支持芯片快的信号处理速度。采用基于晶体谐振器的时钟信号源,比采用芯片内部的时钟信号源具有高得多的频率稳定度。

MSP430 F2619芯片具有120kB的Flash程序存储器,4kB的RAM数据存储器。

模拟信号接口方面,MSP430F2619芯片具有模拟/数字转换和数字/模拟转换能力。芯片内部的模拟/数字转换器具有12位分辨率,具有8个独立的通道,每1个通道可以通过软件设置为与芯片的管脚相连接。芯片内部的数字/模拟转换器也具有12位分辨率,具有2个独立的通道,每1个通道也是通过软件设置为与芯片的管脚相连接。

数字信号接口方面,MSP430F169芯片提供了并行和串行数字输入/输出端口。前者包括6个具有8位的端口,P1~P6端口;后者有2个,它们都能够工作在UART、SPI、或者I2C 工作模式。每种类型端口可以通过用户软件设置为与芯片的管脚相连接。

该芯片内部还包含2个具有捕获/比较功能的16位定时器、模拟电压比较器、看门狗“Watchdog”电路、硬件乘法器等电路。MSP430F2619芯片的编程/调试电路只支持JTAG 接口。LaunchPad(MSP-ESP430G2)开发套件采用“Spy-Bi-Wire”2线接口,因此不能采用这种开发套件实现MSP430F2619芯片的编程/调试。

MSP430 F2619芯片提供的这些多种类、大数量的逻辑资源使得它能够满足大量工程设计的需要。鉴于篇幅的限制,这里不给出图1.5所示的MSP430F2619芯片管脚排列图中每个管脚的功用描述,感兴趣的读者可以在TI公司的网站上找到相关的信息。图1.6所示的功能方框图中每个功能块的详细功能、技术指标以及使用方法将在后继章节中结合具体使用进行介绍。

1.4小结

德州仪器(TI)公司生产的MSP430系列微控制器(MCU)芯片内部集成有模拟/数字转换器(ADC)和数字/模拟信号转换器(DAC),这就使得它不仅能够接收和输出数字信号,而且也能够接收和输出模拟信号,因此称作为混合信号处理器。

MSP430系列微控制器的最大特点为节能,为此该系列芯片具有用户程序可控制的时钟电路以及系统工作模式。为了满足不同的应用需求,TI公司提供了多种型号的芯片,这些芯片具有不同的价格、不同的功能模块组成、不同的逻辑资源以及不同的封装形式。

电子设计常用芯片

741 运算放大器 2063A JRC杜比降噪 20730 双功放 24C01AIPB21 存储器 27256 256K-EPROM 27512 512K-EPROM 2SK212 显示屏照明 3132V 32V三端稳压 3415D 双运放 3782M 音频功放 4013 双D触发器 4017 十进制计数器/脉冲分配器4021 游戏机手柄 4046 锁相环电路 4067 16通道模拟多路开关 4069 游戏机手柄 4093 四2输入施密特触发器 4098 41256 动态存储器 52432-01 可编程延时电路 56A245 开关电源 5G0401 声控IC 5G673 八位触摸互锁开关 5G673 触摸调光 5G673 电子开关 6116 静态RAM 6164 静态RAM 65840 单片数码卡拉OK变调处理器7107 数字万用表A/D转换器74123 单稳多谐振荡器 74164 移位寄存器 7474 双D触发器 7493 16分频计数器 74HC04 六反相器 74HC157 微机接口 74HC4053 74HCU04 六反相器 74LS00 与门 74LS00 4*2与非门 74LS00 四2与非门 74LS00 与门 74LS04 6*1非门 74LS08 4*2与门 74LS11 三与门 74LS123 双单稳多谐振荡器 74LS123 双单稳多谐振荡器 74LS138 三~八译码器 74LS142 十进制计数器/脉冲分配器74LS154 4-16线译码器 74LS157 四与或门74LS161 四2计数器 74LS161 十六进制同步计数器 74LS161 四~二计数器 74LS164 数码管驱动 74LS18 射频调制器 74LS193 加/减计数器 74LS193 四2进制计数器 74LS194 双向移位寄存器 74LS27 4*2或非门 74LS32 四或门 74LS32 4*2或门 74LS374 八位D触发器 74LS374 三态同相八D触发器 74LS377 74LS48 7位LED驱动 74LS73 双J-K触发器 74LS74 双D触发器 74LS85 四位比较器 74LS90 计数器 75140 线路接收器 75141 线路接收器 75142A 线路接收器 75143A 线路接收器 7555 时钟发生器 79MG 四端负稳压器 8051 空调单片机 8338 六反相器 A1011 降噪 ACVP2205-26 梳状滤波视频处理 AD536 专用运放 AD558 双极型8位D-A(含基准电压)变换器AD558 双极型8位D-A(含基准电压)变换器AD574A 12比特A/D变换器 AD650 AD670 8比特A/D变换器(单电源)1995s-2、15 AD7523 D-A变换器1994x-125 AD7524 D-A变换器1994x-126 AD7533 模数转换器1994x-141 AD7533 模数转换器1995s-184 ADC0804 8比特A/D变换器1995s-2、20 ADC0809 8CH8比特A/D 1995s-2、23 ADC0833 A/D变换4路转换器1995s-2 ADC80 12比特A/D变换器1995s-2、8 ADC84/85 高速12比特A/D变换器1995s-2 AG101 手掌游戏机1993x-155 AM6081 双极型8位D-A变换器1994x-127 AMP1200 音频功放皇后1993s-104 AN115 立体声解码1991-135 AN2510S 摄象机寻象器1994x-109 AN2661NK 影碟机视频1995s-45

基于AD620芯片的运算放大器

基于AD620芯片的运算放大器 一、设计要求及目的 设计一个简单的运算放大电路,信号输入有效频率2KHz以下,放大倍数250-300之间。为抑制随机噪声,信号放大后再经过一个简单一阶RC低通滤波器,在不损坏有效信号的同时,最大限度滤除噪声。 二、放大电路介绍 放大电路是指增加电信号幅度或功率的电子电路。应用放大电路实现放大的装置称为。它的核心是电子,如、晶体管等。为了实现放大,必须给放大器提供能量。常用的能源是,但有的放大器也利用作为泵浦源。放大作用的实质是把电源的能量转移给。输入信号的作用是控制这种转移,使放大器输出信号的变化重复或反映输入信号的变化。现代中,电信号的产生、发送、接收、变换和处理,几乎都以放大电路为基础。20世纪初,真空的发明和电的实现,标志着电子学发展到一个新的阶段。2040年代末的问世,特别是60年代的问世,加速了电子放大器以至电子系统小型化和微型化的进程。 现代使用最广的是以晶体管(或场效应晶体管)放大电路为基础的集成放大器。大功率放大以及高频、微波的低噪声放大,常用分立晶体管放大器。高频和微波的大功率放大主要靠特殊类型的真空管,如功率三极管或四极管、、速调管、行波管以及正交场放大管等。 三、AD620芯片介绍 AD620是一款低成本、高精度仪表放大器,仅需要一个外部电阻来设置增益,增益范围为1至10000。此外,AD620引脚图采用8引脚SOIC和DIP封装,尺寸小于分立式设计,并且功耗较低(最大电源电流仅1.3 mA),因此非常适合电

池供电的便携式(或远程)应用。AD620具有高精度(最大非线性度40 ppm)、低失调电压(最大50 μV)和低失调漂移(最大0.6 μV/°C)特性,是和传感器接口等精密数据采集系统的理想之选。它还具有低噪声、低输入偏置电流和低功耗特性,使之非常适合ECG和无创血压监测仪等医疗应用。 由于其输入级采用Superβeta处理,因此可以实现最大1.0 nA的低输入偏置电流。AD620在1 kHz时具有9 nV/√Hz的低输入电压噪声,在0.1 Hz至10 Hz 内的噪声为0.28μV峰峰值,输入电流噪声为0.1 pA/√Hz,因而作为前置放大器使用效果很好。同时,AD620的0.01%建立时间为15μs,非常适合多路复用应用;而且成本很低,足以实现每通道一个仪表放大器的设计。 AD620 由传统的三运算放大器发展而成, 但一些主要性能却优于三运算放大器构成的仪表放大器的设计, 如电源范围宽(±2. 3~±18 V ) , 设计体积小, 功耗非常低(最大供电电流仅1. 3 mA ) , 因而适用于低电压、低功耗的应用场合。AD620 的单片结构和激光晶体调整, 允许电路元件紧密匹配和跟踪, 从而保证电路固有的高性能。AD620 为三运放集成的仪表放大器结构, 为保护增益控制的高精度, 其输入端的三极管提供简单的差分双极输入, 并采用β工艺获得更低的输入偏置电流, 通过输入级内部运放的反馈, 保持输入三极管的电流恒定, 并使输入电压加到外部增益控制电阻RG上。AD620 的两个内部增益电阻为 24.7KΩ, 因而增益方程式为 G =49.4 KΩ/RG + 1 对于所需的增益, 则外部控制电阻值为 RG =49.4/(G - 1)kΩ AD620的引脚图如图一所示:

常见液晶驱动芯片详解

因此各位朋友在选择LCD液晶模块的时候,在考虑到串行,还是并行的方式时,可根据其驱动控制IC的型号来判别,当然你还需要看你选择的LCD模块引脚定义是固定支持并行,还是可选择并行或串行的方式。 一、字符型LCD驱动控制IC 市场上通用的8×1、8×2、16×1、16×2、16×4、20×2、20×4、40×4等字符型LCD,基本上都采用的KS0066作为LCD的驱动控制器 二、图形点阵型LCD驱动控制IC 1、点阵数122×32--SED1520 2、点阵数128×64 (1)ST7920/ST7921,支持串行或并行数据操作方式,内置中文汉字库 (2)KS0108,只支持并行数据操作方式,这个也是最通用的12864点阵液晶的驱动控制IC (3)ST7565P,支持串行或并行数据操作方式 (4)S6B0724,支持串行或并行数据操作方式 (5)T6963C,只支持并行数据操作方式 3、其他点阵数如192×6 4、240×64、320×64、240×128的一般都是采用T6963c驱动控制芯片 4、点阵数320×240,通用的采用RA8835驱动控制IC 这里列举的只是一些常用的,当然还有其他LCD驱动控制IC,在写LCD驱动时要清楚是哪个型号的IC,再到网上去寻找对应的IC数据手册吧。后面我将慢慢补上其它一些常见的. 三 12864液晶的奥秘 CD1601/1602和LCD12864都是通常使用的液晶,有人以为12864是一个统一的编号,主要是12864的液晶驱动都是一样的,其实12864只是表示液晶的点阵是128*64点阵,而实际的12864有带字库的,也有不带字库的;有5V电压的,也有~5V(内置升压电路);归根到底的区别在于驱动控制芯片,常用的控制芯片有ST7920、KS0108、T6963C等等。 下面介绍比较常用的四种 (1)ST7920类这种控制器带中文字库,为用户免除了编制字库的麻烦,该控制器的液晶还支持画图方式。该类液晶支持68时序8位和4位并口以及串口。 (2)KS0108类这种控制器指令简单,不带字库。支持68时序8位并口。 (3)T6963C类这种控制器功能强大,带西文字库。有文本和图形两种显示方式。有文本和图形两个图层,并且支持两个图层的叠加显示。支持80时序8位并口。 (4)COG类常见的控制器有S6B0724和ST7565,这两个控制器指令兼容。支持68时序8位并口,80时序8位并口和串口。COG类液晶的特点是结构轻便,成本低。 各种控制器的接口定义: 引脚定义

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

常用数字芯片型号解读

常用数字芯片型号解读 逻辑电平有:TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVDS、GTL、BTL、ETL、GTLP;RS232、RS422、RS485等。 图1-1:常用逻辑系列器件 TTL:Transistor-Transistor Logic CMOS:Complementary Metal Oxide Semicondutor LVTTL:Low Voltage TTL LVCMOS:Low Voltage CMOS ECL:Emitter Coupled Logic, PECL:Pseudo/Positive Emitter Coupled Logic LVDS:Low Voltage Differential Signaling GTL:Gunning Transceiver Logic BTL:Backplane Transceiver Logic ETL:enhanced transceiver logic GTLP:Gunning Transceiver Logic Plus TI的逻辑器件系列有:74、74HC、74AC、74LVC、74LVT等 S - Schottky Logic LS - Low-Power Schottky Logic CD4000 - CMOS Logic 4000 AS - Advanced Schottky Logic 74F - Fast Logic ALS - Advanced Low-Power Schottky Logic HC/HCT - High-Speed CMOS Logic BCT - BiCMOS Technology AC/ACT - Advanced CMOS Logic FCT - Fast CMOS Technology ABT - Advanced BiCMOS Technology LVT - Low-Voltage BiCMOS Technology LVC - Low Voltage CMOS Technology LV - Low-Voltage CBT - Crossbar Technology ALVC - Advanced Low-Voltage CMOS Technology AHC/AHCT - Advanced High-Speed CMOS CBTLV - Low-Voltage Crossbar Technology ALVT - Advanced Low-Voltage BiCMOS Technology AVC - Advanced Very-Low-Voltage CMOS Logic TTL器件和CMOS器件的逻辑电平 :逻辑电平的一些概念 要了解逻辑电平的内容,首先要知道以下几个概念的含义: 1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。 2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。 3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的

(完整版)TI常用运放芯片型号

CA3130 高输入阻抗运算放大器Intersil[DA TA] CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器MC14573 ICL7650 斩波稳零放大器 LF347(NS[DATA])带宽四运算放大器KA347 LF351 BI-FET单运算放大器NS[DA TA] LF353 BI-FET双运算放大器NS[DA TA] LF356 BI-FET单运算放大器NS[DA TA] LF357 BI-FET单运算放大器NS[DA TA] LF398 采样保持放大器NS[DATA] LF411 BI-FET单运算放大器NS[DATA] LF412 BI-FET双运放大器NS[DA TA] LM124 低功耗四运算放大器( 军用档 ) NS[DATA]/TI[DATA] LM1458 双运算放大器NS[DATA] LM148 四运算放大器NS[DATA] LM224J 低功耗四运算放大器(工业档 ) NS[DATA]/TI[DA TA] LM2902 四运算放大器NS[DATA]/TI[DATA] LM2904 双运放大器NS[DATA]/TI[DA TA] LM301 运算放大器 NS[DATA] LM308 运算放大器 NS[DATA] LM308H运算放大器(金属封装)NS[DATA] LM318 高速运算放大器NS[DATA] LM324(NS[DATA]) 四运算放大器HA17324,/LM324N(TI) LM348 四运算放大器NS[DATA] LM358 NS[DATA]通用型双运算放大器HA17358/LM358P(TI) LM380 音频功率放大器NS[DATA] LM386-1 NS[DATA]音频放大器NJM386D,UTC386 LM386-3 音频放大器NS[DATA] LM386-4 音频放大器NS[DATA] LM3886 音频大功率放大器NS[DATA] LM3900 四运算放大器 LM725 高精度运算放大器NS[DATA] LM733 带宽运算放大器 LM741 NS[DATA]通用型运算放大器HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器TI[DATA] NE5534 高速低噪声单运算放大器TI[DATA] NE592 视频放大器 OP07-CP 精密运算放大器TI[DA TA] OP07-DP 精密运算放大器TI[DATA] TBA820M小功率音频放大器ST[DATA] TL061 BI-FET单运算放大器 TI[DATA] TL062 BI-FET双运算放大器TI[DATA] TL064 BI-FET四运算放大器TI[DATA]

TI常用运放芯片型精编版

T I常用运放芯片型公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

CA3130高输入阻抗运算放大器Intersil[DATA] CA3140?高输入阻抗运算放大器CD4573四可编程运算放大器MC14573 ICL7650?斩波稳零放大器 LF347(NS[DATA])带宽四运算放大器KA347 LF351BI-FET单运算放大器NS[DATA] LF353BI-FET双运算放大器NS[DATA] LF356BI-FET单运算放大器NS[DATA] LF357BI-FET单运算放大器NS[DATA] LF398采样保持放大器NS[DATA] LF411BI-FET单运算放大器NS[DATA] LF412BI-FET双运放大器NS[DATA] LM124低功耗四运算放大器(军用档)NS[DATA]/TI[DATA] LM1458双运算放大器NS[DATA] LM148四运算放大器NS[DATA] LM224J低功耗四运算放大器(工业档)NS[DATA]/TI[DATA] LM2902四运算放大器NS[DATA]/TI[DATA] LM2904双运放大器NS[DATA]/TI[DATA] LM301运算放大器NS[DATA] LM308运算放大器NS[DATA] LM308H运算放大器(金属封装)NS[DATA] LM318高速运算放大器NS[DATA] LM324(NS[DATA])四运算放大器HA17324,/LM324N(TI) LM348四运算放大器NS[DATA] LM358NS[DATA]通用型双运算放大器HA17358/LM358P(TI) LM380音频功率放大器NS[DATA] LM386-1NS[DATA]音频放大器NJM386D,UTC386 LM386-3音频放大器NS[DATA] LM386-4音频放大器NS[DATA] LM3886音频大功率放大器NS[DATA] LM3900?四运算放大器 LM725高精度运算放大器NS[DATA] LM733?带宽运算放大器 LM741NS[DATA]通用型运算放大器HA17741 MC34119?小功率音频放大器 NE5532高速低噪声双运算放大器TI[DATA] NE5534高速低噪声单运算放大器TI[DATA] NE592?视频放大器 OP07-CP精密运算放大器TI[DATA] OP07-DP精密运算放大器TI[DATA] TBA820M小功率音频放大器ST[DATA] TL061BI-FET单运算放大器TI[DATA] TL062BI-FET双运算放大器TI[DATA] TL064BI-FET四运算放大器TI[DATA] TL072BI-FET双运算放大器TI[DATA]

在各个领域中常用芯片汇总(2)(精)

在各个领域中常用芯片汇总 1. 音频pcm编码DA转换芯片cirrus logic的cs4344,cs4334,4334是老封装,据说已经停产,4344封装比较小,非常好用。还有菲利谱的8211等。 2. 音频放大芯片4558,833,此二芯片都是双运放。为什么不用324等运放个人觉得应该是对音频的频率响应比较好。 3. 74HC244和245,由于244是单向a=b的所以只是单向驱动。而245是用于数据总线等双向驱动选择。同时245的封装走线非常适合数据总线,它按照顺序d7-d0。 4. 373和374,地址锁存器,一个电平触发,一个沿触发。373用在单片机p0地址锁存,当然是扩展外部ram的时候用到62256。374有时候也用在锁数码管内容显示。 5. max232和max202,有些为了节约成本就用max202,主要是驱动能力的限制。 6. 网络接口变压器。需要注意差分信号的等长和尽量短的规则。 7. amd29系列的flash,有bottom型和top型,主要区别是loader区域设置在哪里?bottom型的在开始地址空间,top型号的在末尾地址空间,我感觉有点反,但实际就是这么命名的。 8. 164,它是一个串并转换芯片,可以把串行信号变为并行信号,控制数码管显示可以用到。 9. sdram,ddrram,在设计时候通常会在数据地址总线上加22,33的电阻,据说是为了阻抗匹配,对于这点我理论基础学到过,但实际上没什么深刻理解。 10. 网卡控制芯片ax88796,rtl8019as,dm9000ae当然这些都是用在isa总线上的。 11. 24位AD:CS5532,LPC2413效果还可以 12. 仪表运放:ITL114,不过据说功耗有点大 13. 音频功放:一般用LM368 14. 音量控制IC. PT2257/9. 15. PCM双向解/编码ADC/DAC CW6691.

TI 常用运放芯片型号

CA3130?高输入阻抗运算放大器?Intersil[DA TA] CA3140?高输入阻抗运算放大器 CD4573?四可编程运算放大器?MC14573 ICL7650?斩波稳零放大器 LF347(NS[DA TA])?带宽四运算放大器?KA347 LF351?BI-FET单运算放大器?NS[DA TA] LF353?BI-FET双运算放大器?NS[DA TA] LF356?BI-FET单运算放大器?NS[DA TA] LF357?BI-FET单运算放大器?NS[DA TA] LF398?采样保持放大器?NS[DA TA] LF411?BI-FET单运算放大器?NS[DA TA] LF412?BI-FET双运放大器?NS[DATA] LM124?低功耗四运算放大器(军用档)?NS[DA TA]/TI[DATA] LM1458?双运算放大器?NS[DA TA] LM148?四运算放大器?NS[DA TA] LM224J?低功耗四运算放大器(工业档)?NS[DA TA]/TI[DATA] LM2902?四运算放大器?NS[DA TA]/TI[DA TA] LM2904?双运放大器?NS[DA TA]/TI[DA TA] LM301?运算放大器?NS[DA TA] LM308?运算放大器?NS[DA TA] LM308H?运算放大器(金属封装)?NS[DA TA] LM318?高速运算放大器?NS[DATA] LM324(NS[DA TA])?四运算放大器?HA17324,/LM324N(TI) LM348?四运算放大器?NS[DA TA] LM358?NS[DA TA]?通用型双运算放大器?HA17358/LM358P(TI) LM380?音频功率放大器?NS[DATA] LM386-1?NS[DA TA]?音频放大器?NJM386D,UTC386 LM386-3?音频放大器?NS[DA TA] LM386-4?音频放大器?NS[DA TA] LM3886?音频大功率放大器?NS[DA TA] LM3900?四运算放大器 LM725?高精度运算放大器?NS[DATA] LM733?带宽运算放大器 LM741?NS[DA TA]?通用型运算放大器?HA17741 MC34119?小功率音频放大器 NE5532?高速低噪声双运算放大器?TI[DATA] NE5534?高速低噪声单运算放大器?TI[DATA] NE592?视频放大器 OP07-CP?精密运算放大器?TI[DATA] OP07-DP?精密运算放大器?TI[DATA] TBA820M?小功率音频放大器?ST[DA TA] TL061?BI-FET单运算放大器?TI[DA TA] TL062?BI-FET双运算放大器?TI[DA TA] TL064?BI-FET四运算放大器?TI[DA TA]

运放分类及选型

运放分类及选型 对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。 对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小) 运算放大器大体上可以分为如下几类: 1、 通用型运放 2、 高阻型运放 3、 低温漂型运放 4、 高速型运放 5、 低功耗型运放 6、 高压大功率型运放 1、 通用型运放 其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如741A μ,LM358(双运放),LM324及场效应管为输入级的LF356. 2、 高阻型运放 这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。 这类运放有LF356、LF355、LF347、CA3130、CA3140等 3、 低温漂型运放 在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。底温漂型运放就是为此设计的。 目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。 4、 高速型运放 在快速A/D 及D/A 以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG 一定要足够大。高速型运放的主要特点是具有高的转换速率和宽的频率响应。 常见的运放有LM318、175A μ等。其SR=50~70V/ms 5、 低功耗型运放 由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。 常用的低功耗运放有TL-022C ,TL-160C 等。 6、 高压大功率型运放 运放的输出电压主要受供电电源的限制。在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。 高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。D41运放的电源电压可达V 150±,791A μ运放的输出电流可达1A 。 Not e1:精密运放是指漂移和噪声非常低、增益和共模抑制比非常高的运放。这类运放的温度漂移一般低于C V ? /1μ Note 2:高输入阻抗运放是指采用结型场效应管或MOS 管做的输入级集成运放。它的一个附带特性是转换速度比较高。高输入阻抗运放应用十分广泛,如采样-保持电路、积分器、对数放大器、测量放大器、带通滤波器等。

常用芯片型号大全

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

74系列芯片型号集

7 4 系 列 芯 片 一 览 表 反相器驱动器LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门 LS02 LS32 LS51 LS64 LS65 异或门比较器LS86 译码器LS138 LS139 寄存器LS74 LS175 LS373 反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门 74LS04 ┌┴—┴—┴—┴—┴—┴—┴┐六非门(OC 门) 74LS05 _ │14 13 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│

Y = A )│六驱动器(OC高压输出) 74LS07 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ _ │14 13 12 11 10 9 8│ Y =A+C )│四总线三态门 74LS125 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ -1C 1A 1Y -2C 2A 2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴—┴—┴—┴—┴—┴—┴—┴—┴—┴┐ 8位总线驱动器 74LS245 │20 19 18 17 16 15 14 13 12 11│ )│ DIR=1 A=>B │ 1 2 3 4 5 6 7 8 9 10│ DIR=0 B=>A └┬—┬—┬—┬—┬—┬—┬—┬—┬—┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND 页首非门,驱动器与门,与非门或门,或非门异或门,比较器译码器寄存器 正逻辑与门,与非门: Vcc 4B 4A 4Y 3B 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = AB )│ 2输入四正与门 74LS08 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1B 1Y 2A 2B 2Y GND Vcc 4B 4A 4Y 3B 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ __ │14 13 12 11 10 9 8│ Y = AB )│ 2输入四正与非门 74LS00 │ 1 2 3 4 5 6 7│

常用运放芯片实物和引脚功能图_TL081-082-084运放引脚功能及贴片封装形式

常用运放芯片实物和引脚功能图_TL081/082/084运放引 脚功能及贴片封装形式 (1)运放芯片的3种型号序列(部分器件有此序列) 如TL081、TL082、TL084,分别为8引脚单运放;8引脚双运放;14引脚四运放集成器件。封装型式一般为塑封双列直插和贴片双列,环列封装形式比较少见。 图1 TL081/082/084运放引脚功能及贴片封装形式 而常见常用,仅为下述两种器件。 世界上有几个人?有两个人,男人和女人,不失为一个智慧的回答。常用运放芯片有几片,只有两片,8脚和14脚的双运放和四运放集成器件(8脚封装单运放器件和环列式封装器件应用较少),把此两种芯片引脚功能记住,检修中就不需要随时去查资料了。

图2 常用运放芯片实物和引脚功能图 如上图。其封装一般为塑封双列直插DIP8/DIP14和塑封贴片工艺封装SO8/SO14两种形式,随着电子线路板小型化精密化要求的提高,贴片元件的应用占据主流,直插式器件逐渐淡出人们的视野。但无论何种封装模式,其引脚功能、次序都是一样的,所以仅需记准8脚(双运放)和14脚(四运放)两种运放的引脚功能就够了。 (2)运放芯片的3种温度序列 任何一种集成IC器件,按应用温度范围不同,都可细分为3种器件,如LM358,实际上有LM158、LM258、LM358三种型号的产品,其引脚功能、内部结构、工作原理、供电电压等等都无差别,仅仅是应用温度范围差异甚大。 LM158 适应工作温度-50℃~125℃,军工用品(1类); LM258 适应工作温度-25℃~85℃,工业用品(2类); LM358 适应工作温度0℃~70℃,农用品(3类)。 单看参数,似乎LM258适用于山东地区,若用于东北地区,其参数有些不足。而LM358仅能适用于江南地区。而事实上并非如此,如低于2类品规格参数被淘汰到3类品的器件,可能是-24℃~84℃温度范围

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

芯片型号资料

型号内容 ---------------------------------------------------- 74ls00 2输入四与非门 74ls01 2输入四与非门(oc) 74ls02 2输入四或非门 74ls03 2输入四与非门(oc) 74ls04 六倒相器 74ls05 六倒相器(oc) 74ls06 六高压输出反相缓冲器/驱动器(oc,30v) 74ls07 六高压输出缓冲器/驱动器(oc,30v) 74ls08 2输入四与门 74ls09 2输入四与门(oc) 74ls10 3输入三与非门 74ls11 3输入三与门 74ls12 3输入三与非门(oc) 74ls13 4输入双与非门(斯密特触发) 74ls14 六倒相器(斯密特触发) 74ls15 3输入三与门(oc) 74ls16 六高压输出反相缓冲器/驱动器(oc,15v) 74ls17 六高压输出缓冲器/驱动器(oc,15v) 74ls18 4输入双与非门(斯密特触发) 74ls19 六倒相器(斯密特触发)

74ls20 4输入双与非门 74ls21 4输入双与门 74ls22 4输入双与非门(oc) 74ls23 双可扩展的输入或非门 74ls24 2输入四与非门(斯密特触发) 74ls25 4输入双或非门(有选通) 74ls26 2输入四高电平接口与非缓冲器(oc,15v) 74ls27 3输入三或非门 74ls28 2输入四或非缓冲器 74ls30 8输入与非门 74ls31 延迟电路 74ls32 2输入四或门 74ls33 2输入四或非缓冲器(集电极开路输出) 74ls34 六缓冲器 74ls35 六缓冲器(oc) 74ls36 2输入四或非门(有选通) 74ls37 2输入四与非缓冲器 74ls38 2输入四或非缓冲器(集电极开路输出) 74ls39 2输入四或非缓冲器(集电极开路输出) 74ls40 4输入双与非缓冲器 74ls41 bcd-十进制计数器 74ls42 4线-10线译码器(bcd输入)

放大器常用芯片

放大器常用芯片 ISO106高压,隔离缓冲放大器 ISO106同ISO102性能基本相同,主要区别要以下两点:①ISO106的连续隔离电压3500;②ISO106封装为40引脚DIP组件;主要引脚定义可参看ISO102。 LF147/347四JFET输入运算放大器 输入失调电压1mV(LF147)、5mV(LF347);温度漂移10μV/℃;偏置电流50pA增益带宽4MHz;转换速率13V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流7.2mA。±22V电源(LF147)、±18V电源(LF347);差模输入电压±38V(LF147)、±30V(LF347);共模输入电压±19V(LF147)、±15V(LF347);功耗500mW。 LF155/255/355JFET输入运算放大器 输入失调电压1mV(LF155/355)、3mV(LF255);温度漂移3μV/℃(LF155/355)、5μV/℃(LF255);偏置电流30pA增益带宽GB=2.5MHz;转换速率5V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流2mA。±40V电源(LF155/255)、±30V电源(LF355);共模输入电压±20V(LF155/255)、±16V(LF355);输入阻抗10^12Ω共模抑制比100dB;电压增益106dB。 LF353双JFET输入运算放大器 输入失调电压5mV;温度漂移10μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率13V/μs;噪声16nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。±18V电源;差模输入电压±30V;共模输入电压±15V;功耗500mW。 LF411/411A低失调、低漂移、JFET输朐怂惴糯笃?br> 输入失调电压800μV (LF411)、300μV(LF411A);温度漂移7μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率15V/μs;噪声23nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。±18V 电源(LF411)、±22V(LF411A);差模输入电压±30V(LF411)、±38V(LF411A); 共模输入电压±15V(LF411)、±19V(LF411A)。

常用的运放芯片

几款运放测试感受 NE5532:确实有点胆味,解析力一般,高频比较燥,低频比较糊且肥。 op275:和5532比,胆性还重一点,解析力、低频、音场更好一点,可以买贴片的来打磨声卡用(特别是创新的),可以改善硬冷的数码声。 EL2244:音色中性,音场比较宽,高频还可以,中频音乐味差,有人说解析力很高,其实是因为低频量感少,中频薄,高频显得突出而已。要用好比较难。 LT1057:两端延伸不错,速度、动态和解析力也挺好,就是属冷色调,放出的音乐好象有种不食人间烟火的味道,让你可以静静的听,却燃不起对音乐的那份激情。 AD827:延伸非常好,解析力高,高频华丽,中频纯厚,低频下潜和力度都不错,音场向前后左右拓展,有了凹凸感(这一点比其它运放强),速度快,动态好,感觉很大气,初换上此运放后确实有让人为之一振的感觉。但久听之下,也发现很多问题,1虽然三频段、音场很宽,气势足,大开大合,但总感觉结构有点松,不够紧溱,2人声部份一般,有时大动态时,人声被配乐声淹没3不够细腻,属于激情有余而柔情不足,4音乐味不够。不过很多的人喜欢这种风格。当然买两片来换换口味听还是可以的,按我的感觉,用在AV功放上看DVD大片应该很适合。 OPA2604:感觉象5532的升级版,各方面都有很大提高,解析力不错,音乐味更好,有胆味,声底属于较纯厚且有点刚性,综合素质很不错。 DY649:和2604比,解析力更好,高频部份纤细而又柔美且泛音丰富,声底没2604厚,很清澈、细致的感觉,音乐画面异常清晰,人声部份圆润通透、有种甜甜的感觉,人声(特别是女声)是它的强项。 DY639:整体性稍弱于649,但更具备胆机特性,胆味更浓。 DY669:和2604差不太多,纯厚的声音。 AD712:解析力很好,清晰而又没有音染的声音,一种很透明的感觉,声底细致,低频量稍少。属于典型的监听风格。不过可能很多人都不大喜欢这种纯净水的感觉,还是加点味精好,大概是我已前玩过音乐制作的原因吧,习惯了这种纯纯的监听味道,挺感兴趣。 AD712(金封):一时好奇,第二天又去弄了个金封的,和陶封比,感觉解析力更好,声底更纯厚点,低频弹跳感下潜度都有所加强,音场定位感不错。...刚开始听时感觉好象人声清淅度还不如陶封的,吃了一惊,后来反复比较才发现,因为陶封的高频比较冲、直白、声底薄,人声显得亮,所以有这种感觉,还是金封的耐听度更高。不过,不太推荐使用,因为现在金封的找不到拆机件了,只有买全新的,要75元,这个价位可以买到更好的型号了。

相关文档
相关文档 最新文档