文档库 最新最全的文档下载
当前位置:文档库 › LED发光二极管检测方法(精)

LED发光二极管检测方法(精)

LED发光二极管检测方法(精)
LED发光二极管检测方法(精)

1.发光二极管的特点

发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是:

(1)在低电压(1.5~2.5V)、小电流(5~30mA的条件下工作,即可获得足够高的亮度。

(2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。

(3)单色性好,常见颜色有红、绿、黄、橙等。

(4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。

(5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。

(6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。

(7)容易与数字集成电路匹配。

2.发光二极管的原理

发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式

L =K IFm

式中,K为比例系数,在小电流范围内(IF=1~10mA),m=1.3~1.5。当IF>10mA时,m=1,式(5.10.1)简化成

L =K IF

即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF 值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。

由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。

LED的输出光谱决定其发光颜色及光辐射纯度,也反映出半导体材料的特性。常见管芯材料有磷化镓(GaP)、砷化镓(GaAsP)、磷砷化镓(GaAlAs)、砷铝化镓(GaN)氮化镓可发蓝光。

3.使用注意事项

(1)管子极性不得接反,一般讲引线较长的为正极,引线较短的是负极。

(2)使用中各项参数不得超过规定极限值。正向电流IF不允许超过极限工作电流IFM值,并且随着环

境温度的升高,必须作降额使用。长期使用温度不宜超过75℃。

(3)焊接时间应尽量短,焊点不能在管脚根部。焊接时应使用镊子夹住管脚根部散热,宜用中性助焊剂(松香)或选用松香焊锡丝。

(4)严禁用有机溶液浸泡或清洗。

(5)LED的驱动电路必须加限流电阻,一般可取一百欧至几百欧,视电源电压而定。

(6)在发光亮度基本不变的情况下,采用脉冲电压驱动可以节省耗电。对于LED点阵显示器,采用扫描显示方式能大大降低整机功耗。

4.检查发光二极管的好坏

发光二极管具有单向导电性,使用R×10k档可测出其正、反向电阻。一般正向电阻应小于30kΩ,反向电阻应大于1MΩ。若正、反向电阻均为零,说明内部击穿短路。若正、反向电阻均为无穷大,证明内部开路。

常见发光二极管的种类及主要参数见表2。需要说明两点:第一,对于同种材料的管芯,由于所掺杂质的不同,发光颜色亦不同;第二,LED属于电流控制型器件,VF随IF而变化,所标VF值仅供参考。

此外,根据外形也可以区分发光二极管的正、负极。早期生产的管子带金属管座,上面罩一光学透镜,管侧有一突起,靠近突起的是正极。目前生产的LED,全部用透明或半透明的环氧树脂封装而成,并且利用环氧树脂构成透镜,起放大和聚焦作用,这类管子引线较长的为正极。

注意事项:

本书不推荐使用R×1k档测量LED的正、反向电阻。因为该档电池电压E<VF,在很多情况下列法使管子导通,这样测出的正向电阻就是无穷大,会给人以假象而造成误判断。R×10k档的电池电压E》VF,能使LED正向导通或反向截止,很容易区别出正、反向电阻的差异。

仅仅测量正、反向电阻,并不能检查其能否正常发光。由于发光二极管的正向电压VF一般1.5~2.5V,而万用表R×1或R×10档的电池电压为1.5 V,所以不能使管子正向导通并且发光。R×10k档的电池电压虽然较高,但因内阻太大,提供的正向电流很小,管子也不会正常发光。

采用双表法可以检查发光二极管的发光情况。最好选同一种型号的两块万用表,均拨一R×1或R×10档,按图1(a所示串联使用,以提供较高的正向电压。等效电路见(b图。

假定两块万用表均采用MF30型,并且均拨到R×1档。因为一块表的电池电压E=1.5V,欧姆中心值R0=25Ω,所以总电压和总电阻分别是

E′= 2E= 2×1.5=3V

R0′= 2R0= 2×25=50Ω

如果把它们看成一块新表,等效电路就简成(c)图。新表的满度电流是:

IM′= E′/ R0′=2E/ 2R0= E/ R0=IM

可见满度电流值并未改变。

发光二极管在使用时应加上限流电阻R,将正向电流IF限制在10~30mA为宜,避免功耗太记而损坏管子。一般典型正向电流可选10mA,IF的计算公式为

IF= E-VF/ R

(c)图中的R0′能起到限流作用,因此不必另接限流电阻。磷砷化镓发光二极管的正向压降较低,为1.7V左右。E′=3V将R0′=50Ω,可求出用双表法测量时的正向电流为

IF= E′-VF/ R0′=3-1.7/50=26 mA <30 mA

因此对管子没有危险。电路接通之后,管子能发出晶莹夺目的红光。

如果选用的两块万用表R×1档欧姆中心值不等,设分别为R01、R02,而两表R×1档的电池电压均为E(E=1.5V),则此时

IM′=2 E / R01+ R02

IF=2 E -VF / R01+ R02

实例:测量一只型号不明的发光二极管。

第一步,判定正、负极。用MF30型万用表的R×10k档测得正向电阻为26kΩ,反向电阻接近无穷大。测正向电阻时,黑表笔接的就是正极。

第二步,将两块MF30型万用表均拨至R×1档采用双表测量,被测管发出艳丽的红光。若把发光二极管的极性反接,加上反向电压时管子就不能发光。

然后将两块万用表拨于R×10档,管子发光暗淡。这是因为总电阻R0′=2×250=500Ω,提供的正向电流较小所致。此时

IF≈3-1.7/500=2.6 mA

注意事项:

(1)采用双表法必须先调整好两块万用表的欧姆零点。

(2)为了不损坏被测发光二极管,测量前应计算IM′值,若IM′≥50mA,需选择R×10档。例如,两块500型万用表R×1档串联后的总电阻R0=20Ω,IM′=IM=75 mA>50 mA。改用R×1档时IM′=7.5 mA,与典型正向电流IF=10mA就比较接近。

实际上发光二极管本身尚有1.5~2.5V压降,因此上述结果均留有一定余量。

假如不知道被测发光二极管的正向电压,也不清楚IM′值。建议先把两块表都拨到R×10档,若发光很暗,再改拨R×1档

常用电子元器件检测方法与技巧

常用电子元器件检测方法与技巧

民常用电子元器件检测方法与技巧元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供对考。 一、电阻器的检测方法与经验: 1固定 1固定电容器的检测 A检测10pF以下的小电容 因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。B检测10PF~001μF固定电容器是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要小。可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。C对于001μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。 2电解电容器的检测 A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。 B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是

物理师范论文——发光二极管伏安特性的研究概要

摘要 (2) 关键词 (2) 一引言 (3) 二实验原理 (4) 2.1发光二极管的基本工作原理 (4) 2.2伏安特性 (5) 三实验部分 (7) 3.1实验装置 (7) 3.2实验内容 (7) 3.2.1发光二极管伏安特性的测量 (7) 3.2.2. 开启电压法测波长由开启电压 (7) 3.2.3注意事项 (8) 3.3实验数据记录与处理 (8) 3.4实验结论 (14) 四结束语 (15) 五实验心得 (16) 参考文献 (17) 致谢 (18)

摘要 本文主要测量红光,白光,蓝光,绿光和黄光五种发光二极管的正向伏安特性可使我们深入理解发光二极管的发光原理、特性及其测量方法。通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。 Abstract In this paper, measure the red, white, blue, green and yellow, five light-emitting diode forward voltage characteristics allows us to understand the light-emitting diode light-emitting principle, characteristics and measurement methods. Usually abscissa voltage, current vertical axis, draw the curve of the components of current and voltage, known as the volt-ampere characteristic curve of the component. 关键词 发光二极管伏安特性电流源法 Keyword Light-emitting diodes Volt-ampere characteristic Current source method

肖特基二极管特性详解(经典资料)

肖特基二极管特性详解 我们所熟知的二极管被广泛应用于各种电路中,但我们真正了解二极管的某些特性关系吗?如二极管导通电压和反向漏电流与导通电流、环境温度存在什么样的关系等,让我们来扒扒很多数据手册中很少提起的特性关系和正确合理的选型。下面就随半导体设计制造小编一起来了解一下相关内容吧。 我们都知道在选择二极管时,主要看它的正向导通压降、反向耐压、反向漏电流等。但我们却很少知道其在不同电流、不同反向电压、不同环境温度下的关系是怎样的,在电路设计中知道这些关系对选择合适的二极管显得极为重要,尤其是在功率电路中。接下来我将通过型号为SM360A(肖特基管)的实测数据来与大家分享二极管鲜为人知的特性关系。 1、正向导通压降与导通电流的关系 在二极管两端加正向偏置电压时,其内部电场区域变窄,可以有较大的正向扩散电流通过PN结。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能真正导通。但二极管的导通压降是恒定不变的吗?它与正向扩散电流又存在什么样的关系?通过下图1的测试电路在常温下对型号为SM360A的二极管进行导通电流与导通压降的关系测试,可得到如图2所示的曲线关系:正向导通压降与导通电流成正比,其浮动压差为0.2V。从轻载导通电流到额定导通电流的压差虽仅为0.2V,但对于功率二极管来说它不仅影响效率也影响二极管的温升,所以在价格条件允许下,尽量选择导通压降小、额定工作电流较实际电流高一倍的二极管。 图1 二极管导通压降测试电路

图2 导通压降与导通电流关系 2、正向导通压降与环境的温度的关系 在我们开发产品的过程中,高低温环境对电子元器件的影响才是产品稳定工作的最大障碍。环境温度对绝大部分电子元器件的影响无疑是巨大的,二极管当然也不例外,在高低温环境下通过对SM360A的实测数据表1与图3的关系曲线可知道:二极管的导通压降与环境温度成反比。在环境温度为-45℃时虽导通压降最大,却不影响二极管的稳定性,但在环境温度为75℃时,外壳温度却已超过了数据手册给出的125℃,则该二极管在75℃时就必须降额使用。这也是为什么开关电源在某一个高温点需要降额使用的因素之一。 表1 导通压降与导通电流测试数据

光敏二极管的检测方法

1.电阻测量法用黑纸或黑布遮住光敏二极管的光信号接收窗口,然后用万用表R×1k档测量光敏二极管的正、反向电阻值。正常时,正向电阻值在10~20kΩ之间,反向电阻值为∞(无穷大)。若测得正、反向电阻值均很小或均为无穷大,则是该光敏二极管漏电或开路损坏。 再去掉黑纸或黑布,使光敏二极管的光信号接收窗口对准光源,然后观察其正、反向电阻值的变化。正常时,正、反向电阻值均应变小,阻值变化越大,说明该光敏二极管的灵敏度越高。 2.电压测量法将万用表置于1V直流电压档,黑表笔接光敏二极管的负极,红表笔接光敏二极管的正极、将光敏二极管的光信号接收窗口对准光源。正常时应有0.2~0.4V电压(其电压与光照强度成正比)。 3.电流测量法将万用表置于50μA或500μA电流档,红表笔接正极,黑表笔接负极,正常的光敏二极管在白炽灯光下,随着光照强度的增加,其电流从几微安增大至几百微安。 1.光敏二极管的简易判别方法 (1)电阻测量法 用万用表1k档,测正向电阻约10kΩ左右。在无光照情况下,反向电阻应为∞,反向电阻不是∞,说明漏电流大;有光照时,反向电阻应随光照增强而减小,阻值小至几kΩ或1kΩ以下。 (2)电压测量法 用万用表1V档(无1V档可用1.5V或3V档),红表笔接光敏二极管的“十”极,黑表笔接“-”极,在光照情况下,其电压应与光照度成比例,一般可达0.2~0.4V。 (3)短路电流测量法 用万用表50mA或500mA电流档,红表笔接光敏二极管的“十”极,黑表笔接“-”极,在白炽灯下(不能用日光灯),应随光照的增强,其电流随之增加。短路电流,可达数十mA~数百mA。 光敏二极管的主要特性参数 ①最高反向工作电压VRM:是指光敏二极管在无光照的条件下,反向漏电流不大于0.1μA时所能承受的最高反向电压值。 ②暗电流ID:是指光敏二极管在无光照及最高反向工作电压条件下的漏电流。暗电流越小,光

LED发光二极管检测方法

1.发光二极管的特点 ? 发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是: (1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式 L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。当IF>10mA时,m=1,式()简化成 ?????? L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。

实验二极管和三极管的识别与检测实验报告

实验 二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 机械万用表及其欧姆档的内部等效电路如图所示。 图中E 为表内电源,r 为等效内阻,I 为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100?R 或K R 1?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN 结,而PN 结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100?R 或K R 1?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN 型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP 型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

各种二极管、三极管检测方法

各种二极管、三极管检测方法 一、二极管的检测方法与经验 1 检测小功率晶体二极管 A 判别正、负电极 (a) 观察外壳上的的符号标记。通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。 (b) 观察外壳上的色点。在点接触二极管的外壳上,通常标有极性色点(白色或红色)。一般标有色点的一端即为正极。还有的二极管上标有色环,带色环的一端则为负极。 (c)以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一端则为负极。 B 检测最高工作频率fM。晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。另外,也可以用万用表R×1k 挡进行测试,一般正向电阻小于1K的多为高频管。 C 检测最高反向击穿电压VRM。对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。需要指出的是,最高反向工作电压并不是二极管的击穿电压。一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。 2 检测玻封硅高速开关二极管 检测硅高速开关二极管的方法与检测普通二极管的方法相同。不同的是,这种管子的正向电阻较大。用R×1k电阻挡测量,一般正向电阻值为5K~10K ,反向电阻值为无穷大。 3 检测快恢复、超快恢复二极管 用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。即先用R×1k挡检测一下其单向导电性,一般正向电阻为45K 左右,反向电阻为无穷大;再用R×1挡复测一次,一般正向电阻为几,反向电阻仍为无穷大。 4 检测双向触发二极管 A 将万用表置于R×1K挡,测双向触发二极管的正、反向电阻值都应为无穷大。若交换表笔进行测量,万用表指针向右摆动,说明被测管有漏电性故障。 将万用表置于相应的直流电压挡。测试电压由兆欧表提供。测试时,摇动兆欧表,万用表所指示的电压值即为被测管子的VBO值。然后调换被测管子的两个引脚,用同样的方法测出VBR值。最后将VBO与VBR进行比较,两者的绝对值之差越小,说明被测双向触发二极管的对称性越好。 5 瞬态电压抑制二极管(TVS)的检测 A 用万用表R×1K挡测量管子的好坏 对于单极型的TVS,按照测量普通二极管的方法,可测出其正、反向电阻,一般正向电阻为4KΩ左右,反向电阻为无穷大。 对于双向极型的TVS,任意调换红、黑表笔测量其两引脚间的电阻值均应为无穷大,否则,说明管子性能不良或已经损坏。 6 高频变阻二极管的检测 A 识别正、负极 高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二

(完整版)二极管共阴共阳极检测方法

LED数码有共阳和共阴两种,把这些LED发光二极管的正极接到一块(一般是拼成一个8字加一个小数点)而作为一个引脚,就叫共阳的,相反的,就叫共阴的,那么应用时这个脚就分别的接VCC和GND。再把多个这样的8字装在一起就成了多位的数码管了。 图1 多位数码管 LED数码有共阳和共阴两种,把些LED发光二极管的正极接到一块(一般拼成一个8字加一个小数点)而作为一个引脚,就叫共阳的,相反的,就叫共阴的,那么应用时这个脚就分别的接VCC和GND。再把多个这样的8字装在一起就成了多位的数码管了。 找公共共阴和公共共阳首先,我们找个电源(3到5伏)和1个1K(几百的也欧的也行)的电阻,VCC串接个电阻后和GND接在任意2个脚上,组合有很多,但总有一个LED会发光的找到一个就够了,,然后用GND不动,VCC(串电阻)逐个碰剩下的脚,如果有多个LED (一般是8个),那它就是共阴的了。

相反用VCC不动,GND逐个碰剩下的脚,如果有多个LED(一般是8个),那它就是共阳的了。 一、LED数码管的检测方法 1. 用二极管档检测 将数字万用表置于二极管档时,其开路电压为+2.8V。用此档测量LED数码管各引脚之间是否导通,可以识别该数码管是共阴极型还是共阳极型,并可判别各引脚所对应的笔段有无损坏。 (1)检测已知引脚排列的LED数码管 检测接线如图5-42所示。将数字万用表置于二极管档,黑表笔与数码管的h点(LED的共阴极)相接,然后用红表笔依次去触碰数码管的其他引脚,触到哪个引脚,哪个笔段就应发光。若触到某个引脚时,所对应的笔段不发光,则说明该笔段已经损坏。 (2)检测引脚排列不明的LED数码管 有些市售LED数码管不注明型号,也不提供引脚排列图。遇到这种情况,可使用数字万用表方便地检测出数码管的结构类型、引脚排列以及全笔段发光性能。 下面举一实例,说明测试方法。被测器件市一只彩色电视机用来显示频道的LED数码管,体积为20mm×10mm×5mm,字形尺寸为8mm×4.5mm,发光颜色为红色,采用双列直插式,共10个引脚。

发光二极管(LED)行业深度研究报告

发光二极管(LED)行业深度研究报告

目录 核心观点 (3) 一、LED概述 (4) (一)LED基本原理 (4) (二)LED的应用领域 (4) (三)LED产业链 (6) 二、全球LED产业状况 (9) (一)全球LED产业概况 (9) (三)全球LED价格走向 (10) (四)全球LED厂商分布 (12) (五)全球LED专利竞争 (16) (六)全球照明节能政策 (16) 三、国内LED产业状况 (19) (一)国内LED产业发展现状 (19) (二)国内LED产业地区分布 (20) (三)国内LED重点厂商情况 (21) (四)国内LED技术发展现状 (23) (五)国内LED未来产能预测 (24) 四、LED上游硅材料市场分析 (28) (一)全球硅材料生产供应情况 (28) (二)国内硅材料生产供应情况 (28) (三)单晶硅价格走势分析 (30) 五、LED下游市场需求分析 (31) (一)背光源市场 (31) (二)照明市场 (34) (三)景观照明 (36) (四)汽车车灯 (37) 六、LED行业发展前景展望 (38) (一)国家相关产业政策 (38) (二)发展有利和不利因素 (38) (三)行业未来发展前景 (39) 附件1:国内值得关注企业 (40)

核心观点 1、LED是半导体二极管的一种,它能将电能转化为光能,发出黄、绿、蓝等各种颜色的可见光及红外和紫外不可见光。与小白炽灯泡及氖灯相比,它具有工作电压和电流低、可靠性高、寿命长且可方便调节发光亮度等优点。 2、LED产业链从上游到下游行业的进入门槛逐步降低。上游为单晶片及其外延,中游为LED芯片加工,下游为封装测试以及应用。其中,上游和中游技术含量较高,资本投入密度大,为国际竞争最激烈、经营风险最大领域。在LED 产业链中,LED外延片与芯片约占行业70%利润,LED封装约占10~20%,而LED 应用大概也占10~20%。 3、在全球能源危机、环保要求不断提高情况下,寿命长、节能、安全、绿色环保、色彩丰富、微型化的半导体LED照明已被世界公认为一种节能环保的只要途径。半导体灯采用发光二极管作为新光源,同样亮度下,耗电仅为普通白帜灯的1/10,使用寿命可以延长100倍。2007 年全球LED市场总额超过60亿美元,较上年增长大约13.7%,2006 年到2012 年间,LED 全球市场的年复合增长率将达14.6%。其中增长的主要部分是超高亮度和高亮度LEDs。 4、全球LED 产业主要分布在日本、中国台湾地区、欧美、韩国和中国大陆等国家与地区。其中日本约占据50%的份额,是全球LED 产业最大生产国。日本的日亚化学是全球最大的高亮度LED 供货商,丰田合成是全球第四、日本第二大高亮度LED 生产厂商。欧美地区的欧司朗(Osram Opto)为全球第二大也是欧洲最大高亮度LED厂商。我国台湾地区产值第二。由于台湾是全球消费电子产品生产基地,其LED 业以可见光LED 为主,目前是全球第一大下游封装及中游芯片生产地。 5、我国经过30 多年发展,我国LED 产业已初步形成较为完整的产业链,涵盖了LED 衬底、外延片、芯片封装及应用的各个环节。目前国内现有LED企业600多家,企业主要集中在下游封装和应用领域,外延和芯片环节发展相对滞后。国内从事LED 外延片生产的企业仅10 家左右,而从事LED 芯片生产的厂商也不多,产能集中度较高。 6、随着发光效率、应用技术的不断提升,LED的应用已经从最初的指示灯应用转向更具发展潜力的显示屏,景观照明、背光源、汽车车灯、交通灯、照明等领域,LED应用正呈现出多样化发展趋势。2006-2010年显示用LED销售额平均复合增长率为19.2%,景观照明销售额年均复合增长率将达到37.2%,LCD背光源用LED销售额年均复合增长率将达到31.5%。 7、国内LED 企业机遇挑战并存:2010 年LED 行业许多专利将逐渐到期,国内企业有望突破欧美日本巨头的知识产权枷锁,利用国内庞大的市场基础和丰富的劳动力资源,在全球LED 产业占据一席之地。 8、发展LED 产业符合我国倡导节能减排政策,“十一五”规划中国家将绿色照明列于十大节能工程首位。

齐纳二极管和肖特基二极管

齐纳二极管和肖特基二极管 肖特基二极管(Schottky)SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 SBD的结构及特点使其适合于在低压、大电流输出场合用作高频整流,在非常高的频率下(如X波段、C波段、S波段和Ku波段)用于检波和混频,在高速逻辑电路中用作箝位。在IC中也常使用SBD,像SBD TTL集成电路早已成为TTL 电路的主流,在高速计算机中被广泛采用。 反向恢复时间 现代脉冲电路中大量使用晶体管或二极管作为开关, 或者使用主要是由它们构成的逻辑集成电路。而作为开关应用的二极管主要是利用了它的通(电阻很小)、断(电阻很大) 特性, 即二极管对正向及反向电流表现出的开关作用。二极管和一般开关的不同在于,“开”与“关”由所加电压的极性决定, 而且“开”态有微小的压降V f,“关”态有微小的电流I 0。当电压由正向变为反向时, 电流并不立刻成为(- I 0) , 而是在一段时间ts 内, 反向电流始终很大, 二极管并不关断。经过ts后, 反向电流才逐渐变小, 再经过tf 时间, 二极管的电流才成为(- I 0) , 如图1 示。ts 称为储存时间, tf 称为下降时间。tr= ts+ tf 称为反向恢复时间, 以上过程称为反向恢复过程。 这实际上是由电荷存储效应引起的, 反向恢复时间就是存储电荷耗尽所需要的时间。该过程使二极管不能在快速连续脉冲下当做开关使用。如果反向脉冲的持续时间比tr 短, 则二极管在正、反向都可导通, 起不到开关作用。因此了解二极管反向恢复时间对正确选取管子和合理设计电路至关重要。 齐纳二极管 齐纳二极管zener diodes(又叫稳压二极管它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 齐纳二极管不同于锗二极管的是:如果反向电压,有时简称为“偏压”增加到某个特殊值,对于一个微小偏压的变化,就会使电流产生一个可观的增加。引起这种效应的电压称为“击穿”电压或“齐纳”电压。2DW7型管的击穿电压在5.8-6.5V之间,极大电流是30mA。

各种常用二极管的检测方法

各种常用二极管的检测方法 半导体二极管又称为晶体二极管,具有明显的单向导电性,是各种电器设备中应用较为广泛的一种半导体元器件,也是日常维修中经常碰到的一种元器件,常见的有普通二极管、稳压二极管、发光二极管、光敏二极管等。 1.普通二极管的检测 (1)小功率锗二极管的正向电阻为300Ω~500Ω,硅二极管为1kΩ或更大些。锗二极管的反向电阻为几十千欧,硅二极管的反向电阻在500kΩ以上(大功率的其值要小些)。 (2)根据二极管的正向电阻小,反向电阻大的特点可判断二极管的极性。将万用表拨到欧姆挡(一般用R×100Ω或R×lkΩ挡,不要用R×1Ω挡或R×10k Ω挡。因为R×1Ω挡使用电流太大,容易将管子烧毁;而 R×10kΩ挡使用的电压太高,可能击穿管子)。用表笔分别与二极管的两极性相连,测出两阻值,在所测得阻值较小的一次,与黑表笔相连的一端即为二极管的正极。同理,在所测得阻值较大的一次,与黑表笔相接的一端为二极管的负极。如果测得的反向电阻很小,说明二极管内部短路;若正向电阻很大,则说明管子内部断路。在这两种情况下二极管就需报废。 (3)硅二极管一般正向压降为 0.6V~0.7V,锗二极管的正向压降为 0.1V~0.3V,所以测量一下二极管的正向导通电压,便可判断被测二极管是硅管还是锗管,其方法是在干电池的一端串一个电阻(1kΩ),同时按极性与二极管相接,使二极管正向导通,这时用万用表测量二极管两端的管压降,如果是0.6V~0.7V 即为硅管,如为0.1V~0.3V 即为锗管;若用在路动态测量则更为方便。 2.稳压二极管的测量 (1)一般使用万用表的低阻挡测量稳压二极管,由于表内电池为 1.5V,这个电压不足以使稳压二极管反向击穿,因而使用低阻挡测量稳压二极管正反向电阻,其阻值应和普通二极管一样。 (2)稳压二极管的稳压值V_z 的测量。测量时,必须使管子进入反向击穿区,所以电源电压要大于被测管的稳定电压,这样,就必须用万用表的高阻挡(R×10k Ω挡),这时表内电池是电压较高的叠层电池,当万用表量程置于高阻挡后,测 其反向电阻,若实测阻值为Rx,则稳压二极管的稳压值为: 式中,n-所用挡次的倍率数,如所用万用表的最高电阻挡是Rx10k,则n=10000 。 R_0-是万用表的中心阻值。 E_0-是所用万用表最高电阻挡的电池电压值。 例:用MF50 型万用表测一只2CWl4,Ro=10 Ω,最高电阻挡为R ×10k 挡,Eo=15V,实测反 向电阻为75k Ω,则其稳压值是: 如果实测阻值非常大(接近于无穷),表示被测管的稳压值Vz 大于 Eo,无法将其击穿。如果实测阻值很小(0或只有几欧),则是表笔接反,只要将表笔互换就可以。 3.发光二极管的测量

LED发光二极管工作原理及检测方法

LED发光二极管工作原理及检测方法 发光二极管LED(Light-EmittingDiode)是能将电信号转换成光信号的结型电致发光半导体器件。 1、发光二极管LED主要特点 (1)在低电压(1.5~2.5V)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED 平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1 所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎德拉每平方米)与正向电流IF近似成正双,有公式L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=1.3~1.5。当IF>10mA时,m=1,式(L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音

发光二极管及热敏电阻的伏安特性研究

非线性电阻特性研究(一) 【实验目的】 (1)了解并掌握基本电学仪器的使用。 (2)学习电学实验规程,掌握回路接线方法。 (3)学习测量条件的选择及系统误差的修正。 (4)探究发光二极管和热敏电阻在常温下的伏安特性曲线。 【实验仪器】 发光二极管(BT102)热敏电阻(根据实验室情况选择)滑动变阻器(0~100 Ω)定值电阻(400Ω)毫安表(0~50mA)微安表(0~50μA) 电压表(0~3v 0~6v)电源(10v)导线等 【实验原理】 (1)当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻R(R=U/I)。若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。 一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图b)。从图上看出,直线通过一、三象限。它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数。 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。 LED是英文light emitting diode(发光二极管)的缩写,它属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用(如图一)。 常规的发光二极管芯片的结构如图二所示,主要分为衬底,外延层(图2中的N型氮化镓,铝镓铟磷有源区和P型氮化镓),透明接触层,P型与N型电极、钝化层几部分。 图3 发光二极管的工作原理 ) ) )电 子 的 电 势 能 电 子 的 电 势 能

肖特基二极管

肖特基二极管 二极管分为好多种,它是除了电阻电容外用的比较多的一种器件,它可以分为稳压二极管,发光二极管,整流二极管,检波用二极管,肖特基二极管。其中就有一种低功耗,超高速的二极管就是肖特基二极管。 肖特基二极管,又称肖特基势垒二极管(简称SBD),肖特基二极管是由贵金属金、铝、银、铂等A为正极,以N型半导体B为负极,然后利用二者接触面之间上形成的势垒一种具有整流特性制成的金属半导体器件。肖特基二极管由于N型半导体中存在大量电子,而贵金属中仅有少量自由电子,肖特基二极管中的电子便从浓度高的B向浓度低A中扩散。肖特基二极管金属A中没有空穴,不存在空穴自A 向B扩散运动。随着肖特基二极管中电子不断从B扩散到A,B的表面电子浓度逐渐降低,表面电中性破坏,于是形成势垒。是以金属和半导体接触形成的势垒为基础的二极管,这种器件是由多数载流子导电的,所以其反向饱和电流较少数载流子导电的PN结大得多,由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。 肖特基二极管的特点: 1、正向压降:肖特基二极管的正向压降比快恢复二极管正向压降低 很多,所以自身功耗较小,效率高。 2、反向恢复时间短:其反向恢复时间极短(可以小到几纳秒),因 此适宜工作在高频状态下。

3、耐电流大:能耐受高浪涌电流。 4、反向耐压低:一般的肖特基管反向耐压一般在200V以下,普遍在100V左右,这使得使用局限有限 5、抗高温特性:目前市场上常见的肖特基管最高结温分100℃、125℃、150%、175℃几种(结温越高表示产品抗高温特性越好。即工作在此温度以下不会引起失效)。 肖特基二极管的功能及其应用:肖特基二极管是由金属与半导体接触形成的势垒层为基础制成的二极管,又称为肖特基势垒二极管,属于金属半导体结型二极管。主要特点是正向导通压降小,反向恢复时间短和开关损耗小,是一种低功耗、超高速半导体器件。缺点是耐压比较低、反向漏电流比较大。 肖特基二极管基势垒高度比PN结势垒高度低,正向导通门限电压和正向压降也比PN结二极管低。肖特基二极管是一种多数载流子导电器件,不存在少数载流子寿命和反向恢复等问题。肖特基二极管的反向恢复时间只是肖特基势垒电容的充、放电时间,完全不同于PN 结二极管反向恢复时间。因为反向恢复电荷少,肖特基二极管开关速度极快,开关损耗也极小,特别适合于高频应用。 肖特基二极管的结构及特点使其适合于在低压、大电流输出等场合用作高频整流,在高频率下用于检波和混频,在高速逻辑电路中用作箝位。在IC中也常使用肖特基二极管,在高速计算机中也被广泛采用。除了普通PN结二极管的特性参数之外,肖特基二极管用于检波和混频的电气参数还包括中频阻抗,指的就是其施加额定本振功

万用表检测发光二极管的方法

万用表检测发光二极管的方法 1.用万用表检测普通发光二极管 A.用指针式万用表R×10k档,测量发光二极管的正、反向电阻值。正常时,正向电阻值(黑表笔接正极时)约为几十至200kΩ,反向电阻值为∞(无穷大)。在测量正向电阻值时,较高灵敏度的发光二极管,管内会发微光。若用万用表R×1k档测量发光二极管的正、反向电阻值,则会发现其正、反向电阻值均接近∞(无穷大),这是因为发光二极管的正向压降约在2V左右(部分发光二极管压降在3V左右,如白色发光二极管等),而万用表R×1k档内电池的电压值为1.5V,故不能使发光二极管正向导通。 B、用指针式万用表的R×10k档对一只220μF/25V电解电容器充电(黑表笔接电容器正极,红表笔接电容器负极),再将充电后的电容器正极接发光二极管正极、电容器负极接发光二极管负极,若发光二极管有很亮的闪光,则说明该发光二极管完好。 C、用3V直流电源,在电源的正极串接1只47Ω电阻后接发光二极管的正极,将电源的负极接发光二极管的负极,正常的发光二极管应发光。或将1节1.5V 电池串接在万用表的黑表笔(将万用表置于R×10或R×100档,黑表笔接电池负极,等于与表内的1.5V电池串联),将电池的正极接发光二极管的正极,红表笔接发光二极管的负极,正常的发光二极管应发光。 D、如果有两块指针万用表(最好同型号)。用一根导线将其中一块万用表的“+”接线柱与另一块表的“-”接线柱连接。余下的“-”笔接被测发光管的正极(P区),余下的“+”笔接被测发光管的负极(N区)。两块万用表均置×1 0Ω挡。正常情况下,接通后发光二极管就能正常发光。若亮度很低,甚至不发光,可将两块万用表均拨至×1Ω若,若仍很暗,甚至不发光,则说明该发光二极管性能不良或损坏。应注意,不能一开始测量就将两块万用表置于×1Ω,以免电流过大,损坏发光二极管。 2、万用表检测红外发光二极管 红外发光二极管的正向压降一般为1.3~2.5V,可用指针式万用表R×10k档测量红外发光管的正、反向电阻。正常时,正向电阻值约为15~40kΩ(此值越小越好);反向电阻大于500kΩ。若测得正、反向电阻值均接近零,则说明该红外发光二极管内部已击穿损坏。若测得正、反向电阻值均为无穷大,则说明该

发光二极管光通量的测定及研究(精)

发光二极管光通量的测定及研究 发光二极管光通量的测定及研究 上海时代之光 二,LED光通量的积分球相对法测量研究 LED光通量的积分球测量系统连接如图所示. 测量前的准备: 1, 依照被测LED功率的不同,我们选用不同直径的LED测量专用积分球. 2, 采用恒定直流源作为 实验1 温度对LED光通量输出的影响 下表为采用我们的积分球系统测量所得到的某一350mA LED光通量随着LED点 亮后温度 的升高而变化的数据. 记录温度(℃) 光通量(lm) 1 25 41.9 2 25 41.9 3 25 40.9 4 26 41.8 5 28 39.9 6 30 38.2 7 30 38.4 8 31 38.0 9 31 37.8 10 32 38.0 11 32 37.3 12 35 37.4 13 35 37.1 14 38 36.7 15 38 36.2 16 39 36.4 17 40 36.7 18 40 36.2 19 42 35.8 20 42 36.1 21 42 35.5 22 42 35.8 23 42 36.0 *说明:上表中的温度指的是LED光出射方向中心表面封装处的温度. 上表相应的350m A LED 温度—光通量关系变化趋势经过直线拟合后绘制如下: 从图中我们可以看到,被测LED光通量大小随封装表面温度的升高出现了下降的 情况.

而从我们其他LED相关试验的结果来看,都呈现出了光通量与温度相反方向的变化关系,只 是随着被测LED的功率不同,功率大的LED光通量变化明显一些,功率较小的LED光通量变 化相对小些. LED环氧树脂封装表面温度,作为表征LED内部P-N结温度的外部表现,从被测LED点 燃开始的温度升高过程中,该LED光通量的输出也发生了或多或少,但相对明显的降低,LED 内部P-N温度的升高导致了LED光通量输出的减少. Lamina公司也曾做过其产品BL-4000 白色LED光通量输出跟节点温度之间变化关系的 相关研究. 发现其产品BL-4000 白色LED的光输出会随着节点温度的升高而降低,同时发现这种 效果在580nm到780nm之间的范围内会更加明显.所以,对于大功率LED产品来说,为了保 证其有最大(或最佳)的光输出,必须要有最优化的散热设计,尽可能地把LED内部P-N 节点温度保持在较低的状态. 较长时间点亮后的LED,其内部P-N节点温度达到一个相对的稳定;而这个稳定温度无 疑正受着环境温度等的影响.通过本实验,要说明的是:LED作为一个受测量环境影响比较 明显的光源,我们在进行LED相关参数包括光通量等的测量时,必须要有统一并严格保持这 一恒定的环境温度,否则测量结果里就可能存在着比较明显的偏差. 同时,LED测量专用积分球内部空间相对狭小,由于被测LED长时间的点亮很可能就会 造成积分球内部温度的升高.所以,对于LED这种对温度相当敏感的光源来说,更不能在封 闭的积分球内进行长时间的点亮测量.这些都是LED光通量测量结果产生偏差的原因. 实验2 LED放置方向对其总光通量测量结果的影响 积分球放置:探测器所在窗口在测量者所面对积分球的正背面. 定义LED的放置方向: 上:LED机械轴垂直,LED光出射方向向上. 左:LED光出射方向向左. 右:LED光出射方向向右. 前:LED光出射方向向观察者方向. 后:LED光出射方向背观察者方向,向挡屏方向.

防护电路设计(SMBJ、肖特基二极管)

防护电路设计 1.防护电路中的元器件 1.1过压防护器件 1.1.1钳位型过压防护器件 ①压敏电阻 MOV电路符号 压敏电阻英文varistor或MOV,它以氧化锌为基料,加入多种添加剂,经过混料造粒, 压制成坯体,高温烧结,两面印烧银电极,焊接引出端,最后包封等工序而制成。 优点是价格便宜,通流量大,响应速度快,缺点是寄生电容大,不适合用在高频电路中。 压敏电阻器广泛应用于家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电 流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。 压敏电压的选择:交流电路其最小值一般选择被保护设备电压2-3倍,直流电路选取为 工作电压的1.8-2倍。 由于压敏制作时可能存在微小缺陷,或者当承受不同电流冲击,造成管芯的压敏电阻体 分布不均,一些部位电阻会降低,导致漏电流增加,最终导致薄弱点微融化,最终导致 老化。所以一般串接热熔点来避免。 压敏可串并联使用。 ②TVS TVS电路符号 TVS是一种限压型的过压保护器,它将过高的电压钳制至一个安全范围,藉以保护后 面的电路,有着比其它保护元件更快的反应时间,这使TVS可用在防护lighting、 switching、ESD等快速破坏性瞬态电压。 特点:可分为单双向,响应时间快、漏电流低、击穿电压误差小、箝位电压较易控制、 并且经过多次瞬变电压后,性能不下降,可靠性高,体积小、易于安装。缺点是能承受 的浪涌电流较小,且功率大的寄生电容也大,低电容的功率较小。适用于细保护或者二 级保护。

选型注意,单双向,电压,功率,电容都要考虑到。 单向TVS伏安特性双向TVS伏安特性 1.1.2开关型过压防护器具 ①气体放电管 GDT电路符号 气体放电管是一种陶瓷或玻璃封装的、内充低压惰性气体的短路型保护器件,一般分两电极和三电极两种结构。其基本的工作原理是气体放电。当极间的电场强度超过气体的击穿强度时,就引起间隙放电,从而限制了极间的电压,使与气体放电管并联的其它器件得到保护。可分为二极和三极两种。 陶瓷气体放电管具有通流量大(KA级),漏电流小,寄生电容小等优点,缺点是其响应速度慢(μs级),动作电压精度低,有续流现象。适用于粗保护或者初级保护。 选型方法:min(UDC)≥1.25*1.15Up 1.25是安全余量,1.15是电源波动系数。 特性曲线

LED发光二极管检测方法

1.发光二极管的特点 发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是: (1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式L =K IFm

式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。当IF>10mA时,m=1,式()简化成 L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏 LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。 LED的输出光谱决定其发光颜色及光辐射纯度,也反映出半导体材料的特性。常见管芯材料有磷化镓(GaP)、砷化镓(GaAsP)、磷砷化镓(GaAlAs)、砷铝化镓(GaN)氮化镓可发蓝光。 3.使用注意事项 (1)管子极性不得接反,一般讲引线较长的为正极,引线较短的是负极。 (2)使用中各项参数不得超过规定极限值。正向电流IF不允许超过极限工作电流IFM值,并且随着环境温度的升高,必须作降额使用。长期使用温度不宜超过75℃。 (3)焊接时间应尽量短,焊点不能在管脚根部。焊接时应使用镊子夹住管脚根部散热,宜用中性助焊剂(松香)或选用松香焊锡丝。 (4)严禁用有机溶液浸泡或清洗。 (5)LED的驱动电路必须加限流电阻,一般可取一百欧至几百欧,视电源电压而定。

相关文档
相关文档 最新文档